Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Nature ; 632(8023): 192-200, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020181

RESUMO

Gene replacement using adeno-associated virus (AAV) vectors is a promising therapeutic approach for many diseases1,2. However, this therapeutic modality is challenged by the packaging capacity of AAVs (approximately 4.7 kilobases)3, limiting its application for disorders involving large coding sequences, such as Duchenne muscular dystrophy, with a 14 kilobase messenger RNA. Here we developed a new method for expressing large dystrophins by utilizing the protein trans-splicing mechanism mediated by split inteins. We identified several split intein pairs that efficiently join two or three fragments to generate a large midi-dystrophin or the full-length protein. We show that delivery of two or three AAVs into dystrophic mice results in robust expression of large dystrophins and significant physiological improvements compared with micro-dystrophins. Moreover, using the potent myotropic AAVMYO4, we demonstrate that low total doses (2 × 1013 viral genomes per kg) are sufficient to express large dystrophins in striated muscles body-wide with significant physiological corrections in dystrophic mice. Our data show a clear functional superiority of large dystrophins over micro-dystrophins that are being tested in clinical trials. This method could benefit many patients with Duchenne or Becker muscular dystrophy, regardless of genotype, and could be adapted to numerous other disorders caused by mutations in large genes that exceed the AAV capacity.


Assuntos
Distrofina , Terapia Genética , Inteínas , Distrofia Muscular de Duchenne , Processamento de Proteína , Animais , Humanos , Masculino , Camundongos , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Distrofina/biossíntese , Distrofina/deficiência , Distrofina/genética , Distrofina/metabolismo , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Inteínas/genética , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/metabolismo , Processamento de Proteína/genética
2.
Cell Biochem Funct ; 42(2): e3987, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509770

RESUMO

Inteins are proteins involved in the protein splicing mechanism, an autoprocessing event, where sequences (exteins) separated by inteins become ligated each other after recombination. Two kinds of inteins have been described, contiguous inteins and split inteins. The former ones are transcribed and translated as a single peptide along with their exteins, while the latter are fragmented between two different genes and are transcribed and translated separately. The aim of this study is to establish a method to obtain a fluorescent eukaryotic protein to analyze its cellular localization, using the natural split gp41-1 inteins. We chose natural split inteins due to their distribution in all three domains of life. Two constructs were prepared, one containing the N-terminal split intein along with the N-moiety of the Red Fluorescent Protein (RFP) and a second construct containing the C-terminal of split intein, the C-moiety of RFP and the gene coding for Maspin, a tumor suppressor protein. The trans-splicing was verified by transfecting both N-terminal and C-terminal constructs into mammalian cells. The success of the recombination event was highlighted through the fluorescence produced by reconstituted RFP after recombination, along with the overlap of the red fluorescence produced by recombined RFP and the green fluorescence produced by the hybridization of the recombinant Maspin with a specific antibody. In conclusion, we opted to use this mechanism of recombination to obtain a fluorescent Maspin instead to express a large fusion protein, considering that it could interfere with Maspin's structure and function.


Assuntos
Osteossarcoma , Serpinas , Animais , Humanos , Inteínas/genética , Processamento de Proteína , Serpinas/genética , Osteossarcoma/genética , Mamíferos
3.
Nucleic Acids Res ; 52(4): 2066-2077, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38180814

RESUMO

Limiting the spread of synthetic genetic information outside of the intended use is essential for applications where biocontainment is critical. In particular, biocontainment of engineered probiotics and plasmids that are excreted from the mammalian gastrointestinal tract is needed to prevent escape and acquisition of genetic material that could confer a selective advantage to microbial communities. Here, we built a simple and lightweight biocontainment system that post-translationally activates a site-specific DNA endonuclease to degrade DNA at 18°C and not at higher temperatures. We constructed an orthogonal set of temperature-sensitive meganucleases (TSMs) by inserting the yeast VMA1 L212P temperature-sensitive intein into the coding regions of LAGLIDADG homing endonucleases. We showed that the TSMs eliminated plasmids carrying the cognate TSM target site from laboratory strains of Escherichia coli at the permissive 18°C but not at higher restrictive temperatures. Plasmid elimination is dependent on both TSM endonuclease activity and intein splicing. TSMs eliminated plasmids from E. coli Nissle 1917 after passage through the mouse gut when fecal resuspensions were incubated at 18°C but not at 37°C. Collectively, our data demonstrates the potential of thermoregulated meganucleases as a means of restricting engineered plasmids and probiotics to the mammalian gut.


Assuntos
Inteínas , Proteínas de Saccharomyces cerevisiae , Animais , Camundongos , Inteínas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Processamento de Proteína , DNA/metabolismo , Saccharomyces cerevisiae/genética , Plasmídeos/genética , Mamíferos/genética , ATPases Translocadoras de Prótons , Proteínas de Saccharomyces cerevisiae/genética
4.
J Mol Biol ; 435(24): 168360, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37949312

RESUMO

Optogenetics has emerged as a powerful tool for spatiotemporal control of biological processes. Near-infrared (NIR) light, with its low phototoxicity and deep tissue penetration, holds particular promise. However, the optogenetic control of polypeptide bond formation has not yet been developed. In this study, we introduce a NIR optogenetic module for conditional protein splicing (CPS) based on the gp41-1 intein. We optimized the module to minimize background signals in the darkness and to maximize the contrast between light and dark conditions. Next, we engineered a NIR CPS gene expression system based on the protein ligation of a transcription factor. We applied the NIR CPS for light-triggered protein cleavage to activate gasdermin D, a pore-forming protein that induces pyroptotic cell death. Our NIR CPS optogenetic module represents a promising tool for controlling molecular processes through covalent protein linkage and cleavage.


Assuntos
Optogenética , Processamento de Proteína , Inteínas/genética , Regulação da Expressão Gênica
5.
Commun Biol ; 6(1): 567, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237044

RESUMO

The ability to stack multiple genes in plants is of great importance in the development of crops with desirable traits but can be challenging due to limited selectable marker options. Here we establish split selectable marker systems using protein splicing elements called "inteins" for Agrobacterium-mediated co-transformation in plants. First, we show that such a split selectable marker system can be used effectively in plants to reconstitute a visible marker, RUBY, from two non-functional fragments through tobacco leaf infiltration. Next, to determine the general applicability of our split selectable marker systems, we demonstrate the utility of these systems in the model plants Arabidopsis and poplar by successfully stacking two reporters eYGFPuv and RUBY, using split Kanamycin or Hygromycin resistance markers. In conclusion, this method enables robust plant co-transformation, providing a valuable tool for the simultaneous insertion of multiple genes into both herbaceous and woody plants efficiently.


Assuntos
Inteínas , Processamento de Proteína , Plantas Geneticamente Modificadas/genética , Inteínas/genética , Transformação Genética , Transgenes
6.
Protein Expr Purif ; 207: 106272, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37062513

RESUMO

To expand the reported redox-dependent intein system application, in this work, we used the split intein variant with highly trans-splicing efficiency and minimal extein dependence to cyclize the green fluorescent protein variant reporter in vitro. The CPG residues were introduced adjacent to the intein's catalytic cysteine for reversible formation of a disulfide bond to retard the trans-splicing reaction under the oxidative environment. The cyclized reporter protein in Escherichia coli cells was easily prepared by organic extraction and identified by the exopeptidase digestion. The amounts of extracted cyclized protein reporter in BL21 (DE3) cells were higher than those in hyperoxic SHuffle T7 coexpression system for facilitating the disulfide bond formation. The double His6-tagged precursor was purified for in vitro cyclization of the protein for 3 h. Compared with the purified linear counterpart, the cyclic reporter showed about twofold increase in fluorescence intensity, exhibited thermal and hydrolytic stability, and displayed better folding efficiency in BL21 (DE3) cells at the elevated temperature. Taken together, the developed redox-dependent intein system will be used for producing other cyclic disulfide-free proteins. The cyclic reporter is a potential candidate applied in certain thermophilic aerobes.


Assuntos
Inteínas , Processamento de Proteína , Inteínas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredução
7.
Curr Protoc ; 2(10): e571, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36222539

RESUMO

Heterologous expression in Escherichia coli is a commonly used method to produce ribosomally synthesized peptides for further study. This generally requires expression of the target protein with an affinity fusion tag, followed by isolation of the fusion protein from a cellular lysate by affinity purification, and finally by removal of the fusion tag and purification of the desired peptide. Sometimes, however, fusion proteins may be degraded during recombinant expression in E. coli. We recently reported an expression system that sandwiches the target peptide between an N-terminal small ubiquitin-like modifier (SUMO) protein and a C-terminal intein. This SUMO-peptide-intein (SPI) fusion protein protects the central peptide from degradation and can lead to improved peptide yield after purification. In this report, we detail the cloning, expression, and isolation procedures for the SPI fusion system, with comments on conditions that can be optimized for different peptides to obtain maximal yield for each construct. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Cloning to construct SPI gene Basic Protocol 2: Expression of SPI fusion proteins in E. coli BL21(DE3) Support Protocol: Optimization of expression and induction conditions Basic Protocol 3: Isolation and purification of SPI fusion proteins with a chitin column Alternate Protocol: Isolation and purification of SPI fusion proteins without chitin.


Assuntos
Escherichia coli , Inteínas , Quitina/metabolismo , Escherichia coli/genética , Inteínas/genética , Peptídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes/genética , Ubiquitinas/metabolismo
8.
ACS Synth Biol ; 11(10): 3296-3304, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36150110

RESUMO

Cascade reaction systems, such as protein fusion and synthetic protein scaffold systems, can both spatially control the metabolic flux and boost the productivity of multistep enzymatic reactions. Despite many efforts to generate fusion proteins, this task remains challenging due to the limited expression of complex enzymes. Therefore, we developed a novel fusion system that bypasses the limited expression of complex enzymes via a post-translational linkage. Here, we report a split intein-mediated cascade system wherein orthogonal split inteins serve as adapters for protein ligation. A genetically programmable, self-assembled, and traceless split intein was utilized to generate a biocatalytic cascade to produce the ginsenoside compound K (CK) with various pharmacological activities, including anticarcinogenic, anti-inflammatory, and antidiabetic effects. We used two types of split inteins, consensus atypical (Cat) and Rma DnaB, to form a covalent scaffold with the three enzymes involved in the CK conversion pathway. The multienzymatic complex with a size greater than 240 kDa was successfully assembled in a soluble form and exhibited specific activity toward ginsenoside conversion. Furthermore, our split intein cascade system significantly increased the CK conversion rate and reduced the production time by more than 2-fold. Our multienzymatic cascade system that uses split inteins can be utilized as a platform for regulating multimeric bioconversion pathways and boosting the production of various high-value substances.


Assuntos
Ginsenosídeos , Inteínas , Inteínas/genética , Processamento de Proteína , Proteínas/metabolismo
9.
Sheng Wu Gong Cheng Xue Bao ; 38(6): 2365-2376, 2022 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-35786486

RESUMO

DLP4 (defensin-like peptide 4) is a novel insect defensin, which has strong antibacterial activity against Gram-positive bacteria and is not susceptible to develop drug resistance. In this study, an elastin-like polypeptide (ELP) and an intein fusion system were used for production and purification of DLP4, which combined the characteristics of the phase transition of ELP and the C-cleavage of the intein. A recombinant expression plasmid pET-ELP-I-DLP4 was constructed and transformed into Escherichia coli. Subsequently, DLP4 was purified by simple centrifugation, alternation of pH and temperature. However, the C-cleavage of the intein occurred unexpectedly during the process of expression and purification. To solve this problem, the intein was split into N-intein (I0N) and C-intein (I0C), and fused with ELP or DLP4 to construct two recombinant expression plasmids pET-ELP-I0N and pET-ELP-I0C-DLP4, respectively. These two plasmids were transformed into E. coli separately. The mixture of the two cultures of E. coli strains restored the C-cleavage activity of the intein. This operation yielded DLP4 of about 1.49 mg/L. Antibacterial test confirmed that the purified DLP4 exhibited expected activity. Thus, this approach can be used as an effective way for DLP4 expression and purification in the prokaryotic system.


Assuntos
Elastina , Inteínas , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Defensinas/metabolismo , Elastina/química , Elastina/genética , Elastina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Inteínas/genética , Peptídeos/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia
10.
EMBO Mol Med ; 14(6): e15199, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35491676

RESUMO

Liver gene therapy with adeno-associated viral (AAV) vectors is under clinical investigation for haemophilia A (HemA), the most common inherited X-linked bleeding disorder. Major limitations are the large size of the F8 transgene, which makes packaging in a single AAV vector a challenge, as well as the development of circulating anti-F8 antibodies which neutralise F8 activity. Taking advantage of split-intein-mediated protein trans-splicing, we divided the coding sequence of the large and highly secreted F8-N6 variant in two separate AAV-intein vectors whose co-administration to HemA mice results in the expression of therapeutic levels of F8 over time. This occurred without eliciting circulating anti-F8 antibodies unlike animals treated with the single oversized AAV-F8 vector under clinical development. Therefore, liver gene therapy with AAV-F8-N6 intein should be considered as a potential therapeutic strategy for HemA.


Assuntos
Hemofilia A , Inteínas , Animais , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos , Hemofilia A/genética , Hemofilia A/terapia , Inteínas/genética , Fígado , Camundongos , Trans-Splicing
11.
J Magn Reson ; 338: 107195, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398651

RESUMO

Protein trans-splicing catalyzed by split inteins has been used for segmental isotopic labeling of proteins for alleviating the complexity of NMR signals. Whereas inteins spontaneously trigger protein splicing upon protein folding, inteins from extremely halophilic organisms require a high salinity condition to induce protein splicing. We designed and created a salt-inducible intein from the widely used DnaE intein from Nostoc punctiforme by introducing 29 mutations, which required a lower salt concentration than naturally occurring halo-obligate inteins. We determined the NMR solution structure of the engineered salt-inducible DnaE intein in 2 M NaCl, showing the essentially identical three-dimensional structure to the original one, albeit it unfolds without salts. The NMR structure of a halo-obligate intein under high salinity suggests that the stabilization of the active folded conformation is not a mere result of various intramolecular interactions but the subtle energy balance from the complex interactions, including the solvation energy, which involve waters, ions, co-solutes, and protein polypeptide chains.


Assuntos
Inteínas , Nostoc , DNA Polimerase III/química , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Inteínas/genética , Espectroscopia de Ressonância Magnética , Nostoc/química , Nostoc/genética , Nostoc/metabolismo , Processamento de Proteína
12.
Methods Mol Biol ; 2406: 145-153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35089555

RESUMO

Recombinant E. coli producing intein-cleavable polyhydroxyalkanoate synthase fusions mediates the intracellular formation of polyhydroxyalkanoate (PHA) particles densely coated with intein-cleavable target protein fusion. These PHA particles can be efficiently purified from lysed cells. The self-cleaving intein performs as a bio-linker between the PHA synthase and the target protein. The tagless target protein can be released as pure soluble protein from the PHA particles by a simple pH reduction to 6.0. Here we describe that PHA particles serve as bioseparation resin for purification of soluble target proteins with pharmaceutical grade purity, similar to commercial affinity separation technologies. This cost-effective technique does not involve multiple complicated protein purification procedures, and we have exploited this approach to purify six target proteins: green fluorescent protein (GFP) from A. victoria, antigen Rv1626 from M. tuberculosis, the immunoglobulin G (IgG) binding ZZ domain of protein A derived from Staphylococcus aureus, human tumor necrosis factor alpha (TNFα), human granulocyte colony-stimulating factor (G-CSF), and human interferon alpha 2b (IFNα2b).


Assuntos
Aciltransferases , Inteínas , Proteínas Recombinantes de Fusão , Aciltransferases/química , Aciltransferases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Inteínas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade
13.
Soft Matter ; 18(3): 602-608, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34928293

RESUMO

Nature has adapted chimeric polyproteins to achieve superior and multiplexed functionality in a single protein. However, the hurdles in in vitro synthesis have restricted the biomimicry of and subsequent fundamental studies on the structure-function relationship of polyproteins. Recombinant expression of polyproteins and the synthesis of polyproteins via the enzyme-mediated repetitive digestion and ligation of individual protein domains have been widely practiced. However, recombinant expression often suffers from an in vitro refolding process, whereas enzyme-assisted peptide conjugation results in heterogeneous products, primarily due to enzymatic re-digestion, and prolonged and multistep reactions. Moreover, both methods incorporate enzyme-recognition residues of varying lengths as artifacts at interdomain linkers. The linkers, although tiny, regulate the spatiotemporal conformations of the polyproteins differentially and tune the folding dynamics, stability, and functions of the constituent protein. In an attempt to leave no string behind at the interdomain junctions, here, we develop a 'splice and excise' synthetic route for polyproteins on a substrate using two orthogonal split inteins. Inteins self-excise and conjugate the protein units covalently and instantaneously, without any cofactors, and incorporate a single cysteine or serine residue at the interdomain junctions.


Assuntos
Inteínas , Poliproteínas , Inteínas/genética , Peptídeos , Domínios Proteicos , Proteínas
14.
J Mol Biol ; 434(8): 167199, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-34411545

RESUMO

The presence of selenocysteine in a protein confers many unique properties that make the production of recombinant selenoproteins desirable. Targeted incorporation of Sec into a protein of choice is possible by exploiting elongation factor Tu-dependent reassignment of UAG codons, a strategy that has been continuously improved by a variety of means. Improving selenoprotein yield by directed evolution requires selection and screening markers that are titratable, have a high dynamic range, enable high-throughput screening, and can discriminate against nonspecific UAG decoding. Current screening techniques are limited to a handful of reporters where a cysteine (Cys) or Sec residue normally affords activity. Unfortunately, these existing Cys/Sec-dependent reporters lack the dynamic range of more ubiquitous reporters or suffer from other limitations. Here we present a versatile strategy to adapt established reporters for specific Sec incorporation. Inteins are intervening polypeptides that splice themselves from the precursor protein in an autocatalytic splicing reaction. Using an intein that relies exclusively on Sec for splicing, we show that this intein cassette can be placed in-frame within selection and screening markers, affording reporter activity only upon successful intein splicing. Furthermore, because functional splicing can only occur when a catalytic Sec is present, the amount of synthesized reporter directly measures UAG-directed Sec incorporation. Importantly, we show that results obtained with intein-containing reporters are comparable to the Sec incorporation levels determined by mass spectrometry of isolated recombinant selenoproteins. This result validates the use of these intein-containing reporters to screen for evolved components of a translation system yielding increased selenoprotein amounts.


Assuntos
Genes Reporter , Inteínas , Mutagênese Sítio-Dirigida , Proteínas Recombinantes , Selenocisteína , Selenoproteínas , Códon de Terminação/genética , Códon de Terminação/metabolismo , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Inteínas/genética , Mutagênese Sítio-Dirigida/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/química , Selenoproteínas/genética
15.
Mol Ther ; 30(1): 283-294, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34298129

RESUMO

Prime editor (PE), a new genome editing tool, can generate all 12 possible base-to-base conversions, insertion, and deletion of short fragment DNA. PE has the potential to correct the majority of known human genetic disease-related mutations. Adeno-associated viruses (AAVs), the safe vector widely used in clinics, are not capable of delivering PE (∼6.3 kb) in a single vector because of the limited loading capacity (∼4.8 kb). To accommodate the loading capacity of AAVs, we constructed four split-PE (split-PE994, split-PE1005, split-PE1024, and split-PE1032) using Rma intein (Rhodothermus marinus). With the use of a GFP-mutated reporter system, PE reconstituting activities were screened, and two efficient split-PEs (split-PE1005 and split-PE1024) were identified. We then demonstrated that split-PEs delivered by dual-AAV1, especially split-PE1024, could mediate base transversion and insertion at four endogenous sites in human cells. To test the performance of split-PE in vivo, split-PE1024 was then delivered into the adult mouse retina by dual-AAV8. We demonstrated successful editing of Dnmt1 in adult mouse retina. Our study provides a new method to deliver PE to adult tissue, paving the way for in vivo gene-editing therapy using PE.


Assuntos
Dependovirus , Edição de Genes , Animais , DNA , Dependovirus/genética , Edição de Genes/métodos , Vetores Genéticos/genética , Inteínas/genética , Camundongos , Mutação
16.
Mol Biol (Mosk) ; 55(6): 982-986, 2021.
Artigo em Russo | MEDLINE | ID: mdl-34837702

RESUMO

When expressing streptavidin recombinant polypeptide on magnetosomes (called bacterial magnetic nanoparticles, or BMPs), the presence of endogenous bacterial biotin might be detrimental. In the study, the streptavidin monomer fragment (S1-116) was fused with the intein N-terminal (termed precursor S1-116-IN), and S1-116-IN was expressed in E. coli (BL21). Meanwhile, the SA117-160 fragment was fused with the C-terminal intein, and then this chimeric polypeptide was expressed on magnetosomes by fusion with magnetosome membrance protein MamF. In the in vitro protein splicing system, the purified engineered magnetosomes (BMP-SA117-160-IC) and the S1-116-IN precursor were mixed. Intein-mediated trans-splicing reaction was induced to produce the functional magnetic beads BMP-SA. Our results indicate that intein-mediated protein trans-splicing may lead to efficient synthesis of the recombinant streptavidin on the magnetosomes, showing its promising potential to produce other functional magnetic nanoparticles.


Assuntos
Proteínas de Escherichia coli , Magnetossomos , Proteínas da Membrana Bacteriana Externa , Escherichia coli/genética , Inteínas/genética , Magnetossomos/genética , Processamento de Proteína , Estreptavidina , Trans-Splicing
17.
Biochem Biophys Res Commun ; 582: 93-99, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34695756

RESUMO

The genetic manipulation of cells followed by their selection is indispensable for cell biological research. Although antibiotics-resistant genes are commonly used as selection markers, optimization of the condition for each selective agent is required. Here we utilized split-inteins and the drug-selectable marker puromycin N-acetyltransferase (PAC) to develop a system that enables the selection of cells simultaneously or sequentially transfected with multiple genetic constructs, using only puromycin. The active PAC enzyme was reconstituted by intein-mediated trans-splicing at several inherent or engineered serine/cysteine residues. Multiple splitting and reconstitution of active PAC was readily achieved by selecting optimum division sites based on the cellular tolerance to various puromycin concentrations. To achieve the stepwise selection method, PAC-intein fragments were transduced into cells using a virus-like particle (VLP) composed of HIV-1 gag-pol and VSV-G. The PAC-intein-VLP successfully conferred sufficient PAC activity for puromycin selection, which was quickly diminished in the absence of the VLP. Our findings demonstrate a versatile strategy for establishing markers for all-at-once or stepwise selection of multiple genetic manipulations, which will be useful in many fields of biology.


Assuntos
Acetiltransferases/genética , Engenharia Celular/métodos , Proteínas de Fusão gag-pol/genética , Inteínas/genética , Glicoproteínas de Membrana/genética , Seleção Genética , Proteínas do Envelope Viral/genética , Acetiltransferases/metabolismo , Partículas Artificiais Semelhantes a Vírus/química , Partículas Artificiais Semelhantes a Vírus/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Proteínas de Fusão gag-pol/metabolismo , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Glicoproteínas de Membrana/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Puromicina/farmacologia , Transfecção/métodos , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteína Vermelha Fluorescente
18.
Nat Commun ; 12(1): 5959, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645844

RESUMO

The directed evolution of antibodies has yielded important research tools and human therapeutics. The dependence of many antibodies on disulfide bonds for stability has limited the application of continuous evolution technologies to antibodies and other disulfide-containing proteins. Here we describe periplasmic phage-assisted continuous evolution (pPACE), a system for continuous evolution of protein-protein interactions in the disulfide-compatible environment of the E. coli periplasm. We first apply pPACE to rapidly evolve novel noncovalent and covalent interactions between subunits of homodimeric YibK protein and to correct a binding-defective mutant of the anti-GCN4 Ω-graft antibody. We develop an intein-mediated system to select for soluble periplasmic expression in pPACE, leading to an eight-fold increase in soluble expression of the Ω-graft antibody. Finally, we evolve disulfide-containing trastuzumab antibody variants with improved binding to a Her2-like peptide and improved soluble expression. Together, these results demonstrate that pPACE can rapidly optimize proteins containing disulfide bonds, broadening the applicability of continuous evolution.


Assuntos
Evolução Molecular Direcionada/métodos , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Metiltransferases/genética , Periplasma/genética , Isomerases de Dissulfetos de Proteínas/genética , Trastuzumab/genética , Sítios de Ligação , Clonagem Molecular , Colífagos/genética , Colífagos/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virologia , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Inteínas/genética , Metiltransferases/metabolismo , Modelos Moleculares , Periplasma/metabolismo , Periplasma/virologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Isomerases de Dissulfetos de Proteínas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trastuzumab/química , Trastuzumab/metabolismo
19.
Protein Expr Purif ; 188: 105974, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34520839

RESUMO

Human growth hormone (hGH) plays an important role in growth control, growth promotion, cell development, and regulation of numerous metabolic pathways in the human body and has been approved by the U.S. FDA for the treatment of several human dysfunctions. Over-expression of recombinant hGH (rhGH) affords a misfolded form in cytoplasm of Escherichia coli, and the refolding step required to obtain active rhGH greatly affects its production costs. Herein, the cleavable self-aggregating tag (cSAT) scheme was used for the expression and purification of rhGH in E. coli. Four aggregating tags (L6KD/α3-peptide/EFK8/ELK16) successfully drove rhGH into active protein aggregates. After the Mxe GyrA intein-mediated cleavage, 2.8-21.4 µg rhGH/mg wet cell weight was obtained at laboratory scale, of which the L6KD fusion achieved the highest rhGH yield. The further refined rhGH maintained 92% of the bioactivity compared to commercial rhGH. The self-assembling of the aggregating tag might physically separate the hGH polypeptide chains, which in turn was beneficial to its folding into the active form. This study provided a simple and cost-effective approach for active rhGH production, and suggested an opportunity for improve folding of recombinant proteins in E. coli.


Assuntos
Expressão Gênica , Hormônio do Crescimento Humano/genética , Inteínas/genética , Proteínas Recombinantes de Fusão/genética , Sequência de Aminoácidos , Cromatografia de Afinidade , Cromatografia em Gel , Clonagem Molecular , DNA Girase/genética , DNA Girase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hormônio do Crescimento Humano/biossíntese , Hormônio do Crescimento Humano/isolamento & purificação , Humanos , Peptídeos/genética , Peptídeos/metabolismo , Agregados Proteicos , Dobramento de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação
20.
Microbiol Spectr ; 9(2): e0030121, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34549994

RESUMO

Intervening proteins, or inteins, are mobile genetic elements that are translated within host polypeptides and removed at the protein level by splicing. In protein splicing, a self-mediated reaction removes the intein, leaving a peptide bond in place. While protein splicing can proceed in the absence of external cofactors, several examples of conditional protein splicing (CPS) have emerged. In CPS, the rate and accuracy of splicing are highly dependent on environmental conditions. Because the activity of the intein-containing host protein is compromised prior to splicing and inteins are highly abundant in the microbial world, CPS represents an emerging form of posttranslational regulation that is potentially widespread in microbes. Reactive chlorine species (RCS) are highly potent oxidants encountered by bacteria in a variety of natural environments, including within cells of the mammalian innate immune system. Here, we demonstrate that two naturally occurring RCS, namely, hypochlorous acid (the active compound in bleach) and N-chlorotaurine, can reversibly block splicing of DnaB inteins from Mycobacterium leprae and Mycobacterium smegmatis in vitro. Further, using a reporter that monitors DnaB intein activity within M. smegmatis, we show that DnaB protein splicing is inhibited by RCS in the native host. DnaB, an essential replicative helicase, is the most common intein-housing protein in bacteria. These results add to the growing list of environmental conditions that are relevant to the survival of the intein-containing host and influence protein splicing, as well as suggesting a novel mycobacterial response to RCS. We propose a model in which DnaB splicing, and therefore replication, is paused when these mycobacteria encounter RCS. IMPORTANCE Inteins are both widespread and abundant in microbes, including within several bacterial and fungal pathogens. Inteins are domains translated within host proteins and removed at the protein level by splicing. Traditionally considered molecular parasites, some inteins have emerged in recent years as adaptive posttranslational regulatory elements. Several studies have demonstrated CPS, in which the rate and accuracy of protein splicing, and thus host protein functions, are responsive to environmental conditions relevant to the intein-containing organism. In this work, we demonstrate that two naturally occurring RCS, including the active compound in household bleach, reversibly inhibit protein splicing of Mycobacterium leprae and Mycobacterium smegmatis DnaB inteins. In addition to describing a new physiologically relevant condition that can temporarily inhibit protein splicing, this study suggests a novel stress response in Mycobacterium, a bacterial genus of tremendous importance to humans.


Assuntos
Cloro/farmacologia , DnaB Helicases/antagonistas & inibidores , Inteínas/genética , Mycobacterium leprae/genética , Mycobacterium smegmatis/genética , Processamento de Proteína/efeitos dos fármacos , Cloraminas/farmacologia , Cloro/química , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , DnaB Helicases/genética , DnaB Helicases/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Ácido Hipocloroso/farmacologia , Mycobacterium leprae/metabolismo , Mycobacterium smegmatis/metabolismo , Oxidantes/farmacologia , Oxirredução , Processamento de Proteína/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Taurina/análogos & derivados , Taurina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA