Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Zhonghua Xue Ye Xue Za Zhi ; 45(4): 370-377, 2024 Apr 14.
Artigo em Chinês | MEDLINE | ID: mdl-38951065

RESUMO

Objective: The phenotype and genotype of a pedigree with Glanzmann thrombasthenia caused by compound heterozygous mutation in the ITGA2B gene and its molecular pathogenesis were explored. Methods: The platelet aggregation rate of the proband and his family was detected by using a platelet aggregation test with adenosine diphosphate, collagen, epinephrine, arachidonic acid, and ristocetin. The expression levels of CD41 (αⅡb), CD61 (ß3), and CD42b (GPⅠb) on the platelet surface was detected by flow cytometry. Gene sequencing technology was used for the genetic identification of the family. RT-PCR was used in the detection of mRNA splicing, and qRT-PCR was used in detecting the relative mRNA level of the ITGA2B gene. Bioinformatics analysis was used to evaluate the pathogenicity of mutation sites and their effects on protein structure and function. The expressions of total αⅡb and ß3 in platelets were analyzed by Western blot. Results: Except ristocetin, the other four inducers could not induce platelet aggregation in the proband. Flow cytometry showed that the expression levels of αⅡb and ß3 were only 0.25% and 9.76%, respectively, on the platelet surface of the proband, whereas GPⅠb expression was relatively normal. The expression levels of glycoproteins in the other family members were almost normal. c.480C>G and c.2929C>T mutations were detected in the proband through gene sequencing. The c.480C>G mutation was inherited from his mother, and the c.2929C>T mutation was inherited from his father. The RT-PCR and sequencing results showed that the c.480C>G mutation caused mRNA splicing in the proband and his mother, resulting in the deletion of 99 bases in c.476G-574A (p.S160-S192). qRT-PCR showed that the c.2929C>T variant reduced the mRNA level of the ITGA2B gene in the proband and his father. Bioinformatics analysis suggested that the c.480C>G mutation might form a binding sequence with hnRNP A1 protein and generate the 5'SS splice site. The three-dimensional structural model of the αⅡb subunit showed that the ß-propeller domain of the p.S160-S192 deletion lost two ß-strands and one α-helix in blade 2. The c.2929C>T nonsense mutation caused premature translation termination and produced a truncated protein with the deletion of p.R977-E1039, including the cytoplasmic domain, transmembrane domain, and a ß chain of the extracellular Calf-2 domain. The total αⅡb expression of the proband was absent, and the relative expression of ß3 was 11.36% of the normal level. Conclusion: The compound heterozygous mutation c.480C>G in exon 4 and c.2929C>T in exon 28 of the ITGA2B gene probably underlies Glanzmann thrombasthenia in this pedigree.


Assuntos
Heterozigoto , Integrina alfa2 , Mutação , Linhagem , Trombastenia , Humanos , Integrina alfa2/genética , Trombastenia/genética , Masculino , Feminino , Agregação Plaquetária , Genótipo , Adulto
2.
Int Immunopharmacol ; 137: 112487, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38889513

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most malignant tumor in the world. 5-fluorouracil (5­FU) -based chemotherapy is the first-line chemotherapy scheme for CRC, whereas acquired drug resistance poses a huge obstacle to curing CRC patients and the mechanism is still obscure. Therefore, identification of genes associated with 5­FU chemotherapy and seeking second-line treatment are necessary means to improve survival and prognosis of patients with CRC. METHODS: The Cancer Therapeutics Response Portal (CTRP) database and Genomics of Drug Sensitivity in Cancer (GDSC) database were used to identify CRC-related genes and potential second-line therapies for 5-FU-resistant CRC. The single-cell RNA sequencing data for CRC tissues were obtained from a GEO dataset. The relationship between ITGA2 and 5-FU-resistant was investigated in vitro and in vivo models. RESULTS: ACOX1 and ITGA2 were identified as risk biomarkers associated with 5-FU-resistance. We developed a risk signature, consisting of ACOX1 and ITGA2, that was able to distinguish well between 5-FU-resistance and 5-FU-sensitive. The single-cell sequencing data showed that ITGA2 was mainly enriched in malignant cells. ITGA2 was negatively correlated with IC50 values of most small molecule inhibitors, of which selumetinib had the highest negative correlation. Finally, knocking down ITGA2 can make 5-FU-resistant CRC cells sensitive to 5-FU and combining with selumetinib can improve the therapeutic effect of 5-FU resistant cells. CONCLUSION: In summary, our findings demonstrated the critical role of ITGA2 in enhancing chemotherapy resistance in CRC cells and suggested that selumetinib can restore the sensitivity of chemotherapy-resistant CRC cells to 5-FU by inhibiting ITGA2 expression.


Assuntos
Benzimidazóis , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Fluoruracila , Integrina alfa2 , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/uso terapêutico , Fluoruracila/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Integrina alfa2/genética , Integrina alfa2/metabolismo , Animais , Benzimidazóis/uso terapêutico , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C
3.
BMC Cancer ; 24(1): 559, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702644

RESUMO

In contrast to the decreasing trends in developed countries, the incidence and mortality rates of cervical squamous cell carcinoma in China have increased significantly. The screening and identification of reliable biomarkers and candidate drug targets for cervical squamous cell carcinoma are urgently needed to improve the survival rate and quality of life of patients. In this study, we demonstrated that the expression of MUC1 was greater in neoplastic tissues than in non-neoplastic tissues of the cervix, and cervical squamous cell carcinoma patients with high MUC1 expression had significantly worse overall survival than did those with low MUC1 expression, indicating its potential for early diagnosis of cervical squamous cell carcinoma. Next, we explored the regulatory mechanism of MUC1 in cervical squamous cell carcinoma. MUC1 could upregulate ITGA2 and ITGA3 expression via ERK phosphorylation, promoting the proliferation and metastasis of cervical cancer cells. Further knockdown of ITGA2 and ITGA3 significantly inhibited the tumorigenesis of cervical cancer cells. Moreover, we designed a combination drug regimen comprising MUC1-siRNA and a novel ERK inhibitor in vivo and found that the combination of these drugs achieved better results in animals with xenografts than did MUC1 alone. Overall, we discovered a novel regulatory pathway, MUC1/ERK/ITGA2/3, in cervical squamous cell carcinoma that may serve as a potential biomarker and therapeutic target in the future.


MUC1 is overexpressed in cervical squamous cell carcinoma. MUC1 regulates ERK phosphorylation, and subsequently upregulates ITGA2 and ITGA3 expression to promote tumorigenesis in cervical squamous cell carcinoma. A combination drug regimen targeting MUC1 and ERK achieved better results compared than MUC1 alone.


Assuntos
Carcinoma de Células Escamosas , Proliferação de Células , Integrina alfa2 , Integrina alfa3 , Mucina-1 , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Feminino , Integrina alfa2/metabolismo , Integrina alfa2/genética , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Mucina-1/metabolismo , Mucina-1/genética , Camundongos , Fosforilação , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto , Sistema de Sinalização das MAP Quinases , Camundongos Nus , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
4.
Int Immunopharmacol ; 133: 112101, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640717

RESUMO

Intervertebral disc degeneration (IVDD) is a progressive degenerative disease influenced by various factors. Genkwanin, a known anti-inflammatory flavonoid, has not been explored for its potential in IVDD management. This study aims to investigate the effects and mechanisms of genkwanin on IVDD. In vitro, cell experiments revealed that genkwanin dose-dependently inhibited Interleukin-1ß-induced expression levels of inflammatory factors (Interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2) and degradation metabolic protein (matrix metalloproteinase-13). Concurrently, genkwanin upregulated the expression of synthetic metabolism genes (type II collagen, aggrecan). Moreover, genkwanin effectively reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways. Transcriptome sequencing analysis identified integrin α2 (ITGA2) as a potential target of genkwanin, and silencing ITGA2 reversed the activation of PI3K/AKT pathway induced by Interleukin-1ß. Furthermore, genkwanin alleviated Interleukin-1ß-induced senescence and apoptosis in nucleus pulposus cells. In vivo animal experiments demonstrated that genkwanin mitigated the progression of IVDD in the rat model through imaging and histological examinations. In conclusion, This study suggest that genkwanin inhibits inflammation in nucleus pulposus cells, promotes extracellular matrix remodeling, suppresses cellular senescence and apoptosis, through the ITGA2/PI3K/AKT, NF-κB and MAPK signaling pathways. These findings indicate that genkwanin may be a promising therapeutic candidate for IVDD.


Assuntos
Apoptose , Senescência Celular , Flavonoides , Degeneração do Disco Intervertebral , Transdução de Sinais , Animais , Humanos , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Integrina alfa2/metabolismo , Integrina alfa2/genética , Interleucina-1beta/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Núcleo Pulposo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
5.
Adv Sci (Weinh) ; 11(11): e2305547, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38169150

RESUMO

The extracellular matrix (ECM) undergoes substantial changes during prostate cancer (PCa) progression, thereby regulating PCa growth and invasion. Herein, a meta-analysis of multiple PCa cohorts is performed which revealed that downregulation or genomic loss of ITGA1 and ITGA2 integrin genes is associated with tumor progression and worse prognosis. Genomic deletion of both ITGA1 and ITGA2 activated epithelial-to-mesenchymal transition (EMT) in benign prostate epithelial cells, thereby enhancing their invasive potential in vitro and converting them into tumorigenic cells in vivo. Mechanistically, EMT is induced by enhanced secretion and autocrine activation of TGFß1 and nuclear targeting of YAP1. An unbiased genome-wide co-expression analysis of large PCa cohort datasets identified the transcription factor TEAD1 as a key regulator of ITGA1 and ITGA2 expression in PCa cells while TEAD1 loss phenocopied the dual loss of α1- and α2-integrins in vitro and in vivo. Remarkably, clinical data analysis revealed that TEAD1 downregulation or genomic loss is associated with aggressive PCa and together with low ITGA1 and ITGA2 expression synergistically impacted PCa prognosis and progression. This study thus demonstrated that loss of α1- and α2-integrins, either via deletion/inactivation of the ITGA1/ITGA2 locus or via loss of TEAD1, contributes to PCa progression by inducing TGFß1-driven EMT.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/metabolismo , Próstata/patologia , Linhagem Celular Tumoral , Neoplasias da Próstata/genética , Transdução de Sinais/genética , Integrina alfa2/genética , Integrina alfa2/metabolismo , Fatores de Transcrição de Domínio TEA
6.
Carcinogenesis ; 45(4): 235-246, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38142122

RESUMO

Glioma is the most common malignant brain tumor in adults with a high mortality and recurrence rate. Integrin alpha 2 (ITGA2) is involved in cell adhesion, stem cell regulation, angiogenesis and immune cell function. The role of ITGA2 in glioma malignant invasion remains unknown. The function and clinical relevance of ITGA2 were analysed by bioinformatics databases. The expression of ITGA2 in parent cells and GSCs was detected by flow cytometry and immunofluorescence double staining. The role of ITGA2 on the malignant phenotype of GSCs and epithelial-mesenchymal transition (EMT) was identified by stem cell function assays and Western blot. The effect of ITGA2 on glioma progression in vivo was determined by the intracranial orthotopic xenograft model. Immunohistochemistry, Spearman correlation and Kaplan-Meier were used to analyse the relationship of ITGA2 with clinical features and glioma prognosis. Biological analysis showed that ITGA2 might be related to cell invasion and migration. ITGA2, enriched in GSCs and co-expressed with SOX2, promoted the invasion and migration of GSCs by activating STAT3 phosphorylation and enhancing EMT. ITGA2 knockout suppressed the intracranial orthotopic xenograft growth and prolonged the survival of xenograft mice. In addition, the expression level of ITGA2 was significantly correlated to the grade of malignancy, N-cadherin and Ki67. High expression of ITGA2 indicated a worse prognosis of glioma patients. As a biomarker for the prediction of prognosis, ITGA2 promotes the malignant invasion of GSCs by activating STAT3 phosphorylation and enhancing EMT, leading to tumor recurrence and poor prognosis.


Assuntos
Neoplasias Encefálicas , Glioma , Integrina alfa2 , Células-Tronco Neoplásicas , Fator de Transcrição STAT3 , Adulto , Animais , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Integrina alfa2/genética , Integrina alfa2/metabolismo , Fosforilação , Prognóstico , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Células-Tronco Neoplásicas/metabolismo
7.
Front Immunol ; 14: 1209367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881431

RESUMO

Purpose: Pancreatic cancer is characterized by a grim prognosis and is regarded as one of the most formidable malignancies. Among the genes exhibiting high expression in different tumor tissues, ITGA2 stands out as a promising candidate for cancer therapy. The promotion of cancer in pancreatic cancer is not effective. The objective of this study is to assess the presence of ITGA2, EMT and PD-L1 in pancreatic cancer. Experimental design: We examined the expression of ITGA2, MET, E-cadherin, PD-L1, CD4, and CD8 proteins in 62 pancreatic cancer tissue samples using multi-tissue immunofluorescence and immunohistochemistry techniques. Functional assays, such as the cell migration assay and transwell assay, were used to determine the biological role of ITGA2 in pancreatic cancer. The relationship of ITGA2,EMT and PD-L1 were examined using Western blot analysis and RT-qPCR assay. Results: In our study, we observed the expression of ITGA2, E-cadherin, and PD-L1 in both tumor and stroma tissues of pancreatic cancer. Additionally, a positive correlation between ITGA2, E-cadherin, and PD-L1 in the tumor region (r=0.559, P<0.001 and r=0.511, P<0.001), and PD-L1 in the stroma region (r=0.512, P<0.001).The expression levels of ITGA2, CD4, and CD8 were found to be higher in pancreatic cancer tissues compared to adjacent tissues (P < 0.05). Additionally, ITGA2 was negatively correlated with CD4 and CD8 (r = -0.344, P < 0.005 and r = -0.398, P < 0.005).Furthermore, ITGA2, CD4, and CD8 were found to be correlated with the survival time of patients (P < 0.05). Blocking ITGA2 inhibited the proliferation and invasion ability of pancreatic cancer cells significantly, Additionally, sh-ITGA2 can down-regulate the expression of EMT and PD-L1. Conclusions: We identified a novel mechanism in which ITGA2 plays a crucial role in the regulation of pancreatic cancer growth and invasion. This mechanism involves the upregulation of MET and PD-L1 expression in pancreatic cancer cells. Additionally, we found that increased expression of ITGA2 is associated with a poor prognosis in pancreatic cancer patients. Furthermore, ITGA2 also affects immune regulation in these patients. Therefore, targeting ITGA2 is an effective method to enhance the efficacy of checkpoint immunotherapy and prohibiting tumor growth against pancreatic cancer.


Assuntos
Antígeno B7-H1 , Integrina alfa2 , Neoplasias Pancreáticas , Humanos , Antígeno B7-H1/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linfócitos T CD8-Positivos , Integrina alfa2/genética , Integrina alfa2/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Neoplasias Pancreáticas
8.
Histol Histopathol ; 38(7): 787-796, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36420922

RESUMO

OBJECTIVE: To study the molecular mechanism of DNA methylation-mediated ITGA2 overexpression in thyroid carcinoma (TC). METHODS: First, 450K methylation data and mRNA expression profiles in TCGA-THCA dataset were downloaded from TCGA database. ITGA2 was identified as a methylation-driven gene by using R package "MethylMix". Afterwards, qRT-PCR, western blot and flow cytometry assay were performed to measure ITGA2 expression in TC cells. Methylation-specific PCR was utilized to measure promoter region methylation of ITGA2 in TC cells. Transwell and wound healing assays were carried out to assess cell invasive and migratory properties. RESULTS: Compared with normal cells, TC cells presented significantly increased ITGA2 expression. In addition, ITGA2 expression was controlled by DNA methylation. Hypomethylation of CpG island resulted in an increased ITGA2 expression. Hence, methylation and expression levels of ITGA2 were inversely associated. Moreover, overexpression of ITGA2 and promoter region hypomethylation facilitated cell invasive and migratory abilities in TC. CONCLUSION: These findings authenticated that promoter region hypomethylation of ITGA2 fostered ITGA2 expression as well as TC cell invasion and migration.


Assuntos
Metilação de DNA , Integrina alfa2 , Neoplasias da Glândula Tireoide , Humanos , Linhagem Celular Tumoral , Linhagem Celular , Integrina alfa2/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Regiões Promotoras Genéticas , Movimento Celular , Epigênese Genética
9.
Sci Rep ; 12(1): 22429, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575207

RESUMO

Intrahepatic cholangiocarcinoma (iCCA) arises along the peripheral bile ducts and is often accompanied by a tumor microenvironment (TME) high in extracellular matrices (ECMs). In this study, we aimed to evaluate whether an ECM-rich TME favors iCCA progression. We identified ITGA2, which encodes collagen-binding integrin α2, to be differentially-expressed in iCCA tumors compared with adjacent normal tissues. Elevated ITGA2 is also positively-correlated with its ligand, collagen type I. Increased ITGA2 expression and its role in collagen type I binding was validated in vitro using four iCCA cell lines, compared with a non-cancerous, cholangiocyte cell line. Robust interaction of iCCA cells with collagen type I was abolished by either ITGA2 depletion or integrin α2ß1-selective inhibitor treatment. In a phenotypic study, collagen type I significantly enhances clonogenic growth of HuCCA-1 and HuCCT-1 cells by three and sixfold, respectively. Inhibition of integrin α2 expression or its activity significantly blocks collagen type I-induced colony growth in both cell lines. Taken together, our data provide mechanistic evidence that collagen type I promotes growth of iCCA colonies through integrin α2 suggesting that the collagen type I-integrin α2 axis could be a promising target for cancer prevention and a therapeutic opportunity for this cancer.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Integrina alfa2/genética , Colágeno Tipo I/genética , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Microambiente Tumoral
10.
Cell Oncol (Dordr) ; 45(6): 1421-1434, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36331797

RESUMO

PURPOSE: Integrin alpha 2 (ITGA2, also known as CD49b or VLA-2) is the alpha subunit of a transmembrane receptor for collagens and related proteins. Previously, we found that ITGA2 may regulate immune cell infiltration in pancreatic cancer by inducing PD-L1 expression. As yet, however, whether ITGA2 regulates immune cell infiltration in pancreatic cancer by other mechanisms remains unclear. METHODS: RNA sequencing was performed to identify differentially expressed genes in ITGA2-silenced pancreatic cancer cells. Protein-protein interactions were detected via co-immunoprecipitation. The infiltration level of immune cells was assessed using an immunofluorescence staining assay. RESULTS: We found that ITGA2 can activate the cytosolic DNA-sensing pathway and promote STING expression in pancreatic cancer cells. In addition, we found that ITGA2 induces DNMT1 degradation by disrupting the interaction between DNMT1 and Kindlin2 in pancreatic cancer cells. As a DNA methyltransferase, we found that DNMT1 overexpression induced by ITGA2 silencing significantly up-regulated the methylation level of the STING gene promoter. Finally, ITGA2 silencing combined with DNMT1 inhibitor treatment induced immune cell infiltration in pancreatic cancer. CONCLUSION: Our data indicate that ITGA2 induces STING expression by interacting with DNMT1 and inducing the degradation of DNMT1. ITGA2 silencing combined with DNMT1 inhibitor treatment may be a novel therapeutic strategy for pancreatic cancer.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Integrina alfa2 , Proteínas de Membrana , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Integrina alfa2/genética , Integrina alfa2/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas
11.
Oxid Med Cell Longev ; 2022: 4526022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557984

RESUMO

The purpose of this research was to explore the underlying biological processes causing coronavirus disease 2019- (COVID-19-) related stroke. The Gene Expression Omnibus (GEO) database was utilized to obtain four COVID-19 datasets and two stroke datasets. Thereafter, we identified key modules via weighted gene co-expression network analysis, following which COVID-19- and stroke-related crucial modules were crossed to identify the common genes of COVID-19-related stroke. The common genes were intersected with the stroke-related hub genes screened via Cytoscape software to discover the critical genes associated with COVID-19-related stroke. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for common genes associated with COVID-19-related stroke, and the Reactome database was used to annotate and visualize the pathways involved in the key genes. Two COVID-19-related crucial modules and one stroke-related crucial module were identified. Subsequently, the top five genes were screened as hub genes after visualizing the genes of stroke-related critical module using Cytoscape. By intersecting the COVID-19- and stroke-related crucial modules, 28 common genes for COVID-19-related stroke were identified. ITGA2B and ITGB3 have been further identified as crucial genes of COVID-19-related stroke. Functional enrichment analysis indicated that both ITGA2B and ITGB3 were involved in integrin signaling and the response to elevated platelet cytosolic Ca2+, thus regulating platelet activation, extracellular matrix- (ECM-) receptor interaction, the PI3K-Akt signaling pathway, and hematopoietic cell lineage. Therefore, platelet activation, ECM-receptor interaction, PI3K-Akt signaling pathway, and hematopoietic cell lineage may represent the potential biological processes associated with COVID-19-related stroke, and ITGA2B and ITGB3 may be potential intervention targets for COVID-19-related stroke.


Assuntos
COVID-19 , Redes Reguladoras de Genes , Acidente Vascular Cerebral , COVID-19/complicações , COVID-19/genética , Biologia Computacional , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Integrina alfa2/genética , Integrina beta3/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/virologia
12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(2): 559-564, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35395997

RESUMO

OBJECTIVE: To construct a mouse model of Glanzmann's thrombasthenia (GT) with ITGA2B c.2659 C>T (p.Q887X) nonsense mutation by CRISPR/Cas9 technology, and then further explore the expression and function of glycoprotein αIIbß3 on the surface of platelet membrane. METHODS: The donor oligonucleotide and gRNA vector were designed and synthesized according to the ITGA2B gene sequence. The gRNA and Cas9 mRNA were injected into fertilized eggs with donor oligonucleotide and then sent back to the oviduct of surrogate mouse. Positive F0 mice were confirmed by PCR genotyping and sequence analysis after birth. The F1 generation of heterozygous GT mice were obtained by PCR and sequencing from F0 bred with WT mice, and then homozygous GT mice and WT mice were obtained by mating with each other. The phenotype of the model was then further verified by detecting tail hemorrhage time, saphenous vein bleeding time, platelet aggregation, expression and function of αIIbß3 on the surface of platelet. RESULTS: The bleeding time of GT mice was significantly longer than that of WT mice (P<0.01). Induced by collagen, thrombin, and adenosine diphosphate (ADP), platelet aggregation in GT mice was significantly inhibited (P<0.01, P<0.01, P<0.05). Flow cytometry analysis showed that the expression of αIIbß3 on the platelet surface of GT mice decreased significantly compared with WT mice (P<0.01), and binding amounts of activated platelets to fibrinogen were significantly reduced after thrombin stimulation (P<0.01). The spreading area of platelet on fibrinogen in GT mice was significantly smaller than that in WT mice (P<0.05). CONCLUSION: A GT mouse model with ITGA2B c.2659 C>T (p.Q887X) nonsense mutation has been established successfully by CRISPR/Cas9 technology. The aggregation function of platelet in this model is defective, which is consistent with GT performance.


Assuntos
Códon sem Sentido , Integrina alfa2 , Trombastenia , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Fibrinogênio/genética , Humanos , Integrina alfa2/genética , Camundongos , Oligonucleotídeos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , RNA Guia de Cinetoplastídeos , Trombastenia/diagnóstico , Trombastenia/genética , Trombina/genética
13.
Medicine (Baltimore) ; 101(6): e28814, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35147120

RESUMO

ABSTRACT: Lung cancer remains the worldwide leading cause of cancer-related death. Currently, prognostic biomarkers for the detection and stratification of lung cancer are being investigated for clinical use. The surface protein cluster of differentiation 49b (CD49b) plays an important role in promoting cell proliferation and invasion in different tumor entities and blocking CD49b improved the tumor immune response. Overexpression of CD49b has been associated with unfavorable survival rates in several malignant tumor entities, such as prostate cancer, gastric cancer and colon cancer. Therefore, we aimed to analyze the protein expression of CD49b in patients with different types of lung cancer and additionally to identify the influence of CD49b on clinicopathological characteristics and overall survival.Expression levels of CD49b were retrospective analyzed by immunohistochemistry in 92 cases of pulmonary adenocarcinoma (AC), 85 cases of squamous cell lung carcinoma (SQCLC) and 32 cases of small cell lung cancer (SCLC) and correlated with clinicopathological characteristics and patients' overall survival.A strong expression of CD49b was most seen in SQCLC (78%), followed by AC (48%) and SCLC (9%). All patients combined, strong expression of CD49b correlated significantly with poorer overall survival. However, an increased expression of CD49b correlated significantly with a poorer survival rate only in SQCLC. In AC and SCLC, no significant correlation could be demonstrated in this regard.In our study, CD49b expression was associated with poor overall survival in patients with SQCLC. Accordingly, CD49b could serve as a new prognostic biomarker and, moreover, be a potential new drug target in SQCLC.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Carcinoma de Células Escamosas/metabolismo , Integrina alfa2/metabolismo , Neoplasias Pulmonares/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Diferenciação Celular , Feminino , Humanos , Integrina alfa2/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/mortalidade , Taxa de Sobrevida
14.
Mol Cell Proteomics ; 21(4): 100213, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182768

RESUMO

Primary myelofibrosis (PMF) is a neoplasm prone to leukemic transformation, for which limited treatment is available. Among individuals diagnosed with PMF, the most prevalent mutation is the JAK2V617F somatic point mutation that activates the Janus kinase 2 (JAK2) enzyme. Our earlier reports on hyperactivity of ß1 integrin and enhanced adhesion activity of the α2ß1 complex in JAK2V617F megakaryocytes (MKs) led us to examine the new hypothesis that this mutation leads to posttranslational modification via changes in glycosylation. Samples were derived from immunoprecipitation of MKs obtained from Vav1-hJAK2V617F and WT mice. Immunoprecipitated fractions were separated by SDS-PAGE and analyzed using LC-MS/MS techniques in a bottom-up glycoproteomics workflow. In the immunoprecipitate, glycopeptiforms corresponding to 11 out of the 12 potential N-glycosylation sites of integrin ß1 and to all nine potential glycosylation sites of integrin α2 were observed. Glycopeptiforms were compared across WT and JAK2V617F phenotypes for both integrins. The overall trend observed is that JAK2V617F mutation in PMF MKs leads to changes in ß1 glycosylation; in most cases, it results in an increase in the integrated area of glycopeptiforms. We also observed that in mutated MKs, changes in integrin α2 glycosylation were more substantial than those observed for integrin ß1 glycosylation, a finding that suggests that altered integrin α2 glycosylation may also affect activation. Additionally, the identification of proteins associated to the cytoskeleton that were co-immunoprecipitated with integrins α2 and ß1 demonstrated the potential of the methodology employed in this study to provide some insight, at the peptide level, into the consequences of integrin activation in MKs. The extensive and detailed glycosylation patterns we uncovered provide a basis for future functional studies of each site in control cells as compared to JAK2V617F-mutated cells. Data are available via ProteomeXchange with identifier PXD030550.


Assuntos
Janus Quinase 2/genética , Megacariócitos , Mielofibrose Primária , Animais , Cromatografia Líquida , Integrina alfa2/genética , Integrina alfa2/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Megacariócitos/metabolismo , Camundongos , Mutação , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/genética , Espectrometria de Massas em Tandem
15.
Breast Cancer Res Treat ; 192(1): 89-100, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35098437

RESUMO

PURPOSE: ITGA2 encodes the integrin, α2 which mediates metastatic progression, and is a predictor of poor prognosis and chemoresistance in breast cancer. Decreased ITGA2 promoter methylation is implicated as a driver of increased gene expression in aggressive prostate and pancreatic tumours, however the contribution of altered methylation to ITGA2 expression changes in breast tumours has not been examined. METHODS: ITGA2 gene methylation and gene expression was examined in publicly available breast cancer datasets, and ITGA2 promoter methylation was mapped by targeted bisulphite sequencing analysis in breast tumour cell lines. The expression of a putative regulatory long noncoding RNA (lncRNA) was examined by qPCR and its' functionality was investigated using gene knockdown (antisense oligonucleotides) and over expression in breast cancer cell lines. RESULTS: In breast tumours and breast cancer cell lines the ITGA2 promoter is largely unmethylated, with gene expression variable in tumour subtypes, irrespective of promoter methylation. A novel lncRNA (AC025180.1;ENSG00000249899), named herein I2ALR, was identified at the ITGA2 gene locus, and was variably expressed in breast tumours and breast cancer cell subtypes. I2LAR knockdown resulted in upregulation of ITGA2 gene expression, whilst over-expression of I2ALR resulted in downregulation of ITGA2 mRNA. Further, examination of two downstream targets of ITGA2 associated with breast tumor stemness and metastasis (CCND1 and ACLY), revealed concomitant gene expression changes in response to I2ALR modulation. CONCLUSION: I2ALR represents a novel regulatory molecule targeting ITGA2 expression in breast tumours; a finding of significant and topical interest to the development of therapeutics targeting this integrin.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina alfa2/genética , Integrina alfa2/metabolismo , Integrinas , Masculino , RNA Longo não Codificante/genética
16.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054807

RESUMO

Hemophilia A (HA) is caused by mutations in the coagulation factor VIII (FVIII) gene (F8). Gene therapy is a hopeful cure for HA; however, FVIII inhibitors formation hinders its clinical application. Given that platelets promote coagulation via locally releasing α-granule, FVIII ectopically expressed in platelets has been attempted, with promising results for HA treatment. The B-domain-deleted F8 (BDDF8), driven by a truncated ITGA2B promoter, was targeted at the ribosomal DNA (rDNA) locus of HA patient-specific induced pluripotent stem cells (HA-iPSCs). The F8-modified, human induced pluripotent stem cells (2bF8-iPSCs) were differentiated into induced hematopoietic progenitor cells (iHPCs), induced megakaryocytes (iMKs), and mesenchymal stem cells (iMSCs), and the FVIII expression was detected. The ITGA2B promoter-driven BDDF8 was site-specifically integrated into the rDNA locus of HA-iPSCs. The 2bF8-iPSCs were efficiently differentiated into 2bF8-iHPCs, 2bF8-iMKs, and 2bF8-iMSCs. FVIII was 10.31 ng/106 cells in lysates of 2bF8-iHPCs, compared to 1.56 ng/106 cells in HA-iHPCs, and FVIII was 3.64 ng/106 cells in 2bF8-iMSCs lysates, while 1.31 ng/106 cells in iMSCs with CMV-driven BDDF8. Our results demonstrated a high expression of FVIII in iHPCs and iMSCs derived from hiPSCs with site-specific integration of ITGA2B promoter-driven BDDF8, indicating potential clinical prospects of this platelet-targeted strategy for HA gene therapy.


Assuntos
Expressão Ectópica do Gene , Fator VIII/genética , Células-Tronco Hematopoéticas/metabolismo , Hemofilia A/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Integrina alfa2/genética , Células-Tronco Mesenquimais/metabolismo , Regiões Promotoras Genéticas , Sequência de Bases , DNA Ribossômico/genética , Fator VIII/química , Fator VIII/metabolismo , Marcação de Genes , Loci Gênicos , Vetores Genéticos/metabolismo , Humanos , Integrina alfa2/metabolismo , Megacariócitos/metabolismo , Domínios Proteicos , Deleção de Sequência , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
17.
Bioengineered ; 12(2): 9909-9917, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860147

RESUMO

Colon cancer (CC), which has high morbidity and mortality, can be regulated by microRNAs. This study aimed to investigate the regulatory function of microRNA miR-145-5p in CC cells. Bioinformatics analysis was used to screen key genes in CC. The expression of miR-145-5p, chemokine (C-X-C motif) ligand 1 (CXCL1), and integrin α2 (ITGA2) in CC was confirmed by quantitative reverse transcription polymerase chain reaction and western blotting. After cell transfection, changes in proliferation and migration in CC cells were detected using the cell counting kit-8 (CCK-8), colony formation assay, and wound healing assay. A luciferase assay was conducted to confirm the interactome of miR-145-5p, CXCL1, and ITGA2 in CC cells. Bioinformatics analysis confirmed that CXCL1 and ITGA2 were key genes in CC. After performing several cell functional experiments, the results confirmed that upregulation of miR-145-5p attenuated proliferation and migration of CC cells. Luciferase assay and western blotting confirmed that CXCL1 and ITGA2 were targets of miR-145-5p, and their expression in CC could be suppressed by miR-145-5p. In conclusion, miR-145-5p is a tumor suppressor in CC and can inhibit the expression of CXCL1 and ITGA2.


Assuntos
Movimento Celular , Proliferação de Células , Quimiocina CXCL1/metabolismo , Neoplasias do Colo/metabolismo , Integrina alfa2/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Quimiocina CXCL1/genética , Neoplasias do Colo/genética , Células HCT116 , Humanos , Integrina alfa2/genética , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Neoplásico/genética
18.
Aging (Albany NY) ; 13(15): 19375-19396, 2021 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-34390328

RESUMO

BACKGROUND: BM-MSCs contribute to Helicobacter pylori (H. pylori)-induced gastric cancer, but their mechanism is still unclear. The aim of our study was to investigate the specific role and mechanism of BM-MSCs in H. pylori-induced gastric cancer. MAIN METHODS: Mice received total bone marrow transplants and were then infected with H. pylori. BM-MSCs were extracted and transplanted into the gastric serosal layer of mice chronically infected with H. pylori. Hematoxylin and eosin staining, immunohistochemistry staining and immunofluorescence were performed to detect tumor growth and angiogenesis in mouse stomach tissues. Chicken chorioallantoic membrane assays, xenograft tumor models, and human umbilical vein endothelial cell tube formation assays were used for in vivo and in vitro angiogenesis studies. THBS4 was screened from RNA-seq analysis of gastric tissues of BM-MSCs transplanted into H. pylori-infected mice. RESULTS: BM-MSCs can migrate to the site of chronic mucosal injury and promote tumor angiogenesis associated with chronic H. pylori infection. Migration of BM-MSCs to the site of chronic mucosal injury induced the upregulation of THBS4, which was also evident in human gastric cancer and correlated with increased blood vessel formation and worse outcome. The THBS4/integrin α2 axis promoted angiogenesis by facilitating the PI3K/AKT pathway in endothelial cells. CONCLUSIONS: Our results revealed a novel proangiogenic effect of BM-MSCs in the chronic H. pylori infection microenvironment, primarily mediated by the THBS4/integrin α2 axis, which activates the PI3K/AKT pathway in endothelial cells and eventually induces the formation of new tumor vessels.


Assuntos
Células da Medula Óssea/metabolismo , Medula Óssea/metabolismo , Infecções por Helicobacter/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neoplasias Gástricas/metabolismo , Trombospondinas/metabolismo , Animais , Medula Óssea/microbiologia , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/patogenicidade , Humanos , Integrina alfa2/genética , Integrina alfa2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias Gástricas/microbiologia , Trombospondinas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Genes (Basel) ; 12(5)2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066320

RESUMO

The diagnosis of inherited platelet function disorders (IPFDs) is challenging owing to the unavailability of essential testing methods, including light transmission aggregometry and flow cytometry, in several medical centers in Korea. This study, conducted by the Korean Pediatric Hematology Oncology Group from March 2017 to December 2020, aimed to identify the causative genetic variants of IPFDs in Korean patients using next-generation sequencing (NGS). Targeted exome sequencing, followed by whole-genome sequencing, was performed for diagnosing IPFDs. Of the 11 unrelated patients with suspected IPFDs enrolled in this study, 10 patients and 2 of their family members were diagnosed with Glanzmann thrombasthenia (GT). The variant c.1913+5G>T of ITGB3 was the most common, followed by c.2333A>C (p.Gln778Pro) of ITGB2B. Known variants of GT, including c.917A>C (p.His306Pro) of ITGB3 and c.2975del (p.Glu992Glyfs*), c.257T>C (p.Leu86Pro), and c.1750C>T (p.Arg584*) of ITGA2B, were identified. Four novel variants of GT, c.1451G>T (p.Gly484Val) and c.1595G>T (p.Cys532Phe) of ITGB3 and c.1184G>T (p.Gly395Val) and c.2390del (p.Gly797Valfs*29) of ITGA2B, were revealed. The remaining patient was diagnosed with platelet type bleeding disorder 18 and harbored two novel RASGRP2 variants, c.1479dup (p.Arg494Alafs*54) and c.813+1G>A. We demonstrated the successful application of NGS for the accurate and differential diagnosis of heterogeneous IPFDs.


Assuntos
Integrina alfa2/genética , Integrina beta3/genética , Polimorfismo de Nucleotídeo Único , Trombastenia/genética , Pré-Escolar , Feminino , Frequência do Gene , Humanos , Lactente , Recém-Nascido , Masculino , República da Coreia
20.
BMC Cancer ; 21(1): 571, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006252

RESUMO

BACKGROUND: The mechanism of small-molecule stabilised protein-protein interactions is of growing interest in the pharmacological discovery process. A plethora of different substances including the aromatic sulphonamide E7820 have been identified to act by such a mechanism. The process of E7820 induced CAPERα degradation and the resultant transcriptional down regulation of integrin α2 expression has previously been described for a variety of different cell lines and been made responsible for E7820's antiangiogenic activity. Currently the application of E7820 in the treatment of various malignancies including pancreas carcinoma and breast cancer is being investigated in pre-clinical and clinical trials. It has been shown, that integrin α2 deficiency has beneficial effects on bone homeostasis in mice. To transfer E7820 treatment to bone-related pathologies, as non-healing fractures, osteoporosis and bone cancer might therefore be beneficial. However, at present no data is available on the effect of E7820 on osseous cells or skeletal malignancies. METHODS: Pre-osteoblastic (MC3T3 and Saos-2) cells and endothelial (eEnd2 cells and HUVECs) cells, each of human and murine origin respectively, were investigated. Vitality assay with different concentrations of E7820 were performed. All consecutive experiments were done at a final concentration of 50 ng/ml E7820. The expression and production of integrin α2 and CAPERα were investigated by quantitative real-time PCR and western blotting. Expression of CAPERα splice forms was differentiated by semi-quantitiative reverse transcriptase PCR. RESULTS: Here we present the first data showing that E7820 can increase integrin α2 expression in the pre-osteoblast MC3T3 cell line whilst also reproducing canonical E7820 activity in HUVECs. We show that the aberrant activity of E7820 in MC3T3 cells is likely due to differential activity of CAPERα at the integrin α2 promoter, rather than due to differential CAPERα degradation or differential expression of CAPERα spliceforms. CONCLUSION: The results presented here indicate that E7820 may not be suitable to treat certain malignancies of musculoskeletal origin, due to the increase in integrin α2 expression it may induce. Further investigation of the differential functioning of CAPERα and the integrin α2 promoter in cells of various origin would however be necessary to more clearly differentiate between cell lines that will positively respond to E7820 from those that will not.


Assuntos
Indóis/farmacologia , Integrina alfa2/genética , Proteínas de Ligação a RNA/antagonistas & inibidores , Sulfonamidas/farmacologia , Transativadores/antagonistas & inibidores , Animais , Linhagem Celular , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Integrina alfa2/metabolismo , Ligantes , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteólise/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transativadores/genética , Transativadores/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA