Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.321
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928341

RESUMO

The purpose of this review is to summarize the current understanding of the therapeutic effect of stem cell-based therapies, including hematopoietic stem cells, for the treatment of ischemic heart damage. Following PRISMA guidelines, we conducted electronic searches in MEDLINE, and EMBASE. We screened 592 studies, and included RCTs, observational studies, and cohort studies that examined the effect of hematopoietic stem cell therapy in adult patients with heart failure. Studies that involved pediatric patients, mesenchymal stem cell therapy, and non-heart failure (HF) studies were excluded from our review. Out of the 592 studies, 7 studies met our inclusion criteria. Overall, administration of hematopoietic stem cells (via intracoronary or myocardial infarct) led to positive cardiac outcomes such as improvements in pathological left-ventricular remodeling, perfusion following acute myocardial infarction, and NYHA symptom class. Additionally, combined death, rehospitalization for heart failure, and infarction were significantly lower in patients treated with bone marrow-derived hematopoietic stem cells. Our review demonstrates that hematopoietic stem cell administration can lead to positive cardiac outcomes for HF patients. Future studies should aim to increase female representation and non-ischemic HF patients.


Assuntos
Insuficiência Cardíaca , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Humanos , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/patologia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Resultado do Tratamento
2.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892033

RESUMO

The Epstein-Barr virus (EBV) is frequently found in endomyocardial biopsies (EMBs) from patients with heart failure, but the detection of EBV-specific DNA has not been associated with progressive hemodynamic deterioration. In this paper, we investigate the use of targeted next-generation sequencing (NGS) to detect EBV transcripts and their correlation with myocardial inflammation in EBV-positive patients with heart failure with reduced ejection fraction (HFrEF). Forty-four HFrEF patients with positive EBV DNA detection and varying degrees of myocardial inflammation were selected. EBV-specific transcripts from EMBs were enriched using a custom hybridization capture-based workflow and, subsequently, sequenced by NGS. The short-read sequencing revealed the presence of EBV-specific transcripts in 17 patients, of which 11 had only latent EBV genes and 6 presented with lytic transcription. The immunohistochemical staining for CD3+ T lymphocytes showed a significant increase in the degree of myocardial inflammation in the presence of EBV lytic transcripts, suggesting a possible influence on the clinical course. These results imply the important role of EBV lytic transcripts in the pathogenesis of inflammatory heart disease and emphasize the applicability of targeted NGS in EMB diagnostics as a basis for specific treatment.


Assuntos
Infecções por Vírus Epstein-Barr , Insuficiência Cardíaca , Herpesvirus Humano 4 , Miocardite , Humanos , Herpesvirus Humano 4/genética , Insuficiência Cardíaca/virologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Masculino , Feminino , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Pessoa de Meia-Idade , Miocardite/virologia , Miocardite/patologia , Idoso , Sequenciamento de Nucleotídeos em Larga Escala , Miocárdio/patologia , Miocárdio/metabolismo , DNA Viral/genética , Adulto , Biópsia
3.
Open Vet J ; 14(5): 1216-1223, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38938438

RESUMO

Background: Pulmonary capillary hemangiomatosis (PCH) is an idiopathic disease with the anomalous proliferation of a small capillary-like vessel in the pulmonary tissue, which can lead to a severe form of PH. There are only several cases of PCH described in veterinary literature: 27 cases in dogs and 2 cases in cats. In veterinary medicine, PH is mostly recognized as a consequence of left heart failure as a progression of the postcapillary PH to the precapillary form. PCH is mostly described as a primary disease, but resistant postcapillary PH with the high possibility of pulmonary edema raises speculation that PCH could be a secondary malformation to the left heart disease. Aim: Discover the features associated with the shift between left- and right-sided heart disease in the context of PH development. Methods: Retrospective analysis of materials from cats and dogs with histological markers of PCH (sPCH) versus those with right heart failure (RHF). Results: Animals with histological and immunohistochemistry markers of PCH had a previous history of disease with left heart volume overload. There were no differences between the groups in radiography and gross pathology. Histologically, pulmonary fibrosis and arteriopathy could be found in RHF; in sPCH-a duplication of capillaries in alveolar septa and bizarre proliferation in surrounding structures. Conclusion: PCH could be a secondary pattern of vascular remodeling due to volume overload.


Assuntos
Doenças do Gato , Doenças do Cão , Hipertensão Pulmonar , Animais , Cães , Doenças do Gato/patologia , Doenças do Gato/diagnóstico , Doenças do Cão/patologia , Doenças do Cão/diagnóstico , Gatos , Hipertensão Pulmonar/veterinária , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/etiologia , Estudos Retrospectivos , Masculino , Feminino , Hemangioma Capilar/veterinária , Hemangioma Capilar/patologia , Hemangioma Capilar/complicações , Insuficiência Cardíaca/veterinária , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Neoplasias Pulmonares/veterinária , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/complicações
4.
J Pharmacol Sci ; 155(4): 121-130, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880546

RESUMO

The atrophic myocardium resulting from mechanical unloading and nutritional deprivation is considered crucial as maladaptive remodeling directly associated with heart failure, as well as interstitial fibrosis. Conversely, myocardial hypertrophy resulting from hemodynamic loading is perceived as compensatory stress adaptation. We previously reported the abundant presence of highly redox-active polysulfide molecules, termed supersulfide, with two or more sulfur atoms catenated in normal hearts, and the supersulfide catabolism in pathologic hearts after myocardial infarction correlated with worsened prognosis of heart failure. However, the impact of supersulfide on myocardial remodeling remains unclear. Here, we investigated the involvement of supersulfide metabolism in cardiomyocyte remodeling, using a model of adenosine 5'-triphosphate (ATP) receptor-stimulated atrophy and endothelin-1 receptor-stimulated hypertrophy in neonatal rat cardiomyocytes. Results revealed contrasting changes in intracellular supersulfide and its catabolite, hydrogen sulfide (H2S), between cardiomyocyte atrophy and hypertrophy. Stimulation of cardiomyocytes with ATP decreased supersulfide activity, while H2S accumulation itself did not affect cardiomyocyte atrophy. This supersulfide catabolism was also involved in myofibroblast formation of neonatal rat cardiac fibroblasts. Thus, unraveling supersulfide metabolism during myocardial remodeling may lead to the development of novel therapeutic strategies to improve heart failure.


Assuntos
Sulfeto de Hidrogênio , Miócitos Cardíacos , Sulfetos , Remodelação Ventricular , Animais , Miócitos Cardíacos/metabolismo , Sulfetos/metabolismo , Sulfetos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Células Cultivadas , Trifosfato de Adenosina/metabolismo , Ratos , Atrofia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Animais Recém-Nascidos , Ratos Sprague-Dawley
5.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732154

RESUMO

The diagnosis of cardiovascular disease (CVD) is still limited. Therefore, this study demonstrates the presence of human ether-a-go-go-related gene 1 (hERG1) and heat shock protein 47 (Hsp47) on the surface of small extracellular vesicles (sEVs) in human peripheral blood and their association with CVD. In this research, 20 individuals with heart failure and 26 participants subjected to cardiac stress tests were enrolled. The associations between hERG1 and/or Hsp47 in sEVs and CVD were established using Western blot, flow cytometry, electron microscopy, ELISA, and nanoparticle tracking analysis. The results show that hERG1 and Hsp47 were present in sEV membranes, extravesicularly exposing the sequences 430AFLLKETEEGPPATE445 for hERG1 and 169ALQSINEWAAQTT- DGKLPEVTKDVERTD196 for Hsp47. In addition, upon exposure to hypoxia, rat primary cardiomyocytes released sEVs into the media, and human cardiomyocytes in culture also released sEVs containing hERG1 (EV-hERG1) and/or Hsp47 (EV-Hsp47). Moreover, the levels of sEVs increased in the blood when cardiac ischemia was induced during the stress test, as well as the concentrations of EV-hERG1 and EV-Hsp47. Additionally, the plasma levels of EV-hERG1 and EV-Hsp47 decreased in patients with decompensated heart failure (DHF). Our data provide the first evidence that hERG1 and Hsp47 are present in the membranes of sEVs derived from the human cardiomyocyte cell line, and also in those isolated from human peripheral blood. Total sEVs, EV-hERG1, and EV-Hsp47 may be explored as biomarkers for heart diseases such as heart failure and cardiac ischemia.


Assuntos
Biomarcadores , Doenças Cardiovasculares , Vesículas Extracelulares , Proteínas de Choque Térmico HSP47 , Miócitos Cardíacos , Humanos , Vesículas Extracelulares/metabolismo , Biomarcadores/sangue , Masculino , Doenças Cardiovasculares/metabolismo , Feminino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Pessoa de Meia-Idade , Animais , Proteínas de Choque Térmico HSP47/metabolismo , Ratos , Canal de Potássio ERG1/metabolismo , Idoso , Adulto , Canais de Potássio Éter-A-Go-Go/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/sangue
6.
Signal Transduct Target Ther ; 9(1): 127, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38782919

RESUMO

DEAD-box helicase 17 (DDX17) is a typical member of the DEAD-box family with transcriptional cofactor activity. Although DDX17 is abundantly expressed in the myocardium, its role in heart is not fully understood. We generated cardiomyocyte-specific Ddx17-knockout mice (Ddx17-cKO), cardiomyocyte-specific Ddx17 transgenic mice (Ddx17-Tg), and various models of cardiomyocyte injury and heart failure (HF). DDX17 is downregulated in the myocardium of mouse models of heart failure and cardiomyocyte injury. Cardiomyocyte-specific knockout of Ddx17 promotes autophagic flux blockage and cardiomyocyte apoptosis, leading to progressive cardiac dysfunction, maladaptive remodeling and progression to heart failure. Restoration of DDX17 expression in cardiomyocytes protects cardiac function under pathological conditions. Further studies showed that DDX17 can bind to the transcriptional repressor B-cell lymphoma 6 (BCL6) and inhibit the expression of dynamin-related protein 1 (DRP1). When DDX17 expression is reduced, transcriptional repression of BCL6 is attenuated, leading to increased DRP1 expression and mitochondrial fission, which in turn leads to impaired mitochondrial homeostasis and heart failure. We also investigated the correlation of DDX17 expression with cardiac function and DRP1 expression in myocardial biopsy samples from patients with heart failure. These findings suggest that DDX17 protects cardiac function by promoting mitochondrial homeostasis through the BCL6-DRP1 pathway in heart failure.


Assuntos
RNA Helicases DEAD-box , Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Humanos , Camundongos , Apoptose/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/metabolismo , Homeostase/genética , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
7.
J Mol Cell Cardiol ; 191: 12-22, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643934

RESUMO

Doxorubicin (DOX) is a widely used chemotherapeutic agent that can cause serious cardiotoxic side effects, leading to heart failure (HF). Impaired mitochondrial function is thought to be key factor driving progression into HF. We have previously shown in a rat model of DOX-HF that heart failure with reduced ejection fraction correlates with mitochondrial loss and dysfunction. Adenosine monophosphate-dependent kinase (AMPK) is a cellular energy sensor, regulating mitochondrial biogenesis and energy metabolism, including fatty acid oxidation. We hypothesised that AMPK activation could restore mitochondrial function and therefore be a novel cardioprotective strategy for the prevention of DOX-HF. Consequently, we set out to assess whether 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR), an activator of AMPK, could prevent cardiac functional decline in this chronic intravenous rat model of DOX-HF. In line with our hypothesis, AICAR improved cardiac systolic function. AICAR furthermore improved cardiac mitochondrial fatty acid oxidation, independent of mitochondrial number, and in the absence of observable AMPK-activation. In addition, we found that AICAR prevented loss of myocardial mass. RNAseq analysis showed that this may be driven by normalisation of pathways associated with ribosome function and protein synthesis, which are impaired in DOX-treated rat hearts. AICAR furthermore prevented dyslipidemia and excessive body-weight loss in DOX-treated rats, which may contribute to preservation of myocardial mass. Though it is unclear whether AICAR exerted its cardioprotective effect through cardiac or extra-cardiac AMPK-activation or via an AMPK-independent effect, these results show promise for the use of AICAR as a cardioprotective agent in DOX-HF to both preserve cardiac function and mass.


Assuntos
Proteínas Quinases Ativadas por AMP , Aminoimidazol Carboxamida , Cardiotônicos , Doxorrubicina , Insuficiência Cardíaca , Ribonucleotídeos , Animais , Doxorrubicina/efeitos adversos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/prevenção & controle , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/tratamento farmacológico , Ribonucleotídeos/farmacologia , Masculino , Cardiotônicos/farmacologia , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Ácidos Graxos/metabolismo , Modelos Animais de Doenças
8.
Methods Mol Biol ; 2803: 163-172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676892

RESUMO

Pulmonary hypertension (PH) is a devastating disease, characterized by complex remodeling of the pulmonary vasculature. PH is classified into five groups based on different etiology, pathology, as well as therapy and prognosis. Animal models are essential for the study of underlying mechanisms, pathophysiology, and preclinical testing of new therapies for PH. The complexity of the disease with different clinical entities dictates the necessity for more than one animal model to resemble PH, as a single model cannot imitate the broad spectrum of human PH.Here we describe a detailed protocol for creating a rat model of PH with right ventricular (RV) failure. Furthermore, we present how to characterize it hemodynamically by invasive measurements of RV and pulmonary arterial (PA) pressures. Animals subjected to this model display severe pulmonary vascular remodeling and RV dysfunction. In this model, rats undergo a single subcutaneous injection of Sugen (SU5416, a vascular endothelial growth factor inhibitor) and are immediately exposed to chronic hypoxia in a hypoxia chamber for 3-6 weeks. This Sugen/Hypoxia rat model resembles Group 1 PH.


Assuntos
Modelos Animais de Doenças , Insuficiência Cardíaca , Hipertensão Pulmonar , Hipóxia , Animais , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/etiologia , Ratos , Hipóxia/metabolismo , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Pirróis/farmacologia , Indóis/farmacologia , Disfunção Ventricular Direita/fisiopatologia , Disfunção Ventricular Direita/etiologia , Hemodinâmica , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Masculino , Humanos , Remodelação Vascular , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Signal Transduct Target Ther ; 9(1): 94, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644381

RESUMO

Much effort has been made to uncover the cellular heterogeneities of human hearts by single-nucleus RNA sequencing. However, the cardiac transcriptional regulation networks have not been systematically described because of the limitations in detecting transcription factors. In this study, we optimized a pipeline for isolating nuclei and conducting single-nucleus RNA sequencing targeted to detect a higher number of cell signal genes and an optimal number of transcription factors. With this unbiased protocol, we characterized the cellular composition of healthy human hearts and investigated the transcriptional regulation networks involved in determining the cellular identities and functions of the main cardiac cell subtypes. Particularly in fibroblasts, a novel regulator, PKNOX2, was identified as being associated with physiological fibroblast activation in healthy hearts. To validate the roles of these transcription factors in maintaining homeostasis, we used single-nucleus RNA-sequencing analysis of transplanted failing hearts focusing on fibroblast remodelling. The trajectory analysis suggested that PKNOX2 was abnormally decreased from fibroblast activation to pathological myofibroblast formation. Both gain- and loss-of-function in vitro experiments demonstrated the inhibitory role of PKNOX2 in pathological fibrosis remodelling. Moreover, fibroblast-specific overexpression and knockout of PKNOX2 in a heart failure mouse model induced by transverse aortic constriction surgery significantly improved and aggravated myocardial fibrosis, respectively. In summary, this study established a high-quality pipeline for single-nucleus RNA-sequencing analysis of heart muscle. With this optimized protocol, we described the transcriptional regulation networks of the main cardiac cell subtypes and identified PKNOX2 as a novel regulator in suppressing fibrosis and a potential therapeutic target for future translational studies.


Assuntos
Fibrose , Proteínas de Homeodomínio , Miocárdio , Animais , Humanos , Masculino , Camundongos , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos Knockout , Miocárdio/patologia , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia
10.
Trends Mol Med ; 30(6): 579-591, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38514365

RESUMO

Amphiphysin-2 is a ubiquitously expressed protein also known as bridging integrator 1 (BIN1), playing a critical role in membrane remodeling, trafficking, and cytoskeleton dynamics in a wide range of tissues. Mutations in the gene encoding BIN1 cause centronuclear myopathies (CNM), and recent evidence has implicated BIN1 in heart failure, underlining its crucial role in both skeletal and cardiac muscle. Furthermore, altered expression of BIN1 is linked to an increased risk of late-onset Alzheimer's disease and several types of cancer, including breast, colon, prostate, and lung cancers. Recently, the first proof-of-concept for potential therapeutic strategies modulating BIN1 were obtained for muscle diseases. In this review article, we discuss the similarities and differences in BIN1's functions in cardiac and skeletal muscle, along with its associated diseases and potential therapies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Músculo Esquelético , Miocárdio , Proteínas Supressoras de Tumor , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Animais , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutação , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia
11.
Circulation ; 149(22): 1729-1748, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38487879

RESUMO

BACKGROUND: Myocardial infarction (MI) and heart failure are associated with an increased incidence of cancer. However, the mechanism is complex and unclear. Here, we aimed to test our hypothesis that cardiac small extracellular vesicles (sEVs), particularly cardiac mesenchymal stromal cell-derived sEVs (cMSC-sEVs), contribute to the link between post-MI left ventricular dysfunction (LVD) and cancer. METHODS: We purified and characterized sEVs from post-MI hearts and cultured cMSCs. Then, we analyzed cMSC-EV cargo and proneoplastic effects on several lines of cancer cells, macrophages, and endothelial cells. Next, we modeled heterotopic and orthotopic lung and breast cancer tumors in mice with post-MI LVD. We transferred cMSC-sEVs to assess sEV biodistribution and its effect on tumor growth. Finally, we tested the effects of sEV depletion and spironolactone treatment on cMSC-EV release and tumor growth. RESULTS: Post-MI hearts, particularly cMSCs, produced more sEVs with proneoplastic cargo than nonfailing hearts did. Proteomic analysis revealed unique protein profiles and higher quantities of tumor-promoting cytokines, proteins, and microRNAs in cMSC-sEVs from post-MI hearts. The proneoplastic effects of cMSC-sEVs varied with different types of cancer, with lung and colon cancers being more affected than melanoma and breast cancer cell lines. Post-MI cMSC-sEVs also activated resting macrophages into proangiogenic and protumorigenic states in vitro. At 28-day follow-up, mice with post-MI LVD developed larger heterotopic and orthotopic lung tumors than did sham-MI mice. Adoptive transfer of cMSC-sEVs from post-MI hearts accelerated the growth of heterotopic and orthotopic lung tumors, and biodistribution analysis revealed accumulating cMSC-sEVs in tumor cells along with accelerated tumor cell proliferation. sEV depletion reduced the tumor-promoting effects of MI, and adoptive transfer of cMSC-sEVs from post-MI hearts partially restored these effects. Finally, spironolactone treatment reduced the number of cMSC-sEVs and suppressed tumor growth during post-MI LVD. CONCLUSIONS: Cardiac sEVs, specifically cMSC-sEVs from post-MI hearts, carry multiple protumorigenic factors. Uptake of cMSC-sEVs by cancer cells accelerates tumor growth. Treatment with spironolactone significantly reduces accelerated tumor growth after MI. Our results provide new insight into the mechanism connecting post-MI LVD to cancer and propose a translational option to mitigate this deadly association.


Assuntos
Vesículas Extracelulares , Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Vesículas Extracelulares/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/etiologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Camundongos , Humanos , Feminino , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Masculino , Proliferação de Células/efeitos dos fármacos
12.
Eur J Pharmacol ; 971: 176488, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458410

RESUMO

OBJECTIVE: Pathological cardiac remodelling, including cardiac hypertrophy and fibrosis, is a key pathological process in the development of heart failure. However, effective therapeutic approaches are limited. The ß-adrenergic receptors are pivotal signalling molecules in regulating cardiac function. G-alpha interacting protein (GAIP)-interacting protein, C-terminus 1 (GIPC1) is a multifunctional scaffold protein that directly binds to the C-terminus of ß1-adrenergic receptor (ß1-adrenergic receptor). However, little is known about its roles in heart function. Therefore, we investigated the role of GIPC1 in cardiac remodelling and its underlying molecular mechanisms. METHODS: Pathological cardiac remodelling in mice was established via intraperitoneal injection of isoprenaline for 14 d or transverse aortic constriction surgery for 8 weeks. Myh6-driving cardiomyocyte-specific GIPC1 conditional knockout (GIPC1 cKO) mice and adeno-associated virus 9 (AAV9)-mediated GIPC1 overexpression mice were used. The effect of GIPC1 on cardiac remodelling was assessed using echocardiographic, histological, and biochemical analyses. RESULTS: GIPC1 expression was consistently reduced in the cardiac remodelling model. GIPC1 cKO mice exhibited spontaneous abnormalities, including cardiac hypertrophy, fibrosis, and systolic dysfunction. In contrast, AAV9-mediated GIPC1 overexpression in the heart attenuated isoproterenol-induced pathological cardiac remodelling in mice. Mechanistically, GIPC1 interacted with the ß1-adrenergic receptor and stabilised its expression by preventing its ubiquitination and degradation, maintaining the balance of ß1-adrenergic receptor/ß2-adrenergic receptor, and inhibiting hyperactivation of the mitogen-activated protein kinase signalling pathway. CONCLUSIONS: These results suggested that GIPC1 plays a cardioprotective role and is a promising therapeutic target for the treatment of cardiac remodelling and heart failure.


Assuntos
Insuficiência Cardíaca , Remodelação Ventricular , Animais , Camundongos , Cardiomegalia/patologia , Fibrose , Insuficiência Cardíaca/patologia , Isoproterenol/efeitos adversos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos , Receptores Adrenérgicos beta/metabolismo
13.
Mol Ther ; 32(5): 1578-1594, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475992

RESUMO

Heart failure (HF) is manifested by transcriptional and posttranscriptional reprogramming of critical genes. Multiple studies have revealed that microRNAs could translocate into subcellular organelles such as the nucleus to modify gene expression. However, the functional property of subcellular Argonaute2 (AGO2), the core member of the microRNA machinery, has remained elusive in HF. AGO2 was found to be localized in both the cytoplasm and nucleus of cardiomyocytes, and robustly increased in the failing hearts of patients and animal models. We demonstrated that nuclear AGO2 rather than cytosolic AGO2 overexpression by recombinant adeno-associated virus (serotype 9) with cardiomyocyte-specific troponin T promoter exacerbated the cardiac dysfunction in transverse aortic constriction (TAC)-operated mice. Mechanistically, nuclear AGO2 activates the transcription of ANKRD1, encoding ankyrin repeat domain-containing protein 1 (ANKRD1), which also has a dual function in the cytoplasm as part of the I-band of the sarcomere and in the nucleus as a transcriptional cofactor. Overexpression of nuclear ANKRD1 recaptured some key features of cardiac remodeling by inducing pathological MYH7 activation, whereas cytosolic ANKRD1 seemed cardioprotective. For clinical practice, we found ivermectin, an antiparasite drug, and ANPep, an ANKRD1 nuclear location signal mimetic peptide, were able to prevent ANKRD1 nuclear import, resulting in the improvement of cardiac performance in TAC-induced HF.


Assuntos
Proteínas Argonautas , Modelos Animais de Doenças , Insuficiência Cardíaca , Miócitos Cardíacos , Proteínas Repressoras , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Camundongos , Humanos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Miócitos Cardíacos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Remodelação Ventricular , Núcleo Celular/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Regulação da Expressão Gênica , Masculino , Dependovirus/genética , Transcrição Gênica
14.
Cardiovasc Res ; 120(6): 612-622, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400709

RESUMO

AIMS: Heart failure (HF) and cancer are the leading causes of death worldwide. Epidemiological studies revealed that HF patients are prone to develop cancer. Preclinical studies provided some insights into this connection, but the exact mechanisms remain elusive. In colorectal cancer (CRC), gut microbial dysbiosis is linked to cancer progression and recent studies have shown that HF patients display microbial dysbiosis. This current study focussed on the effects of HF-induced microbial dysbiosis on colonic tumour formation. METHODS AND RESULTS: C57BL/6J mice were subjected to myocardial infarction (MI), with sham surgery as control. After six weeks faeces were collected, processed for 16 s rRNA sequencing, and pooled for faecal microbiota transplantation. CRC tumour growth was provoked in germ-free mice by treating them with Azoxymethane/Dextran sodium sulphate. The CRC mice were transplanted with faeces from MI or sham mice. MI-induced HF resulted in microbial dysbiosis, characterized by a decreased α-diversity and microbial alterations on the genus level, several of which have been associated with CRC. We then performed faecal microbiota transplantation with faeces from HF mice in CRC mice, which resulted in a higher endoscopic disease score and an increase in the number of tumours in CRC mice. CONCLUSION: We demonstrated that MI-induced HF contributes to colonic tumour formation by altering the gut microbiota composition, providing a mechanistic explanation for the observed association between HF and increased risk for cancer. Targeting the microbiome may present as a tool to mitigate HF-associated co-morbidities, especially cancer.


Assuntos
Colo , Modelos Animais de Doenças , Disbiose , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Insuficiência Cardíaca , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Animais , Infarto do Miocárdio/patologia , Infarto do Miocárdio/microbiologia , Insuficiência Cardíaca/microbiologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/etiologia , Masculino , Colo/microbiologia , Colo/patologia , Ribotipagem , Neoplasias do Colo/patologia , Neoplasias do Colo/microbiologia , Bactérias/genética , Fezes/microbiologia , Interações Hospedeiro-Patógeno
15.
Circulation ; 149(16): 1268-1284, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38362779

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a common heritable heart disease. Although HCM has been reported to be associated with many variants of genes involved in sarcomeric protein biomechanics, pathogenic genes have not been identified in patients with partial HCM. FARS2 (the mitochondrial phenylalanyl-tRNA synthetase), a type of mitochondrial aminoacyl-tRNA synthetase, plays a role in the mitochondrial translation machinery. Several variants of FARS2 have been suggested to cause neurological disorders; however, FARS2-associated diseases involving other organs have not been reported. We identified FARS2 as a potential novel pathogenic gene in cardiomyopathy and investigated its effects on mitochondrial homeostasis and the cardiomyopathy phenotype. METHODS: FARS2 variants in patients with HCM were identified using whole-exome sequencing, Sanger sequencing, molecular docking analyses, and cell model investigation. Fars2 conditional mutant (p.R415L) or knockout mice, fars2-knockdown zebrafish, and Fars2-knockdown neonatal rat ventricular myocytes were engineered to construct FARS2 deficiency models both in vivo and in vitro. The effects of FARS2 and its role in mitochondrial homeostasis were subsequently evaluated using RNA sequencing and mitochondrial functional analyses. Myocardial tissues from patients were used for further verification. RESULTS: We identified 7 unreported FARS2 variants in patients with HCM. Heart-specific Fars2-deficient mice presented cardiac hypertrophy, left ventricular dilation, progressive heart failure accompanied by myocardial and mitochondrial dysfunction, and a short life span. Heterozygous cardiac-specific Fars2R415L mice displayed a tendency to cardiac hypertrophy at age 4 weeks, accompanied by myocardial dysfunction. In addition, fars2-knockdown zebrafish presented pericardial edema and heart failure. FARS2 deficiency impaired mitochondrial homeostasis by directly blocking the aminoacylation of mt-tRNAPhe and inhibiting the synthesis of mitochondrial proteins, ultimately contributing to an imbalanced mitochondrial quality control system by accelerating mitochondrial hyperfragmentation and disrupting mitochondrion-related autophagy. Interfering with the mitochondrial quality control system using adeno-associated virus 9 or specific inhibitors mitigated the cardiac and mitochondrial dysfunction triggered by FARS2 deficiency by restoring mitochondrial homeostasis. CONCLUSIONS: Our findings unveil the previously unrecognized role of FARS2 in heart and mitochondrial homeostasis. This study may provide new insights into the molecular diagnosis and prevention of heritable cardiomyopathy as well as therapeutic options for FARS2-associated cardiomyopathy.


Assuntos
Cardiomiopatia Hipertrófica , Insuficiência Cardíaca , Doenças Mitocondriais , Fenilalanina-tRNA Ligase , Animais , Humanos , Recém-Nascido , Camundongos , Ratos , Cardiomiopatia Hipertrófica/patologia , Insuficiência Cardíaca/patologia , Homeostase , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/metabolismo , Simulação de Acoplamento Molecular , Fenilalanina-tRNA Ligase/genética , Fenilalanina-tRNA Ligase/metabolismo , Peixe-Zebra/genética , Mutação
16.
Circ Heart Fail ; 17(2): e010950, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38348670

RESUMO

BACKGROUND: Cardiac allograft rejection is the leading cause of early graft failure and is a major focus of postheart transplant patient care. While histological grading of endomyocardial biopsy samples remains the diagnostic standard for acute rejection, this standard has limited diagnostic accuracy. Discordance between biopsy rejection grade and patient clinical trajectory frequently leads to both overtreatment of indolent processes and delayed treatment of aggressive ones, spurring the need to investigate the adequacy of the current histological criteria for assessing clinically important rejection outcomes. METHODS: N=2900 endomyocardial biopsy images were assigned a rejection grade label (high versus low grade) and a clinical trajectory label (evident versus silent rejection). Using an image analysis approach, n=370 quantitative morphology features describing the lymphocytes and stroma were extracted from each slide. Two models were constructed to compare the subset of features associated with rejection grades versus those associated with clinical trajectories. A proof-of-principle machine learning pipeline-the cardiac allograft rejection evaluator-was then developed to test the feasibility of identifying the clinical severity of a rejection event. RESULTS: The histopathologic findings associated with conventional rejection grades differ substantially from those associated with clinically evident allograft injury. Quantitative assessment of a small set of well-defined morphological features can be leveraged to more accurately reflect the severity of rejection compared with that achieved by the International Society of Heart and Lung Transplantation grades. CONCLUSIONS: Conventional endomyocardial samples contain morphological information that enables accurate identification of clinically evident rejection events, and this information is incompletely captured by the current, guideline-endorsed, rejection grading criteria.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Humanos , Miocárdio/patologia , Transplante de Coração/efeitos adversos , Insuficiência Cardíaca/patologia , Coração , Aloenxertos , Rejeição de Enxerto/diagnóstico , Biópsia
17.
Eur J Pediatr ; 183(1): 493-498, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37843615

RESUMO

This study aimed to report the findings of cardiac magnetic resonance imaging (CMR) with quantitative mappings in infants presenting with new-onset heart failure, as well as to assess the capabilities of endomyocardial biopsy (EMB) and CMR in detecting inflammatory cardiomyopathies and determining their etiology. In a prospective analysis of infants who underwent CMR with tissue mappings, EMB, and genetic testing, the sample was categorized into two groups: those with inflammatory cardiomyopathy and negative genetics (indicative of possible myocarditis) and those with positive genetics (indicative of possible dilated cardiomyopathy). All patients exhibited similar clinical presentations, echocardiographic dysfunction, and elevated troponins and NT-proBNP levels. Additionally, they all met the diagnostic criteria for inflammatory cardiomyopathy based on EMB findings (≥14 mononuclear cells, ≥7 T-lymphocytes/mm2). EMB results unveiled significant differences in the presence of inflammation and edema between the two groups, with higher troponin levels correlating with increased inflammation. Notably, when focusing on CMR, neither the classic criteria nor the 2018 Lake Louise criteria (LLC) could effectively differentiate between the two groups. Only late gadolinium enhancement (LGE) appeared to be associated with myocarditis in this cohort, while other LLC and tissue mappings did not exhibit a similar correlation. Importantly, there was no observed correlation between the inflammation detected through EMB and CMR. CONCLUSIONS: The onset of heart dysfunction in infants can result from either inherited factors or viral infections, both of which may involve inflammation. However, the precise role of EMB and CMR in determining the etiology of such cases remains poorly defined. While CMR demonstrates high sensitivity in detecting inflammation, our experience suggests that it may not effectively differentiate between these two groups. A comprehensive diagnostic approach is essential when addressing this challenge, which includes considering EMB (with attention to the number of T-lymphocytes and the presence of oedema), specific CMR criteria, notably LGE and tissue mappings, as well as the identification of viral agents in cardiac tissue and troponin levels. Additionally, genetic tests should be conducted when evaluating these patients. WHAT IS KNOWN: • EMB is the gold standard diagnostic test for myocarditis but it is not universally accepted. • The diagnostic value of the 2018-LLC in pediatric patients is still undefined. WHAT IS NEW: • Both EMB and CMR may show inflammation in infants with new-onset heart failure of any aetiology. • A global approach should be used when facing this diagnostic challenge, including the EMB (number of T-lymphocytes and oedema), some CMR criteria, specially LGE and mappings, the detection of viral agents in cardiac tissue and troponins. Genetic tests should also be performed when studying these patients.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Miocardite , Humanos , Criança , Miocardite/diagnóstico , Miocardite/etiologia , Miocárdio/patologia , Meios de Contraste , Gadolínio , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Cardiomiopatias/diagnóstico , Inflamação , Edema/patologia , Troponina , Biópsia/métodos
18.
Eur Rev Med Pharmacol Sci ; 27(23): 11479-11495, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38095396

RESUMO

Acute myocarditis (AM) is an inflammatory affliction of the heart muscle characterized by recent onset with a broad spectrum of clinical manifestations that globally affect millions of individuals, notably children and young adults. The absence of distinct patterns of onset or predictable progression poses a significant threat to survival, potentially leading to advanced heart failure and malignant arrhythmias. Myocardial fibrosis, a hallmark of myocardial remodeling, is increasingly recognized as a contributor to adverse outcomes in acute myocarditis cases. Advances in molecular and immunological techniques have highlighted the intricate interplay between viral infections, dysregulated immune responses, and genetic susceptibility. Currently, there is no clear consensus for diagnosis or ongoing follow-up in pediatric patients. The conventional diagnostic tool, endomyocardial biopsy (EMB), considered the gold standard, has been complemented by the effectiveness of cardiac magnetic resonance imaging (CMRI) techniques. Given the procedural complexities and associated complications, there is a pressing need to explore non-invasive alternatives. In this context, biomarkers emerge as promising contenders by evaluating both the inflammatory processes and cardiac remodeling, providing valuable observations into disease severity, progression, and treatment response. Therapeutic strategies in these cases, focusing on the specific pathways or immune components associated with the etiologies, have exhibited promise for better outcomes. Acute myocarditis in children remains a multifaceted clinical challenge, necessitating a comprehensive understanding of its pathophysiology, diagnosis, and management. This review aims to delve into novel insights surrounding the pathophysiology, diagnosis, and management of acute myocarditis in pediatric patients.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Miocardite , Humanos , Criança , Miocardite/diagnóstico , Miocardite/terapia , Miocardite/complicações , Miocárdio/patologia , Coração , Cardiomiopatias/patologia , Insuficiência Cardíaca/patologia , Biópsia/métodos
19.
Lipids Health Dis ; 22(1): 211, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041133

RESUMO

Cardiac cachexia is a deadly consequence of advanced heart failure that is characterised by the dysregulation of adipose tissue homeostasis. Once cachexia occurs with heart failure, it prevents the normal treatment of heart failure and increases the risk of death. Targeting adipose tissue is an important approach to treating cardiac cachexia, but the pathogenic mechanisms are still unknown, and there are no effective therapies available. Transcriptomics, metabolomics, and lipidomics were used to examine the underlying mechanisms of cardiac cachexia. Transcriptomics investigation of cardiac cachexia adipose tissue revealed that genes involved in fibrosis and monocyte/macrophage migration were increased and strongly interacted. The ECM-receptor interaction pathway was primarily enriched, as shown by KEGG enrichment analysis. In addition, gene set enrichment analysis revealed that monocyte chemotaxis/macrophage migration and fibrosis gene sets were upregulated in cardiac cachexia. Metabolomics enrichment analysis demonstrated that the sphingolipid signalling pathway is important for adipose tissue remodelling in cardiac cachexia. Lipidomics analysis showed that the adipose tissue of rats with cardiac cachexia had higher levels of sphingolipids, including Cer and S1P. Moreover, combined multiomics analysis suggested that the sphingolipid metabolic pathway was associated with inflammatory-fibrotic changes in adipose tissue. Finally, the key indicators were validated by experiments. In conclusion, this study described a mechanism by which the sphingolipid signalling pathway was involved in adipose tissue remodelling by inducing inflammation and fat fibrosis in cardiac cachexia.


Assuntos
Caquexia , Insuficiência Cardíaca , Ratos , Animais , Caquexia/genética , Caquexia/complicações , Esfingolipídeos/metabolismo , Multiômica , Tecido Adiposo/metabolismo , Fibrose , Insuficiência Cardíaca/patologia , Obesidade/metabolismo
20.
Stem Cell Res Ther ; 14(1): 380, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124195

RESUMO

BACKGROUND: Heart failure (HF) is a major cause of death worldwide. The most effective treatment for HF is heart transplantation, but its use is limited by the scarcity of donor hearts. Recently, stem cell-based therapy has emerged as a promising approach for treating myocardial infarction. Our research group has been investigating the use of human induced pluripotent stem cell-derived cardiomyocyte patches as a potential therapeutic candidate. We have successfully conducted eight cases of clinical trials and demonstrated the safety and effectiveness of this approach. However, further advancements are necessary to overcome immune rejection and enhance therapeutic efficacy. In this study, we propose a novel and efficient technique for constructing mesenchymal stem cell (MSC) tissue sheets, which can be transplanted effectively for treating myocardial infarction repair. METHODS: We applied a one-step method to construct the human adipose-derived mesenchymal stem cell (hADSC) tissue sheet on a poly(lactic-co-glycolic acid) fiber scaffold. Histology, immunofluorescence, and paracrine profile assessment were used to determine the organization and function of the hADSC tissue sheet. Echocardiography and pathological analyses of heart sections were performed to evaluate cardiac function, fibrosis area, angiogenesis, and left ventricular remodeling. RESULTS: In vitro, the hADSC tissue sheet showed great organization, abundant ECM expression, and increased paracrine secretion than single cells. In vivo, the hADSC tissue sheet group demonstrated improved cardiac functional recovery, less ventricular remodeling, decreased fibrosis, and enhanced angiogenesis than the MI group. CONCLUSIONS: We developed thick and functional hADSC tissue sheets via the one-step strategy. The hADSC tissue sheet showed excellent performance in treating myocardial infarction in the rat model.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Células-Tronco Pluripotentes Induzidas , Transplante de Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Ratos , Animais , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doadores de Tecidos , Infarto do Miocárdio/patologia , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/patologia , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA