Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.317
Filtrar
1.
Front Immunol ; 15: 1385696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770013

RESUMO

Background: Recent studies have demonstrated a strong association between acute kidney injury (AKI) and chronic kidney disease (CKD), while the unresolved inflammation is believed to be a driving force for this chronic transition process. As a transmembrane pattern recognition receptor, Mincle (macrophage-inducible C-type lectin, Clec4e) was identified to participate in the early immune response after AKI. However, the impact of Mincle on the chronic transition of AKI remains largely unclear. Methods: We performed single-cell RNA sequencing (scRNA-seq) with the unilateral ischemia-reperfusion (UIR) murine model of AKI at days 1, 3, 14 and 28 after injury. Potential effects and mechanism of Mincle on renal inflammation and fibrosis were further validated in vivo utilizing Mincle knockout mice. Results: The dynamic expression of Mincle in macrophages and neutrophils throughout the transition from AKI to CKD was observed. For both cell types, Mincle expression was significantly up-regulated on day 1 following AKI, with a second rise observed on day 14. Notably, we identified distinct subclusters of Minclehigh neutrophils and Minclehigh macrophages that exhibited time-dependent influx with dual peaks characterized with remarkable pro-inflammatory and pro-fibrotic functions. Moreover, we identified that Minclehigh neutrophils represented an "aged" mature neutrophil subset derived from the "fresh" mature neutrophil cluster in kidney. Additionally, we observed a synergistic mechanism whereby Mincle-expressing macrophages and neutrophils sustained renal inflammation by tumor necrosis factor (TNF) production. Mincle-deficient mice exhibited reduced renal injury and fibrosis following AKI. Conclusion: The present findings have unveiled combined persistence of Minclehigh neutrophils and macrophages during AKI-to-CKD transition, contributing to unresolved inflammation followed by fibrosis via TNF-α as a central pro-inflammatory cytokine. Targeting Mincle may offer a novel therapeutic strategy for preventing the transition from AKI to CKD.


Assuntos
Injúria Renal Aguda , Modelos Animais de Doenças , Lectinas Tipo C , Macrófagos , Proteínas de Membrana , Camundongos Knockout , Neutrófilos , Insuficiência Renal Crônica , Animais , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Camundongos , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Masculino , Inflamação/imunologia , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Fibrose , Progressão da Doença
2.
J Bras Nefrol ; 46(3): e20240023, 2024.
Artigo em Inglês, Português | MEDLINE | ID: mdl-38748946

RESUMO

In the last few years, evidence from the Brazilian Registry of Bone Biopsy (REBRABO) has pointed out a high incidence of aluminum (Al) accumulation in the bones of patients with CKD under dialysis. This surprising finding does not appear to be merely a passive metal accumulation, as prospective data from REBRABO suggest that the presence of Al in bone may be independently associated with major adverse cardiovascular events. This information contrasts with the perception of epidemiologic control of this condition around the world. In this opinion paper, we discussed why the diagnosis of Al accumulation in bone is not reported in other parts of the world. We also discuss a range of possibilities to understand why bone Al accumulation still occurs, not as a classical syndrome with systemic signs of intoxication, as occurred it has in the past.


Assuntos
Alumínio , Osso e Ossos , Humanos , Alumínio/metabolismo , Alumínio/efeitos adversos , Osso e Ossos/metabolismo , Diálise Renal , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/complicações , Brasil/epidemiologia
3.
Sci Rep ; 14(1): 9070, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643262

RESUMO

Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite and TNF-α is proinflammatory cytokine, both known to be associated with renal inflammation, fibrosis and chronic kidney disease. However, today there are no data showing the combined effect of TMAO and TNF-α on renal fibrosis-and inflammation. The aim of this study was to investigate whether TMAO can enhance the inflammatory and fibrotic effects of TNF-α on renal fibroblasts. We found that the combination of TNF-α and TMAO synergistically increased fibronectin release and total collagen production from renal fibroblasts. The combination of TMAO and TNF-α also promoted increased cell proliferation. Both renal proliferation and collagen production were mediated through Akt/mTOR/ERK signaling. We also found that TMAO enhanced TNF-α mediated renal inflammation by inducing the release of several cytokines (IL-6, LAP TGF-beta-1), chemokines (CXCL-6, MCP-3), inflammatory-and growth mediators (VEGFA, CD40, HGF) from renal fibroblasts. In conclusion, we showed that TMAO can enhance TNF-α mediated renal fibrosis and release of inflammatory mediators from renal fibroblasts in vitro. Our results can promote further research evaluating the combined effect of TMAO and inflammatory mediators on the development of kidney disease.


Assuntos
Metilaminas , Insuficiência Renal Crônica , Fator de Necrose Tumoral alfa , Humanos , Mediadores da Inflamação , Fibrose , Insuficiência Renal Crônica/metabolismo , Citocinas , Fibroblastos/metabolismo , Inflamação/metabolismo , Colágeno
4.
Biomed Pharmacother ; 174: 116556, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636398

RESUMO

Skeletal muscle atrophy is a common complication of chronic kidney disease (CKD) that affects the quality of life and prognosis of patients. We aimed to investigate the effects and mechanisms of caffeic acid (CA), a natural phenolic compound, on skeletal muscle atrophy in CKD rats. Male Sprague-Dawley rats underwent 5/6 nephrectomy (NPM) and were treated with CA (20, 40, or 80 mg/kg/day) for 10 weeks. The body and muscle weights, renal function, hemoglobin, and albumin were measured. The histological, molecular, and biochemical changes in skeletal muscles were evaluated using hematoxylin-eosin staining, quantitative real-time PCR, malondialdehyde/catalase/superoxide dismutase/glutathione level detection, and enzyme-linked immunosorbent assay. Western blotting and network pharmacology were applied to identify the potential targets and pathways of CA, CKD, and muscle atrophy. The results showed that CA significantly improved NPM-induced muscle-catabolic effects, reduced the expression of muscle atrophy-related proteins (muscle atrophy F-box and muscle RING finger 1) and proinflammatory cytokines (interleukin [IL]-6, tumor necrosis factor-alpha, and IL-1ß), and attenuated muscle oxidative stress. Network pharmacology revealed that CA modulated the response to oxidative stress and nuclear factor kappa B (NF-κB) signaling pathway and that Toll-like receptor 4 (TLR4) was a key target. In vivo experiment confirmed that CA inhibited the TLR4/myeloid differentiation primary response 88 (MYD88)/NF-kB signaling pathway, reduced muscle iron levels, and restored glutathione peroxidase 4 activity, thereby alleviating ferroptosis and inflammation in skeletal muscles. Thus, CA might be a promising therapeutic agent for preventing and treating skeletal muscle atrophy in CKD by modulating the TLR4/MYD88/NF-κB pathway and ferroptosis.


Assuntos
Ácidos Cafeicos , Atrofia Muscular , Fator 88 de Diferenciação Mieloide , Insuficiência Renal Crônica , Transdução de Sinais , Animais , Masculino , Ratos , Ácidos Cafeicos/farmacologia , Citocinas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Atrofia Muscular/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Nefrectomia/efeitos adversos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
5.
Iran J Kidney Dis ; 18(2): 87-98, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38660700

RESUMO

INTRODUCTION: One of the most significant clinical features of chronic  kidney disease is renal interstitial fibrosis (RIF). This study aimed  to investigate the role and mechanism of Shenqi Pill (SQP) on RIF. METHODS: RIF model was established by conducting unilateral  ureteral obstruction (UUO) surgery on rat or stimulating human  kidney-2 (HK-2) cell with transforming growth factor ß1 (TGFß1).  After modeling, the rats in the SQP low dose group (SQP-L), SQP  middle dose group (SQP-M) and SQP high dose group (SQP-H)  were treated with SQP at 1.5, 3 or 6 g/kg/d, and the cells in the  TGFß1+SQP-L/M/H were treated with 2.5%, 5%, 10% SQP-containing  serum. In in vivo assays, serum creatinine (SCr) and blood urea  nitrogen (BUN) content were measured, kidney histopathology  was evaluated., and α-smooth muscle actin (α-SMA) expression  was detected by immunohistochemistry. Interleukin-1ß (IL-1ß),  interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) content,  inhibitor of kappa B alpha (IKBα) and P65 phosphorylation were  assessed. Meanwhile, cell viability, inflammatory cytokines content,  α-SMA expression, IKBα and P65 phosphorylation were detected  in vitro experiment.  Results. SQP exhibited reno-protective effect by decreasing SCr  and BUN content, improving renal interstitial damage, blunting  fibronectin (FN) and α-SMA expression in RIF rats. Similarly, after  the treatment with SQP-containing serum, viability and α-SMA  expression were remarkably decreased in TGFß1-stimulated HK-2  cell. Furthermore, SQP markedly down-regulated IL-1ß, IL-6, and  TNF-α content, IKBα and RelA (P65) phosphorylation both in vivo and in vitro.  Conclusion. SQP has a reno-protective effect against RIF in vivo and in vitro, and the effect is partly linked to nuclear factor-kappa  B (NF-κB) pathway related inflammatory response, which indicates  that SQP may be a candidate drug for RIF. DOI: 10.52547/ijkd.7546.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Fibrose , Rim , NF-kappa B , Animais , Humanos , Ratos , Actinas/metabolismo , Nitrogênio da Ureia Sanguínea , Linhagem Celular , Creatinina/sangue , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fibrose/patologia , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Ratos Sprague-Dawley , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/patologia , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167171, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631411

RESUMO

Patients with advanced chronic kidney disease (CKD) have elevated circulating calcium × phosphate product levels and exhibit soft tissue calcification. Besides the cardiovascular system, calcification is commonly observed in the cornea in CKD patients on hemodialysis. Cardiovascular calcification is a cell-mediated, highly regulated process, and we hypothesized that a similar regulatory mechanism is implicated in corneal calcification with the involvement of corneal epithelial cells (CECs). We established a mouse model of CKD-associated corneal calcification by inducing CKD in DBA/2J mice with an adenine and high phosphate diet. CKD was associated with aorta and corneal calcification as detected by OsteoSense staining and corneal Ca measurement (1.67-fold elevation, p < 0.001). In vitro, excess phosphate and Ca induced human CEC calcification in a dose-dependent and synergistic manner, without any influence on cell viability. High phosphate and Ca-containing osteogenic medium (OM; 2.5 mmol/L excess phosphate and 0.6 mmol/L excess Ca over control) increased the protein expression of Runx2 and induced its nuclear translocation. OM increased the expression of the bone-specific Ca-binding protein osteocalcin (130-fold increase, p < 0.001). Silencing of Runx2 attenuated OM-induced CEC calcification. Immunohistology revealed upregulation of Runx2 and overlapping between the Runx2 and the Alizarin red positive areas of calcification in the cornea of CKD mice. This work sheds light on the mechanism of CKD-induced corneal calcification and provides tools to test calcification inhibitors for the prevention of this detrimental process.


Assuntos
Calcinose , Cálcio , Subunidade alfa 1 de Fator de Ligação ao Core , Osteoblastos , Fosfatos , Insuficiência Renal Crônica , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/complicações , Camundongos , Humanos , Osteoblastos/metabolismo , Osteoblastos/patologia , Fosfatos/metabolismo , Cálcio/metabolismo , Calcinose/patologia , Calcinose/metabolismo , Epitélio Corneano/patologia , Epitélio Corneano/metabolismo , Masculino , Camundongos Endogâmicos DBA , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Modelos Animais de Doenças , Fenótipo
7.
JCI Insight ; 9(10)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652558

RESUMO

Chronic kidney disease (CKD) causes accumulation of uremic metabolites that negatively affect skeletal muscle. Tryptophan-derived uremic metabolites are agonists of the aryl hydrocarbon receptor (AHR), which has been shown to be activated in CKD. This study investigated the role of the AHR in skeletal muscle pathology of CKD. Compared with controls with normal kidney function, AHR-dependent gene expression (CYP1A1 and CYP1B1) was significantly upregulated in skeletal muscle of patients with CKD, and the magnitude of AHR activation was inversely correlated with mitochondrial respiration. In mice with CKD, muscle mitochondrial oxidative phosphorylation (OXPHOS) was markedly impaired and strongly correlated with the serum level of tryptophan-derived uremic metabolites and AHR activation. Muscle-specific deletion of the AHR substantially improved mitochondrial OXPHOS in male mice with the greatest uremic toxicity (CKD + probenecid) and abolished the relationship between uremic metabolites and OXPHOS. The uremic metabolite/AHR/mitochondrial axis in skeletal muscle was verified using muscle-specific AHR knockdown in C57BL/6J mice harboring a high-affinity AHR allele, as well as ectopic viral expression of constitutively active mutant AHR in mice with normal renal function. Notably, OXPHOS changes in AHRmKO mice were present only when mitochondria were fueled by carbohydrates. Further analyses revealed that AHR activation in mice led to significantly increased pyruvate dehydrogenase kinase 4 (Pdk4) expression and phosphorylation of pyruvate dehydrogenase enzyme. These findings establish a uremic metabolite/AHR/Pdk4 axis in skeletal muscle that governs mitochondrial deficits in carbohydrate oxidation during CKD.


Assuntos
Camundongos Endogâmicos C57BL , Músculo Esquelético , Fosforilação Oxidativa , Piruvato Desidrogenase Quinase de Transferência de Acetil , Receptores de Hidrocarboneto Arílico , Insuficiência Renal Crônica , Triptofano , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Camundongos , Masculino , Insuficiência Renal Crônica/metabolismo , Triptofano/metabolismo , Músculo Esquelético/metabolismo , Humanos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Uremia/metabolismo , Mitocôndrias Musculares/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Feminino , Camundongos Knockout , Citocromo P-450 CYP1B1/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Pessoa de Meia-Idade , Metabolismo Energético , Modelos Animais de Doenças
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167180, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653356

RESUMO

The renal tubular epithelial cells (TEC) have a strong capacity for repair after acute injury, but when this mechanism becomes uncontrollable, it leads to chronic kidney diseases (CKD). Indeed, in progress toward CKDs, the TECs may dedifferentiate, undergo epithelial-to-mesenchyme transition (EMT), and promote inflammation and fibrosis. Given the critical role of Wnt4 signaling in kidney ontogenesis, we addressed whether changes in this signaling are connected to renal inflammation and fibrosis by taking advantage of a knock-in Wnt4mCh/mCh mouse. While the Wnt4mCh/mCh embryos appeared normal, the corresponding mice, within one month, developed CKD-related phenotypes, such as pro-inflammatory responses including T-cell/macrophage influx, expression of fibrotic markers, and epithelial cell damage with a partial EMT. The Wnt signal transduction component ß-catenin remained unchanged, while calcium signaling is induced in the injured TECs involving Nfat and Tfeb transcription factors. We propose that the Wnt4 signaling pathway is involved in repairing the renal injury, and when the signal is overdriven, CKD is established.


Assuntos
Sinalização do Cálcio , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Fibrose , Técnicas de Introdução de Genes , Proteína Wnt4 , Animais , Camundongos , Transição Epitelial-Mesenquimal/genética , Proteína Wnt4/metabolismo , Proteína Wnt4/genética , Sinalização do Cálcio/genética , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Via de Sinalização Wnt , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Rim/patologia , Rim/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , beta Catenina/metabolismo , beta Catenina/genética
9.
Cell Commun Signal ; 22(1): 247, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689280

RESUMO

BACKGROUND: Renal fibrosis is a prevalent manifestation of chronic kidney disease (CKD), and effective treatments for this disease are currently lacking. Myofibroblasts, which originate from interstitial fibroblasts, aggregate in the renal interstitium, leading to significant accumulation of extracellular matrix and impairment of renal function. The nonreceptor tyrosine kinase c-Abl (encoded by the Abl1 gene) has been implicated in the development of renal fibrosis. However, the precise role of c-Abl in this process and its involvement in fibroblast-myofibroblast transition (FMT) remain poorly understood. METHODS: To investigate the effect of c-Abl in FMT during renal fibrosis, we investigated the expression of c-Abl in fibrotic renal tissues of patients with CKD and mouse models. We studied the phenotypic changes in fibroblast or myofibroblast-specific c-Abl conditional knockout mice. We explored the potential targets of c-Abl in NRK-49F fibroblasts. RESULTS: In this study, fibrotic mouse and cell models demonstrated that c-Abl deficiency in fibroblasts mitigated fibrosis by suppressing fibroblast activation, fibroblast-myofibroblast transition, and extracellular matrix deposition. Mechanistically, c-Abl maintains the stability of the RACK1 protein, which serves as a scaffold for proteins such as c-Abl and focal adhesion kinase at focal adhesions, driving fibroblast activation and differentiation during renal fibrosis. Moreover, specifically targeting c-Abl deletion in renal myofibroblasts could prove beneficial in established kidney fibrosis by reducing RACK1 expression and diminishing the extent of fibrosis. CONCLUSIONS: Our findings suggest that c-Abl plays a pathogenic role in interstitial fibrosis through the regulation of RACK1 protein stabilization and myofibroblast differentiation, suggesting a promising strategy for the treatment of CKD.


Assuntos
Fibroblastos , Fibrose , Miofibroblastos , Proteínas Proto-Oncogênicas c-abl , Receptores de Quinase C Ativada , Transdução de Sinais , Animais , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-abl/genética , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Humanos , Camundongos , Fibroblastos/metabolismo , Fibroblastos/patologia , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Rim/patologia , Rim/metabolismo , Masculino , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL
10.
Am J Physiol Endocrinol Metab ; 326(6): E747-E766, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477666

RESUMO

Chronic kidney disease is a debilitating condition associated with significant morbidity and mortality. In recent years, the kidney effects of incretin-based therapies, particularly glucagon-like peptide-1 receptor agonists (GLP-1RAs), have garnered substantial interest in the management of type 2 diabetes and obesity. This review delves into the intricate interactions between the kidney, GLP-1RAs, and glucagon, shedding light on their mechanisms of action and potential kidney benefits. Both GLP-1 and glucagon, known for their opposing roles in regulating glucose homeostasis, improve systemic risk factors affecting the kidney, including adiposity, inflammation, oxidative stress, and endothelial function. Additionally, these hormones and their pharmaceutical mimetics may have a direct impact on the kidney. Clinical studies have provided evidence that incretins, including those incorporating glucagon receptor agonism, are likely to exhibit improved kidney outcomes. Although further research is necessary, receptor polypharmacology holds promise for preserving kidney function through eliciting vasodilatory effects, influencing volume and electrolyte handling, and improving systemic risk factors.


Assuntos
Incretinas , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/fisiopatologia , Incretinas/uso terapêutico , Incretinas/farmacologia , Animais , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Glucagon/metabolismo
11.
J Mol Med (Berl) ; 102(5): 679-692, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38453697

RESUMO

Chronic kidney disease (CKD) is the 16th leading cause of mortality worldwide. Clinical studies have raised that long-term use of omeprazole (OME) is associated with the morbidity of CKD. OME is commonly used in clinical practice to treat peptic ulcers and gastroesophageal reflux disease. However, the mechanism underlying renal failure following OME treatment remains mostly unknown and the rodent model of OME-induced CKD is yet to be established. We described the process of renal injury after exposure to OME in mice; the early renal injury markers were increased in renal tubular epithelial cells (RTECs). And after long-term OME treatment, the OME-induced CKD mice model was established. Herein, aryl hydrocarbon receptor (AHR) translocation appeared after exposure to OME in HK-2 cells. Then for both in vivo and in vitro, we found that Ahr-knockout (KO) and AHR small interfering RNA (siRNA) substantially alleviated the OME-induced renal function impairment and tubular cell damage. Furthermore, our data demonstrate that antagonists of AHR and CYP1A1 could attenuate OME-induced tubular cell impairment in HK-2 cells. Taken together, these data indicate that OME induces CKD through the activation of the AHR-CYP axis in RTECs. Our findings suggest that blocking the AHR-CYP1A1 pathway acts as a potential strategy for the treatment of CKD caused by OME. KEY MESSAGES: We provide an omeprazole-induced chronic kidney disease (CKD) mice model. AHR activation and translocation process was involved in renal tubular damage and promoted the occurrence of CKD. The process of omeprazole nephrotoxicity can be ameliorated by blockade of the AHR-CYP1A1 axis.


Assuntos
Citocromo P-450 CYP1A1 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Omeprazol , Receptores de Hidrocarboneto Arílico , Insuficiência Renal Crônica , Animais , Humanos , Masculino , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/efeitos dos fármacos , Omeprazol/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/induzido quimicamente , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética
12.
Transl Res ; 269: 14-30, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38453052

RESUMO

The progression of chronic kidney disease (CKD) often involves renal interstitial fibrosis (RIF) and subsequent loss of peritubular capillaries (PTCs), which enhances disease severity. Despite advancements in our understanding of fibrosis, effective interventions for reversing capillary loss remain elusive. Notably, RIF exhibits reduced capillary density, whereas renal cell carcinoma (RCC) shows robust angiogenesis under hypoxic conditions. Using RNA sequencing and bioinformatics, we identified differentially expressed genes (DEGs) in hypoxic human renal tubular epithelial cells (HK-2) and renal cancer cells (786-0). Analysis of altered Ras and PI3K/Akt pathways coupled with hub gene investigation revealed RAS protein activator-like 2 (RASAL2) as a key candidate. Subsequent in vitro and in vivo studies confirmed RASAL2's early-stage response in RIF, which reduced with fibrosis progression. RASAL2 suppression in HK-2 cells enhanced angiogenesis, as evidenced by increased proliferation, migration, and branching of human umbilical vein endothelial cells (HUVECs) co-cultured with HK-2 cells. In mice, RASAL2 knockdown improved Vascular endothelial growth factor A (VEGFA) and Proliferating cell nuclear antigen (PCNA) levels in unilateral ureteral occlusion (UUO)-induced fibrosis (compared to wild type). Hypoxia-inducible factor 1 alpha (HIF-1α) emerged as a pivotal mediator, substantiated by chromatin immunoprecipitation (ChIP) sequencing, with its induction linked to activation. Hypoxia increased the production of RASAL2-enriched extracellular vesicles (EVs) derived from tubular cells, which were internalized by endothelial cells, contributing to the exacerbation of PTC loss. These findings underscore RASAL2's role in mediating reduced angiogenesis in RIF and reveal a novel EV-mediated communication between hypoxic tubular- and endothelial cells, demonstrating a complex interplay between angiogenesis and fibrosis in CKD pathogenesis.


Assuntos
Fibrose , Humanos , Animais , Camundongos , Masculino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Rarefação Microvascular/metabolismo , Rarefação Microvascular/patologia , Rarefação Microvascular/genética , Camundongos Endogâmicos C57BL , Rim/irrigação sanguínea , Rim/patologia , Rim/metabolismo , Hipóxia/patologia , Hipóxia/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/genética , Hipóxia Celular , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Linhagem Celular , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética
13.
FASEB J ; 38(5): e23436, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430461

RESUMO

Chronic kidney disease (CKD) is a global health burden, with ineffective therapies leading to increasing morbidity and mortality. Renal interstitial fibrosis is a common pathway in advanced CKD, resulting in kidney function and structure deterioration. In this study, we investigate the role of FTO-mediated N6-methyladenosine (m6A) and its downstream targets in the pathogenesis of renal fibrosis. M6A modification, a prevalent mRNA internal modification, has been implicated in various organ fibrosis processes. We use a mouse model of unilateral ureteral obstruction (UUO) as an in vivo model and treated tubular epithelial cells (TECs) with transforming growth factor (TGF)-ß1 as in vitro models. Our findings revealed increased FTO expression in UUO mouse model and TGF-ß1-treated TECs. By modulating FTO expression through FTO heterozygous mutation mice (FTO+/- ) in vivo and small interfering RNA (siRNA) in vitro, we observed attenuation of UUO and TGF-ß1-induced epithelial-mesenchymal transition (EMT), as evidenced by decreased fibronectin and N-cadherin accumulation and increased E-cadherin levels. Silencing FTO significantly improved UUO and TGF-ß1-induced inflammation, apoptosis, and inhibition of autophagy. Further transcriptomic assays identified RUNX1 as a downstream candidate target of FTO. Inhibiting FTO was shown to counteract UUO/TGF-ß1-induced RUNX1 elevation in vivo and in vitro. We demonstrated that FTO signaling contributes to the elevation of RUNX1 by demethylating RUNX1 mRNA and improving its stability. Finally, we revealed that the PI3K/AKT pathway may be activated downstream of the FTO/RUNX1 axis in the pathogenesis of renal fibrosis. In conclusion, identifying small-molecule compounds that target this axis could offer promising therapeutic strategies for treating renal fibrosis.


Assuntos
Adenina/análogos & derivados , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , Rim/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Obstrução Ureteral/metabolismo , Insuficiência Renal Crônica/metabolismo , Fibrose , Desmetilação , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
14.
Nat Rev Endocrinol ; 20(6): 321-335, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38351406

RESUMO

Obesity is strongly associated with the development of diabetes mellitus and chronic kidney disease (CKD), but there is evidence for a bidirectional relationship wherein the kidney also acts as a key regulator of body weight. In this Review, we highlight the mechanisms implicated in obesity-related CKD, and outline how the kidney might modulate feeding and body weight through a growth differentiation factor 15-dependent kidney-brain axis. The favourable effects of bariatric surgery on kidney function are discussed, and medical therapies designed for the treatment of diabetes mellitus that lower body weight and preserve kidney function independent of glycaemic lowering, including sodium-glucose cotransporter 2 inhibitors, incretin-based therapies and metformin, are also reviewed. In summary, we propose that kidney function and body weight are related in a bidirectional fashion, and that this interrelationship affects human health and disease.


Assuntos
Rim , Obesidade , Insuficiência Renal Crônica , Humanos , Obesidade/terapia , Obesidade/metabolismo , Obesidade/complicações , Rim/metabolismo , Rim/fisiopatologia , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/metabolismo , Cirurgia Bariátrica , Peso Corporal/fisiologia , Animais , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
15.
Clin Pharmacol Ther ; 115(6): 1336-1345, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38404228

RESUMO

Daprodustat is the first oral hypoxia-inducible factor prolyl hydroxylase inhibitor approved recently for the treatment of anemia caused by chronic kidney disease (CKD) in adults receiving dialysis. We evaluated the role of organic anion transporting polypeptide (OATP)1B-mediated hepatic uptake transport in the pharmacokinetics (PKs) of daprodustat using in vitro and in vivo studies, and physiologically-based PK (PBPK) modeling of its drug-drug interactions (DDIs) with inhibitor drugs. In vitro, daprodustat showed specific transport by OATP1B1/1B3 in the transfected cell systems and primary human and monkey hepatocytes. A single-dose oral rifampin (OATP1B inhibitor) reduced daprodustat intravenous clearance by a notable 9.9 ± 1.2-fold (P < 0.05) in cynomolgus monkeys. Correspondingly, volume of distribution at steady-state was also reduced by 5.0 ± 1.1-fold, whereas the half-life change was minimal (1.5-fold), corroborating daprodustat hepatic uptake inhibition by rifampin. A PBPK model accounting for OATP1B-CYP2C8 interplay was developed, which well described daprodustat PK and DDIs with gemfibrozil (CYP2C8 and OATP1B inhibitor) and trimethoprim (weak CYP2C8 inhibitor) within 25% error of the observed data in healthy subjects. About 18-fold increase in daprodustat area under the curve (AUC) following gemfibrozil treatment was found to be associated with strong CYP2C8 inhibition and moderate OATP1B inhibition. Moreover, PK modulation in hepatic dysfunction and subjects with CKD, in comparison to healthy control, was well-captured by the model. CYP2C8 and/or OATP1B inhibitor drugs (e.g., gemfibrozil, clopidogrel, rifampin, and cyclosporine) were predicted to perpetrate moderate-to-strong DDIs in healthy subjects, as well as, in target CKD population. Daprodustat can be used as a sensitive CYP2C8 index substrate in the absence of OATP1B modulation.


Assuntos
Citocromo P-450 CYP2C8 , Interações Medicamentosas , Hepatócitos , Transportador 1 de Ânion Orgânico Específico do Fígado , Insuficiência Renal Crônica , Rifampina , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Adulto , Animais , Feminino , Humanos , Masculino , Citocromo P-450 CYP2C8/metabolismo , Inibidores do Citocromo P-450 CYP2C8/farmacocinética , Glicina/análogos & derivados , Glicina/farmacocinética , Células HEK293 , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatopatias/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Macaca fascicularis , Insuficiência Renal Crônica/metabolismo , Rifampina/farmacologia , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/antagonistas & inibidores
16.
Aging (Albany NY) ; 16(3): 2438-2456, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301049

RESUMO

Vascular calcification (VC) is directly related to high mortality in chronic kidney disease (CKD), and cellular apoptosis of vascular smooth muscle cells (VSMCs) is a crucial process in the initiation of VC. Microtubule affinity-regulating kinase 4 (Mark4), known as a serine/threonine protein kinase, can induce cell apoptosis and autophagy by modulating Akt phosphorylation. However, the potential functions and molecular mechanisms of Mark4 in VSMCs apoptosis and calcification need to be further explored. Initially, our data indicated that the mRNA expression of Mark4 was prominently elevated in high phosphorus-stimulated human VSMCs compared with the other members in Marks. Consistently, Mark4 expression was found to be significantly increased in the calcified arteries of both CKD patients and rats. In vitro, silencing Mark4 suppressed apoptosis-specific marker expression by promoting Akt phosphorylation, finally attenuating VSMCs calcification induced by high phosphate. Mechanically, the transcription factor Sp1 was enriched in the Mark4 promoter region and modulated Mark4 transcription. Moreover, SET domain-containing protein 8 (Setd8) was proved to interact with Sp1 and jointly participated in the transcriptional regulation of Mark4. Finally, rescue experiments revealed that Setd8 contributed to VSMCs apoptosis and calcification by modulating Mark4 expression. In conclusion, these findings reveal that Mark4 is transcriptionally activated by Sp1, which is interacted with Setd8, to promote VSMCs calcification through Akt-mediated antiapoptotic effects, suggesting that Mark4 represents a potent and promising therapeutic target for VC in CKD.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Animais , Humanos , Ratos , Apoptose/genética , Células Cultivadas , Microtúbulos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Calcificação Vascular/metabolismo
17.
Biopharm Drug Dispos ; 45(1): 58-68, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38319316

RESUMO

Renal function is an important factor affecting the pharmacokinetics of vancomycin. The renal function in elderly patients gradually decreases with age. An accurate estimated glomerular filtration rate (GFR) is essential in drug dosing. The study aimed to determine the most appropriate renal function estimation equations to describe vancomycin pharmacokinetics in elderly patients using population pharmacokinetic analysis. Data were obtained retrospectively from elderly patients aged ≥65 years who received vancomycin for infection from September 2016 to January 2022. Renal function was estimated using the Cockcroft-Gault equation (CG), Modification of Diet in Renal Disease equation (MDRD), three Chronic Kidney Disease Epidemiology Collaboration equations (CKD-EPIcys-scr , CKD-EPIscr , and CKD-EPIcys ) and two Berlin Initiative Study equations (BIS-1 and BIS-2). The CKD-EPIcys-scr and BIS-2 equations were based on cystatin C (Cys C) and serum creatinine (Scr). The others were based on Cys C or Scr. A nonlinear mixed effects model (NONMEM) was used to develop the population pharmacokinetic model. A total of 471 serum concentrations from 313 elderly patients were used to develop the population pharmacokinetic model. Weight and GFR were identified as significant covariates affecting the pharmacokinetics of vancomycin. Cys C and Scr-based GFR (CKD-EPIcys-scr and BIS-2) yielded significant improvement performance compared with the other equations in model building. The interindividual variability of CL was reduced from 49.4% to 23.6% and 49.4% to 23.7% in CKD-EPIcys-scr and BIS-2 based models, respectively. However, greater interindividual variabilities of CL (from 26.6% to 29.0%) were represented in the other five models which were based on either Cys C or Scr. The GFR estimated by EPIcys-scr and BIS-2 equations and vancomycin CL exhibited a good correlation (r = 0.834 and 0.833). In the external validation with 124 serum concentrations, the predictive performances of the CKD-EPIcys-scr and BIS-2 based models (the mean relative prediction errors were less than 1%, the mean relative absolute prediction errors were about 23%) were also superior to the other five models (the mean relative prediction errors were about 2%, the mean relative absolute prediction errors were greater than 25%) which are based on either Cys C or Scr. In this study, we determined that the equation used to estimate GFR can affect the population pharmacokinetic model fitting result. Population pharmacokinetics model with CKD-EPIcys-scr or BIS-2 can be used to optimize vancomycin dosage in elderly Chinese patients.


Assuntos
Taxa de Filtração Glomerular , Insuficiência Renal Crônica , Vancomicina , Idoso , Humanos , China , Creatinina , Cistatina C , Insuficiência Renal Crônica/metabolismo , Estudos Retrospectivos , Vancomicina/farmacocinética
18.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338797

RESUMO

Acute kidney injury (AKI) is increasing in prevalence and causes a global health burden. AKI is associated with significant mortality and can subsequently develop into chronic kidney disease (CKD). The kidney is one of the most energy-demanding organs in the human body and has a role in active solute transport, maintenance of electrochemical gradients, and regulation of fluid balance. Renal proximal tubular cells (PTCs) are the primary segment to reabsorb and secrete various solutes and take part in AKI initiation. Mitochondria, which are enriched in PTCs, are the main source of adenosine triphosphate (ATP) in cells as generated through oxidative phosphorylation. Mitochondrial dysfunction may result in reactive oxygen species (ROS) production, impaired biogenesis, oxidative stress multiplication, and ultimately leading to cell death. Even though mitochondrial damage and malfunction have been observed in both human kidney disease and animal models of AKI and CKD, the mechanism of mitochondrial signaling in PTC for AKI-to-CKD transition remains unknown. We review the recent findings of the development of AKI-to-CKD transition with a focus on mitochondrial disorders in PTCs. We propose that mitochondrial signaling is a key mechanism of the progression of AKI to CKD and potential targeting for treatment.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Animais , Humanos , Insuficiência Renal Crônica/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/terapia , Injúria Renal Aguda/metabolismo , Rim/metabolismo , Transdução de Sinais , Estresse Oxidativo
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167039, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38281712

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is a prevalent renal disorder with various risk factors. Emerging evidence indicates that the transcriptional factor CCAAT/enhancer binding protein alpha (C/EBPα) may be associated with renal fibrosis. However, the precise role of C/EBPα in CKD progression remains unexplored. METHODS: We investigated the involvement of C/EBPα in CKD using two distinct mouse models induced by folic acid (FA) and unilateral ureteral obstruction (UUO). Additionally, we used RNA sequencing and KEGG analysis to identify potential downstream pathways governed by C/EBPα. FINDINGS: Cebpa knockout significantly shielded mice from renal fibrosis and reduced reactive oxygen species (ROS) levels in both the FA and UUO models. Primary tubular epithelial cells (PTECs) lacking Cebpa exhibited reduced apoptosis and ROS accumulation following treatment with TGF-ß. RNA sequencing analysis suggested that apoptosis is among the primary pathways regulated by C/EBPα, and identified NADPH oxidoreductase 4 (NOX4) as a key protein upregulated upon C/EBPα induction (ICCB280). Treatment with l-Theanine, a potential NOX4 inhibitor, mitigated renal fibrosis and inflammation in both the FA and UUO mouse models. INTERPRETATION: Our study unveils a role for C/EBPα in suppressing renal fibrosis, mitigating ROS accumulation, and reducing cell apoptosis. Furthermore, we investigate whether these protective effects are mediated by C/EBPα's regulation of NOX4 expression. These findings present a promising therapeutic target for modulating ROS and apoptosis in renal tubular cells, potentially offering an approach to treating CKD and other fibrotic diseases.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/farmacologia , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Insuficiência Renal Crônica/metabolismo , Obstrução Ureteral/metabolismo , Células Epiteliais/metabolismo , Apoptose , Fibrose
20.
Redox Biol ; 70: 103042, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244399

RESUMO

Hypoxia is the key pathobiological trigger of tubular oxidative stress and cell death that drives the transition of acute kidney injury (AKI) to chronic kidney disease (CKD). The mitochondrial-rich proximal tubular epithelial cells (PTEC) are uniquely sensitive to hypoxia and thus, are pivotal in propagating the sustained tubular loss of AKI-to-CKD transition. Here, we examined the role of PTEC-derived small extracellular vesicles (sEV) in propagating the 'wave of tubular death'. Ex vivo patient-derived PTEC were cultured under normoxia (21 % O2) and hypoxia (1 % O2) on Transwell inserts for isolation and analysis of sEV secreted from apical versus basolateral PTEC surfaces. Increased numbers of sEV were secreted from the apical surface of hypoxic PTEC compared with normoxic PTEC. No differences in basolateral sEV numbers were observed between culture conditions. Biological pathway analysis of hypoxic-apical sEV cargo identified distinct miRNAs linked with cellular injury pathways. In functional assays, hypoxic-apical sEV selectively induced ferroptotic cell death (↓glutathione peroxidase-4, ↑lipid peroxidation) in autologous PTEC compared with normoxic-apical sEV. The addition of ferroptosis inhibitors, ferrostatin-1 and baicalein, attenuated PTEC ferroptosis. RNAse A pretreatment of hypoxic-apical sEV also abrogated PTEC ferroptosis, demonstrating a role for sEV RNA in ferroptotic 'wave of death' signalling. In line with these in vitro findings, in situ immunolabelling of diagnostic kidney biopsies from AKI patients with clinical progression to CKD (AKI-to-CKD transition) showed evidence of ferroptosis propagation (increased numbers of ACSL4+ PTEC), while urine-derived sEV (usEV) from these 'AKI-to-CKD transition' patients triggered PTEC ferroptosis (↑lipid peroxidation) in functional studies. Our data establish PTEC-derived apical sEV and their intravesicular RNA as mediators of tubular lipid peroxidation and ferroptosis in hypoxic kidney injury. This concept of how tubular pathology is propagated from the initiating insult into a 'wave of death' provides novel therapeutic check-points for targeting AKI-to-CKD transition.


Assuntos
Injúria Renal Aguda , Ferroptose , Insuficiência Renal Crônica , Humanos , Túbulos Renais Proximais , Rim/metabolismo , Células Epiteliais/metabolismo , Hipóxia/metabolismo , Injúria Renal Aguda/metabolismo , Insuficiência Renal Crônica/metabolismo , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA