Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.225
Filtrar
1.
J Tradit Chin Med ; 44(3): 448-457, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38767628

RESUMO

OBJECTIVE: Exploring the effect of Optimized New Shengmai powder (, ONSMP) on myocardial fibrosis in heart failure (HF) based on rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinases (ERK) signaling pathway. METHODS: Randomized 70 Sprague-Dawley rats into sham (n = 10) and operation (n = 60) groups, then established the HF rat by ligating the left anterior descending branch of the coronary artery. We randomly divided the operation group rats into the model, ONSMP [including low (L), medium (M), and high (H) dose], and enalapril groups. After the 4-week drug intervention, echocardiography examines the cardiac function and calculates the ratios of the whole/left heart to the rat's body weight. Finally, we observed the degree of myocardial fibrosis by pathological sections, determined myocardium collagen (COL) I and COL Ⅲ content by enzyme-linked immunosorbent assay, detected the mRNA levels of COL I, COL Ⅲ, α-smooth muscle actin (α-SMA), and c-Fos proto-oncogene (c-Fos) by universal real-time, and detected the protein expression of p-RAS, p-RAF, p-MEK1/2, p-ERK1/2, p-ETS-like-1 transcription factor (p-ELK1), p-c-Fos, α-SMA, COL I, and COL Ⅲ by Western blot. RESULTS: ONSMP can effectively improve HF rat's cardiac function, decrease cardiac organ coefficient, COL volume fraction, and COL I/Ⅲ content, down-regulate the mRNA of COL I/Ⅲ, α-SMA and c-Fos, and the protein of p-RAS, p-RAF, p-MEK1/ 2, p-ERK1/2, p-ELK1, c-Fos, COL Ⅰ/Ⅲ, and α-SMA. CONCLUSIONS: ONSMP can effectively reduce myocardial fibrosis in HF rats, and the mechanism may be related to the inhibition of the RAS/RAF/MEK/ERK signaling pathway.


Assuntos
Combinação de Medicamentos , Medicamentos de Ervas Chinesas , Fibrose , Insuficiência Cardíaca , Ratos Sprague-Dawley , Animais , Medicamentos de Ervas Chinesas/administração & dosagem , Ratos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/etiologia , Masculino , Fibrose/tratamento farmacológico , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Transdução de Sinais/efeitos dos fármacos , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/metabolismo
2.
BMC Mol Cell Biol ; 25(1): 16, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750444

RESUMO

BACKGROUND: Oxidative stress is implicated in the pathogenesis of heart failure. Dual oxidase 1 (DUOX1) might be important in heart failure development through its mediating role in oxidative stress. This study was designed to evaluate the potential role of DUOX1 in heart failure. MATERIALS AND METHODS: AC16 cells were treated with 2 µmol/L of doxorubicin (DOX) for 12, 24, and 48 h to construct a heart failure model. DUOX1 overexpression and silencing in AC16 cell were established. DUOX1 expression was detected by Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Pyroptosis and reactive oxygen species (ROS) production were measured by flow cytometry. RESULTS: Increased DUOX1 expression levels were observed after DOX treatment for 24 h in AC16 cells. DUOX1 silencing inhibited DOX-induced pyroptosis and ROS production. The release of IL-1ß, IL-18, and lactate dehydrogenase (LDH), and expression levels of pyroptosis-related proteins were also decreased. DUOX1 overexpression increased pyroptosis, ROS production, IL-1ß, IL-18, and LDH release, and pyroptosis-related protein expression. N-acetyl-cysteine (NAC) significantly reversed DUOX1-induced pyroptosis, ROS, and related factors. CONCLUSION: These results suggest that DUOX1-derived genotoxicity could promote heart failure development. In the process, oxidative stress and pyroptosis may be involved in the regulation of DUOX1 in heart failure.


Assuntos
Caspase 1 , Doxorrubicina , Oxidases Duais , Insuficiência Cardíaca , Estresse Oxidativo , Piroptose , Espécies Reativas de Oxigênio , Regulação para Cima , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Oxidases Duais/metabolismo , Oxidases Duais/genética , Espécies Reativas de Oxigênio/metabolismo , Humanos , Doxorrubicina/farmacologia , Caspase 1/metabolismo , Linhagem Celular , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo
3.
J Cardiothorac Surg ; 19(1): 271, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702771

RESUMO

BACKGROUND: MicroRNA-200b-3p (miR-200b-3p) plays a pivotal role in inflammatory responses and is implicated in various inflammatory disorders. In this study, we aim to explore the role of miR-200b-3p in the inflammatory response in heart failure (HF). METHODS: Patients diagnosed with heart failure and age-matched healthy controls were studied. Peripheral blood samples from participants were collected for RNA-seq analysis to explore the expression profile of miR-200b-3p. The predictive value of miR-200b-3p and ZEB1 in the prognosis of heart failure was evaluated by analyzing the receiver operating characteristic (ROC) curve. Bioinformatics analysis and double luciferase reporter gene analysis were used to confirm the interaction between miR-200b-3p and ZEB1. Real-time quantitative polymerase chain reaction (QRT-PCR) was used to detect the expression levels of miR-200b-3p and ZEB1 in cardiopulmonary bypass. Additionally, the effects of miR-200b-3p on myocardial cell line (H9c2) injury were evaluated by enzyme-linked immunosorbent assay (ELISA). RESULTS: In the extracardiac circulation of HF patients, miR-200b-3p expression was significantly reduced, while ZEB1 levels were notably elevated. Analysis of the ROC curve revealed that miR-200b-3p and ZEB1 have predictive value in the prognosis of HF patients. The double luciferase reporter experiment demonstrated that miR-200b-3p binds to ZEB1 and inhibits its expression. Overexpression of miR-200b-3p demonstrated a remarkable ability to alleviate inflammation and inhibit the damage to myocardial cells in vivo. CONCLUSION: MiR-200b-3p can target and inhibit ZEB1, reducing the inflammatory reaction of myocardial cells. The miR-200b-3p/ZEB1 network may be helpful in preventing and treating HF.


Assuntos
Insuficiência Cardíaca , Inflamação , MicroRNAs , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Humanos , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , MicroRNAs/genética , Insuficiência Cardíaca/genética , Masculino , Inflamação/genética , Inflamação/metabolismo , Feminino , Pessoa de Meia-Idade , Regulação da Expressão Gênica
5.
BMC Cardiovasc Disord ; 24(1): 197, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580957

RESUMO

BACKGROUND: Heart failure (HF) is a heterogeneous syndrome that affects millions worldwide, resulting in substantial health and economic burdens. However, the molecular mechanism of HF pathogenesis remains unclear. METHODS: HF-related key genes were screened by a bioinformatics approach.The impacts of HAPLN1 knockdown on Angiotensin II (Ang II)-induced AC16 cells were assessed through a series of cell function experiments. Enzyme-linked immunosorbent assay (ELISA) was used to measure levels of oxidative stress and apoptosis-related factors. The HF rat model was induced by subcutaneous injection isoprenaline and histopathologic changes in the cardiac tissue were assessed by hematoxylin and eosin (HE) staining and echocardiographic index. Downstream pathways regulated by HAPLN1 was predicted through bioinformatics and then confirmed in vivo and in vitro by western blot. RESULTS: Six hub genes were screened, of which HAPLN1, FMOD, NPPB, NPPA, and COMP were overexpressed, whereas NPPC was downregulated in HF. Further research found that silencing HAPLN1 promoted cell viability and reduced apoptosis in Ang II-induced AC16 cells. HAPLN1 knockdown promoted left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS), while decreasing left ventricular end-systolic volume (LVESV) in the HF rat model. HAPLN1 knockdown promoted the levels of GSH and suppressed the levels of MDA, LDH, TNF-α, and IL-6. Mechanistically, silencing HAPLN1 activated the PKA pathway, which were confirmed both in vivo and in vitro. CONCLUSION: HAPLN1 knockdown inhibited the progression of HF by activating the PKA pathway, which may provide novel perspectives on the management of HF.


Assuntos
Proteínas da Matriz Extracelular , Insuficiência Cardíaca , Função Ventricular Esquerda , Animais , Ratos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Volume Sistólico , Proteoglicanas/genética , Proteoglicanas/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
6.
Signal Transduct Target Ther ; 9(1): 94, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644381

RESUMO

Much effort has been made to uncover the cellular heterogeneities of human hearts by single-nucleus RNA sequencing. However, the cardiac transcriptional regulation networks have not been systematically described because of the limitations in detecting transcription factors. In this study, we optimized a pipeline for isolating nuclei and conducting single-nucleus RNA sequencing targeted to detect a higher number of cell signal genes and an optimal number of transcription factors. With this unbiased protocol, we characterized the cellular composition of healthy human hearts and investigated the transcriptional regulation networks involved in determining the cellular identities and functions of the main cardiac cell subtypes. Particularly in fibroblasts, a novel regulator, PKNOX2, was identified as being associated with physiological fibroblast activation in healthy hearts. To validate the roles of these transcription factors in maintaining homeostasis, we used single-nucleus RNA-sequencing analysis of transplanted failing hearts focusing on fibroblast remodelling. The trajectory analysis suggested that PKNOX2 was abnormally decreased from fibroblast activation to pathological myofibroblast formation. Both gain- and loss-of-function in vitro experiments demonstrated the inhibitory role of PKNOX2 in pathological fibrosis remodelling. Moreover, fibroblast-specific overexpression and knockout of PKNOX2 in a heart failure mouse model induced by transverse aortic constriction surgery significantly improved and aggravated myocardial fibrosis, respectively. In summary, this study established a high-quality pipeline for single-nucleus RNA-sequencing analysis of heart muscle. With this optimized protocol, we described the transcriptional regulation networks of the main cardiac cell subtypes and identified PKNOX2 as a novel regulator in suppressing fibrosis and a potential therapeutic target for future translational studies.


Assuntos
Fibrose , Proteínas de Homeodomínio , Miocárdio , Animais , Humanos , Masculino , Camundongos , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos Knockout , Miocárdio/patologia , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia
7.
Cardiovasc Diabetol ; 23(1): 118, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566143

RESUMO

BACKGROUND: Sodium-glucose cotransporter 2 (SGLT-2) inhibitors are increasingly recognized for their role in reducing the risk and improving the prognosis of heart failure (HF). However, the precise mechanisms involved remain to be fully delineated. Evidence points to their potential anti-inflammatory pathway in mitigating the risk of HF. METHODS: A two-sample, two-step Mendelian Randomization (MR) approach was employed to assess the correlation between SGLT-2 inhibition and HF, along with the mediating effects of inflammatory biomarkers in this relationship. MR is an analytical methodology that leverages single nucleotide polymorphisms as instrumental variables to infer potential causal inferences between exposures and outcomes within observational data frameworks. Genetic variants correlated with the expression of the SLC5A2 gene and glycated hemoglobin levels (HbA1c) were selected using datasets from the Genotype-Tissue Expression project and the eQTLGen consortium. The Genome-wide association study (GWAS) data for 92 inflammatory biomarkers were obtained from two datasets, which included 14,824 and 575,531 individuals of European ancestry, respectively. GWAS data for HF was derived from a meta-analysis that combined 26 cohorts, including 47,309 HF cases and 930,014 controls. Odds ratios (ORs) and 95% confidence interval (CI) for HF were calculated per 1 unit change of HbA1c. RESULTS: Genetically predicted SGLT-2 inhibition was associated with a reduced risk of HF (OR 0.42 [95% CI 0.30-0.59], P < 0.0001). Of the 92 inflammatory biomarkers studied, two inflammatory biomarkers (C-X-C motif chemokine ligand 10 [CXCL10] and leukemia inhibitory factor) were associated with both SGLT-2 inhibition and HF. Multivariable MR analysis revealed that CXCL10 was the primary inflammatory cytokine related to HF (MIP = 0.861, MACE = 0.224, FDR-adjusted P = 0.0844). The effect of SGLT-2 inhibition on HF was mediated by CXCL10 by 17.85% of the total effect (95% CI [3.03%-32.68%], P = 0.0183). CONCLUSIONS: This study provides genetic evidence supporting the anti-inflammatory effects of SGLT-2 inhibitors and their beneficial impact in reducing the risk of HF. CXCL10 emerged as a potential mediator, offering a novel intervention pathway for HF treatment.


Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Cardíaca , Humanos , Hemoglobinas Glicadas , Análise da Randomização Mendeliana , Inflamação/diagnóstico , Inflamação/tratamento farmacológico , Inflamação/genética , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Anti-Inflamatórios , Biomarcadores , Glucose , Sódio
8.
Sci Rep ; 14(1): 8128, 2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584196

RESUMO

Fat loss predicts adverse outcomes in advanced heart failure (HF). Disrupted circadian clocks are a primary cause of lipid metabolic issues, but it's unclear if this disruption affects fat expenditure in HF. To address this issue, we investigated the effects of disruption of the BMAL1/REV-ERBα circadian rhythmic loop on adipose tissue metabolism in HF.50 Wistar rats were initially divided into control (n = 10) and model (n = 40) groups. The model rats were induced with HF via monocrotaline (MCT) injections, while the control group received equivalent solvent injections. After establishing the HF model, the model group was further subdivided into four groups: normal rhythm (LD), inverted rhythm (DL), lentivirus vector carrying Bmal1 short hairpin RNA (LV-Bmal1 shRNA), and empty lentivirus vector control (LV-Control shRNA) groups, each with 10 rats. The DL subgroup was exposed to a reversed light-dark cycle of 8 h: 16 h (dark: light), while the rest adhered to normal light-dark conditions (light: dark 12 h: 12 h). Histological analyses were conducted using H&E, Oil Red O, and Picrosirius red stains to examine adipose and liver tissues. Immunohistochemical staining, RT-qPCR, and Western blotting were performed to detect markers of lipolysis, lipogenesis, and beiging of white adipose tissue (WAT), while thermogenesis indicators were detected in brown adipose tissue (BAT). The LD group rats exhibited decreased levels of BMAL1 protein, increased levels of REV-ERBα protein, and disrupted circadian circuits in adipose tissue compared to controls. Additionally, HF rats showed reduced adipose mass and increased ectopic lipid deposition, along with smaller adipocytes containing lower lipid content and fibrotic adipose tissue. In the LD group WAT, expression of ATGL, HSL, PKA, and p-PKA proteins increased, alongside elevated mRNA levels of lipase genes (Hsl, Atgl, Peripilin) and FFA ß-oxidation genes (Cpt1, acyl-CoA). Conversely, lipogenic gene expression (Scd1, Fas, Mgat, Dgat2) decreased, while beige adipocyte markers (Cd137, Tbx-1, Ucp-1, Zic-1) and UCP-1 protein expression increased. In BAT, HF rats exhibited elevated levels of PKA, p-PKA, and UCP-1 proteins, along with increased expression of thermogenic genes (Ucp-1, Pparγ, Pgc-1α) and lipid transportation genes (Cd36, Fatp-1, Cpt-1). Plasma NT-proBNP levels were higher in LD rats, accompanied by elevated NE and IL-6 levels in adipose tissue. Remarkably, morphologically, the adipocytes in the DL and LV-Bmal1 shRNA groups showed reduced size and lower lipid content, while lipid deposition in the liver was more pronounced in these groups compared to the LD group. At the gene/protein level, the BMAL1/REV-ERBα circadian loop exhibited severe disruption in LV-Bmal1 shRNA rats compared to LD rats. Additionally, there was increased expression of lipase genes, FFA ß oxidation genes, and beige adipocyte markers in WAT, as well as higher expression of thermogenic genes and lipid transportation genes in BAT. Furthermore, plasma NT-proBNP levels and adipose tissue levels of NE and IL-6 were elevated in LV-Bmal1 shRNA rats compared with LD rats. The present study demonstrates that disruption of the BMAL1/REV-ERBα circadian rhythmic loop is associated with fat expenditure in HF. This result suggests that restoring circadian rhythms in adipose tissue may help counteract disorders of adipose metabolism and reduce fat loss in HF.


Assuntos
Fatores de Transcrição ARNTL , Insuficiência Cardíaca , Ratos , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Monocrotalina , Gastos em Saúde , Interleucina-6/metabolismo , Ratos Wistar , Ritmo Circadiano/genética , Tecido Adiposo Marrom/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Lipase/metabolismo , RNA Interferente Pequeno/metabolismo , Lipídeos
9.
Circ Heart Fail ; 17(4): e011089, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525608

RESUMO

BACKGROUND: Prostaglandin E2 acts through 4 G-protein-coupled receptors (EP1-EP4). We previously reported that activation of the EP3 receptor reduces cardiac contractility, and its expression increases after a myocardial infarction (MI), mediating the reduction in cardiac function. In contrast, cardiac overexpression of the EP4 receptor in MI substantially improves cardiac function. Moreover, we recently reported that mice overexpressing EP3 have heart failure under basal conditions and worsened cardiac function after MI. Thus, the deleterious effects of the prostaglandin E2 EP receptors in the heart are mediated via its EP3 receptor. We, therefore, hypothesized that cardiomyocyte-specific knockout (CM-EP3 KO) or antagonism of the EP3 receptor protects the heart after MI. METHODS: To test our hypothesis, we made the novel CM-EP3 KO mouse and subjected CM-EP3 KO or controls to sham or MI surgery for 2 weeks. In separate experiments, C57BL/6 mice were subjected to 2 weeks of MI and treated with either the EP3 antagonist L798 106 or vehicle starting 3 days post-MI. RESULTS: CM-EP3 KO significantly prevented a decline in cardiac function after MI compared with WT animals and prevented an increase in hypertrophy and fibrosis. Excitingly, mice treated with L798 106 3 days after MI had significantly better cardiac function compared with vehicle-treated mice. CONCLUSIONS: Altogether, these data suggest that EP3 may play a direct role in regulating cardiac function, and pharmaceutical targeting of the EP3 receptor may be a therapeutic option in the treatment of heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Camundongos , Animais , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Deleção de Genes , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/prevenção & controle , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP3/genética , Receptores de Prostaglandina E Subtipo EP3/metabolismo
10.
Eur J Clin Invest ; 54(6): e14194, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438337

RESUMO

BACKGROUND: Substantial focus has been placed on atrial fibrillation (AF) treatment and associated stroke prevention rather than preventing AF itself. We employed Mendelian randomization (MR) approach to examine the causal relationships between 50 modifiable risk factors (RFs) and AF. METHODS: Instrumental variables for genetically predicted exposures were derived from corresponding genome-wide association studies (GWASs). Summary-level statistical data for AF were obtained from a GWAS meta-analysis (discovery dataset, N = 1,030,836) and FinnGen (validation dataset, N = 208,594). Univariable and multivariable MR analyses were performed, primarily using inverse variance weighted method with a series of robust sensitivity analyses. RESULTS: Genetic predisposition to insomnia, daytime naps, apnea, smoking initiation, moderate to vigorous physical activity and obesity traits, including body mass index, waist-hip ratio, central and peripheral fat/fat-free mass, exhibited significant associations with an increased risk of AF. Coffee consumption and ApoB had suggestive increased risks. Hypertension (odds ratio (OR) 95% confidence interval (CI): 5.26 (4.42, 6.24)), heart failure (HF) (OR 95% CI, 4.77 (2.43, 9.37)) and coronary artery disease (CAD) (OR 95% CI: 1.20 (1.16, 1.24)) were strongly associated with AF, while college degree, higher education attachment and HDL levels were associated with a decreased AF risk. Reverse MR found a bidirectional relationship between genetically predicted AF and CAD, HF and ischemic stroke. Multivariable analysis further indicated that obesity-related traits, systolic blood pressure and lower HDL levels independently contributed to the development of AF. CONCLUSIONS: This study identified several lifestyles and cardiometabolic factors that might be causally related to AF, underscoring the importance of a holistic approach to AF management and prevention.


Assuntos
Fibrilação Atrial , Índice de Massa Corporal , Doença da Artéria Coronariana , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca , Hipertensão , Análise da Randomização Mendeliana , Obesidade , Fumar , Fibrilação Atrial/genética , Fibrilação Atrial/epidemiologia , Humanos , Obesidade/genética , Obesidade/complicações , Fatores de Risco , Hipertensão/genética , Hipertensão/epidemiologia , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/epidemiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/epidemiologia , Fumar/genética , Relação Cintura-Quadril , Predisposição Genética para Doença , Exercício Físico , Apolipoproteínas B/genética , Apolipoproteína B-100/genética
11.
JAMA ; 331(9): 778-791, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441582

RESUMO

Importance: Systemic amyloidosis from transthyretin (ATTR) protein is the most common type of amyloidosis that causes cardiomyopathy. Observations: Transthyretin (TTR) protein transports thyroxine (thyroid hormone) and retinol (vitamin A) and is synthesized predominantly by the liver. When the TTR protein misfolds, it can form amyloid fibrils that deposit in the heart causing heart failure, heart conduction block, or arrhythmia such as atrial fibrillation. The biological processes by which amyloid fibrils form are incompletely understood but are associated with aging and, in some patients, affected by inherited variants in the TTR genetic sequence. ATTR amyloidosis results from misfolded TTR protein deposition. ATTR can occur in association with normal TTR genetic sequence (wild-type ATTR) or with abnormal TTR genetic sequence (variant ATTR). Wild-type ATTR primarily manifests as cardiomyopathy while ATTR due to a genetic variant manifests as cardiomyopathy and/or polyneuropathy. Approximately 50 000 to 150 000 people in the US have heart failure due to ATTR amyloidosis. Without treatment, heart failure due to ATTR amyloidosis is associated with a median survival of approximately 5 years. More than 130 different inherited genetic variants in TTR exist. The most common genetic variant is Val122Ile (pV142I), an allele with an origin in West African countries, that is present in 3.4% of African American individuals in the US or approximately 1.5 million persons. The diagnosis can be made using serum free light chain assay and immunofixation electrophoresis to exclude light chain amyloidosis combined with cardiac nuclear scintigraphy to detect radiotracer uptake in a pattern consistent with amyloidosis. Loop diuretics, such as furosemide, torsemide, and bumetanide, are the primary treatment for fluid overload and symptomatic relief of patients with ATTR heart failure. An ATTR-directed therapy that inhibited misfolding of the TTR protein (tafamidis, a protein stabilizer), compared with placebo, reduced mortality from 42.9% to 29.5%, reduced hospitalizations from 0.7/year to 0.48/year, and was most effective when administered early in disease course. Conclusions and Relevance: ATTR amyloidosis causes cardiomyopathy in up to approximately 150 000 people in the US and tafamidis is the only currently approved therapy. Tafamidis slowed progression of ATTR amyloidosis and improved survival and prevented hospitalization, compared with placebo, in people with ATTR-associated cardiomyopathy.


Assuntos
Amiloidose , Cardiomiopatias , Insuficiência Cardíaca , Pré-Albumina , Humanos , Amiloidose/complicações , Amiloidose/epidemiologia , Amiloidose/genética , Amiloidose/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina , Pré-Albumina/genética , Pré-Albumina/metabolismo , Negro ou Afro-Americano/etnologia , Negro ou Afro-Americano/genética , Negro ou Afro-Americano/estatística & dados numéricos , Estados Unidos/epidemiologia , África Ocidental , Dobramento de Proteína
12.
Mol Ther ; 32(5): 1578-1594, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475992

RESUMO

Heart failure (HF) is manifested by transcriptional and posttranscriptional reprogramming of critical genes. Multiple studies have revealed that microRNAs could translocate into subcellular organelles such as the nucleus to modify gene expression. However, the functional property of subcellular Argonaute2 (AGO2), the core member of the microRNA machinery, has remained elusive in HF. AGO2 was found to be localized in both the cytoplasm and nucleus of cardiomyocytes, and robustly increased in the failing hearts of patients and animal models. We demonstrated that nuclear AGO2 rather than cytosolic AGO2 overexpression by recombinant adeno-associated virus (serotype 9) with cardiomyocyte-specific troponin T promoter exacerbated the cardiac dysfunction in transverse aortic constriction (TAC)-operated mice. Mechanistically, nuclear AGO2 activates the transcription of ANKRD1, encoding ankyrin repeat domain-containing protein 1 (ANKRD1), which also has a dual function in the cytoplasm as part of the I-band of the sarcomere and in the nucleus as a transcriptional cofactor. Overexpression of nuclear ANKRD1 recaptured some key features of cardiac remodeling by inducing pathological MYH7 activation, whereas cytosolic ANKRD1 seemed cardioprotective. For clinical practice, we found ivermectin, an antiparasite drug, and ANPep, an ANKRD1 nuclear location signal mimetic peptide, were able to prevent ANKRD1 nuclear import, resulting in the improvement of cardiac performance in TAC-induced HF.


Assuntos
Proteínas Argonautas , Modelos Animais de Doenças , Insuficiência Cardíaca , Miócitos Cardíacos , Proteínas Repressoras , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Camundongos , Humanos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Miócitos Cardíacos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Remodelação Ventricular , Núcleo Celular/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Regulação da Expressão Gênica , Masculino , Dependovirus/genética , Transcrição Gênica
13.
Wiad Lek ; 77(1): 105-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38431814

RESUMO

OBJECTIVE: Aim: To analyze the role of cytokines in the progression of heart failure (HF) in patients with concomitant pathology of the thyroid gland. PATIENTS AND METHODS: Materials and Methods: The systematization of literature data on the role of cytokines in the progression of HF in patients with concomitant thyroid pathology (TP) was carried out. The results of our own research were presented. CONCLUSION: Conclusions: The final chapter in the history of the role of cytokines in the progression of HF has not yet been written. Further studies, including genetic ones, are necessary. The patients with HF have higher levels of TNFß and IL-6, and a lower concentration of IL-4, compared to the control group. Patients with a fatal outcome of the disease, in contrast to those who survived for two years, have an increased level of TNFß. In patients with concomitant TP, who had repeated hospitalization, a lower level was registered, compared to that under conditions of a more favorable course of heart failure. Concentrations of cytokines in the blood of patients with HF are associated with gene polymorphisms of the ß-adrenoreceptor system: the C-allele of the Gly389A polymorphism of the ß1-adrenoceptor gene leads to a decrease in the risk of increasing TNFα; IL-1α increases in the presence of the A-allele of the Ser49Gly polymorphism of this gene. In patients with HF and concomitant thyroid pathology, the risk of IL-6 growth increases in homozygous (C) patients for the Ser275 polymorphism of the ß3 subunit of the G-protein.


Assuntos
Insuficiência Cardíaca , Glândula Tireoide , Humanos , Citocinas/genética , Interleucina-6/genética , Receptores Adrenérgicos beta 1/genética , Polimorfismo Genético , Insuficiência Cardíaca/genética
14.
Circ Res ; 134(8): 1006-1022, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38506047

RESUMO

BACKGROUND: In heart failure, signaling downstream the ß2-adrenergic receptor is critical. Sympathetic stimulation of ß2-adrenergic receptor alters cAMP (cyclic adenosine 3',5'-monophosphate) and triggers PKA (protein kinase A)-dependent phosphorylation of proteins that regulate cardiac function. cAMP levels are regulated in part by PDEs (phosphodiesterases). Several AKAPs (A kinase anchoring proteins) regulate cardiac function and are proposed as targets for precise pharmacology. AKAP12 is expressed in the heart and has been reported to directly bind ß2-adrenergic receptor, PKA, and PDE4D. However, its roles in cardiac function are unclear. METHODS: cAMP accumulation in real time downstream of the ß2-adrenergic receptor was detected for 60 minutes in live cells using the luciferase-based biosensor (GloSensor) in AC16 human-derived cardiomyocyte cell lines overexpressing AKAP12 versus controls. Cardiomyocyte intracellular calcium and contractility were studied in adult primary cardiomyocytes from male and female mice overexpressing cardiac AKAP12 (AKAP12OX) and wild-type littermates post acute treatment with 100-nM isoproterenol (ISO). Systolic cardiac function was assessed in mice after 14 days of subcutaneous ISO administration (60 mg/kg per day). AKAP12 gene and protein expression levels were evaluated in left ventricular samples from patients with end-stage heart failure. RESULTS: AKAP12 upregulation significantly reduced total intracellular cAMP levels in AC16 cells through PDE8. Adult primary cardiomyocytes from AKAP12OX mice had significantly reduced contractility and impaired calcium handling in response to ISO, which was reversed in the presence of the selective PDE8 inhibitor (PF-04957325). AKAP12OX mice had deteriorated systolic cardiac function and enlarged left ventricles. Patients with end-stage heart failure had upregulated gene and protein levels of AKAP12. CONCLUSIONS: AKAP12 upregulation in cardiac tissue is associated with accelerated cardiac dysfunction through the AKAP12-PDE8 axis.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases , Cardiopatias , Receptores Adrenérgicos , Animais , Feminino , Humanos , Masculino , Camundongos , 3',5'-AMP Cíclico Fosfodiesterases/genética , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Cálcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cardiopatias/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos/metabolismo , Regulação para Cima
15.
Sci Rep ; 14(1): 5811, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461325

RESUMO

New or mild heart failure (HF) is mainly caused by left ventricular dysfunction. We hypothesised that gene expression differ between the left (LV) and right ventricle (RV) and secondly by type of LV dysfunction. We compared gene expression through myocardial biopsies from LV and RV of patients undergoing elective coronary bypass surgery (CABG). Patients were categorised based on LV ejection fraction (EF), diastolic function and NT-proBNP into pEF (preserved; LVEF ≥ 45%), rEF (reduced; LVEF < 45%) or normal LV function. Principal component analysis of gene expression displayed two clusters corresponding to LV and RV. Up-regulated genes in LV included natriuretic peptides NPPA and NPPB, transcription factors/coactivators STAT4 and VGLL2, ion channel related HCN2 and LRRC38 associated with cardiac muscle contraction, cytoskeleton, and cellular component movement. Patients with pEF phenotype versus normal differed in gene expression predominantly in LV, supporting that diastolic dysfunction and structural changes reflect early LV disease in pEF. DKK2 was overexpressed in LV of HFpEF phenotype, potentially leading to lower expression levels of ß-catenin, α-SMA (smooth muscle actin), and enhanced apoptosis, and could be a possible factor in the development of HFpEF. CXCL14 was down-regulated in both pEF and rEF, and may play a role to promote development of HF.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , Ventrículos do Coração , Volume Sistólico/fisiologia , Ecocardiografia , Perfilação da Expressão Gênica , Biópsia , Função Ventricular Esquerda
16.
J Cell Mol Med ; 28(7): e18187, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509725

RESUMO

Cuproptosis is a recently discovered programmed cell death pattern that affects the tricarboxylic acid (TCA) cycle by disrupting the lipoylation of pyruvate dehydrogenase (PDH) complex components. However, the role of cuproptosis in the progression of ischemic heart failure (IHF) has not been investigated. In this study, we investigated the expression of 10 cuproptosis-related genes in samples from both healthy individuals and those with IHF. Utilizing these differential gene expressions, we developed a risk prediction model that effectively distinguished healthy and IHF samples. Furthermore, we conducted a comprehensive evaluation of the association between cuproptosis and the immune microenvironment in IHF, encompassing infiltrated immunocytes, immune reaction gene-sets and human leukocyte antigen (HLA) genes. Moreover, we identified two different cuproptosis-mediated expression patterns in IHF and explored the immune characteristics associated with each pattern. In conclusion, this study elucidates the significant influence of cuproptosis on the immune microenvironment in ischemic heart failure (IHF), providing valuable insights for future mechanistic research exploring the association between cuproptosis and IHF.


Assuntos
Perfilação da Expressão Gênica , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/genética , Apoptose , Ciclo do Ácido Cítrico , Citoplasma , Cobre , Microambiente Tumoral
17.
Eur J Med Res ; 29(1): 173, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481330

RESUMO

BACKGROUND: Heart failure (HF) is one of the major causes of mortality worldwide with high recurrence rate and poor prognosis. Our study aimed to investigate potential mechanisms and drug targets of Shenfu Qiangxin (SFQX), a cardiotonic-diuretic traditional Chinese medicine, in treating HF. METHODS: An HF-related and SFQX-targeted gene set was established using disease-gene databases and the Traditional Chinese Medicine Systems Pharmacology database. We performed gene function and pathway enrichment analysis and constructed protein-protein interaction (PPI) network to investigate the potential mechanisms. We also performed molecular docking to analyze the interaction patterns between the active compounds and targeted protein. RESULTS: A gene set with 217 genes was identified. The gene function enrichment indicated that SFQX can regulate apoptotic process, inflammatory response, response to oxidative stress and cellular response to hypoxia. The pathway enrichment indicated that most genes were involved in PI3K-Akt pathway. Eighteen hub target genes were identified in PPI network and subnetworks. mTOR was the key gene among hub genes, which are involved in PI3K-Akt pathway. The molecular docking analysis indicated that 6 active compounds of SFQX can bind to the kinase domain of mTOR, which exerted potential therapeutic mechanisms of SFQX in treating HF. CONCLUSIONS: The results of network pharmacology analysis highlight the intervention on PI3K-Akt pathway of SFQX in the treatment of HF. mTOR is a key drug target to help protect myocardium.


Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Farmacologia em Rede , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Serina-Treonina Quinases TOR/genética
18.
Aging (Albany NY) ; 16(6): 5651-5675, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38517374

RESUMO

Heart failure (HF) is a serious global health issue that demands innovative treatment approaches. In this study, we collected samples from 4 HF patients before and after MSC therapy and performed scRNA-seq. After the MSC therapy, the proportion of CD14+ monocytes decreased significantly in both the treatment response and non-response groups, with a more pronounced decrease in the treatment response group. The therapy-response and non-response group were clearly separated in the UMAP plot, while the CD14+ monocytes in the therapy-response group before and after MSC therapy were very similar, but there were significant differences in the non-response group. By further performing NMF analysis, we identified 11 subsets of CD14+ monocytes. More importantly, we identified a therapy-related CD14+ monocyte subpopulation. The predictive model based on CD14+ monocytes constructed by machine learning algorithms showed good performance. Moreover, genes such as FOS were highly enriched in the therapy-related CD14+ monocytes. The SCENIC analysis revealed potential regulatory factors for this treatment-responsive CD14+ monocytes, and FOS/JUN were identified as potential core indicators/regulators. Finally, HF patients were divided into three groups by NMF analysis, and the therapy-responsive CD14+ monocyte characteristics were differentially activated among the three groups. Together, this study identifies treatment-responsive CD14+ monocytes as a crucial biomarker for assessing the suitability of MSC therapy and determining which HF patients could benefit from it. This provides new clues for further investigating the therapeutic mechanisms of MSC therapy, offering beneficial insights for personalized treatment and improving prognosis in HF patients.


Assuntos
Insuficiência Cardíaca , Transplante de Células-Tronco Mesenquimais , Humanos , Biomarcadores , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Monócitos , RNA-Seq
19.
PLoS One ; 19(2): e0297121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38349935

RESUMO

BACKGROUND: Heart failure (HF) is the last stage in the progression of various cardiovascular diseases. Although it is documented that CD151 contributes to regulate the myocardial infarction, the function of CD151 on HF and involved mechanisms are still unclear. METHOD AND RESULTS: In the present study, we found that the recombinant adeno-associated virus (rAAV)-mediated endothelial cell-specific knockdown of CD151-transfected mice improved transverse aortic constriction (TAC)-induced cardiac function, attenuated myocardial hypertrophy and fibrosis, and increased coronary perfusion, whereas overexpression of the CD151 protein aggravated cardiac dysfunction and showed the opposite effects. In vitro, the cardiomyocytes hypertrophy induced by PE were significantly improved, while the proliferation and migration of cardiac fibroblasts (CFs) were significantly reduced, when co-cultured with the CD151-silenced endothelial cells (ECs). To further explore the mechanisms, the exosomes from the CD151-silenced ECs were taken by cardiomyocyte (CMs) and CFs, verified the intercellular communication. And the protective effects of CD151-silenced ECs were inhibited when exosome inhibitor (GW4869) was added. Additionally, a quantitative proteomics method was used to identify potential proteins in CD151-silenced EC exosomes. We found that the suppression of CD151 could regulate the PPAR signaling pathway via exosomes. CONCLUSION: Our observations suggest that the downregulation of CD151 is an important positive regulator of cardiac function of heart failure, which can regulate exosome-stored proteins to play a role in the cellular interaction on the CMs and CFs. Modulating the exosome levels of ECs by reducing CD151 expression may offer novel therapeutic strategies and targets for HF treatment.


Assuntos
Exossomos , Insuficiência Cardíaca , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Células Endoteliais , Regulação para Baixo , Exossomos/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo
20.
Life Sci ; 341: 122482, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309577

RESUMO

AIMS: RBM10 is a well-known RNA binding protein that regulates alternative splicing in various disease states. We have shown a splicing-independent function of RBM10 that regulates heart failure. This study aims to unravel a new biological function of RBM10 phosphorylation by proto-oncogene cSrc that enables anti-hypertrophy gene program and controls cardiac hypertrophy. MATERIALS AND METHODS: We employ in vitro and in vivo approaches to characterise RBM10 phosphorylation at three-tyrosine residues (Y81, Y500, and Y971) by cSrc and target mRNA regulation. We also use isoproterenol induced rat heart and cellular hypertrophy model to determine role of cSrc-mediated RBM10 phosphorylation. KEY FINDINGS: We show that RBM10 phosphorylation is induced in cellular and animal heart model of cardiac hypertrophy and regulates target mRNA expression and 3'-end formation. Inhibition of cSrc kinase or mutation of the three-tyrosine phosphorylation sites to phenylalanine accentuates myocyte hypertrophy, and results in advancement and an early attainment of hypertrophy in the heart. RBM10 is down regulated in the hypertrophic myocyte and that its re-expression reverses cellular and molecular changes in the myocyte. However, in the absence of phosphorylation (cSrc inhibition or phospho-deficient mutation), restoration of endogenous RBM10 level in the hypertrophic heart or ectopic re-expression in vitro failed to reverse cardiomyocyte hypertrophy. Mechanistically, loss of RBM10 phosphorylation inhibits nuclear localisation and interaction with Star-PAP compromising anti-hypertrophy gene expression. SIGNIFICANCE: Our study establishes that cSrc-mediated RBM10 phosphorylation arbitrates anti-hypertrophy gene program. We also report a new functional regulation of RBM10 by phosphorylation that is poised to control heart failure.


Assuntos
Cardiomegalia , Insuficiência Cardíaca , Ratos , Animais , Fosforilação , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Proto-Oncogenes , RNA Mensageiro/genética , Tirosina/metabolismo , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA