Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 445
Filtrar
1.
J Am Chem Soc ; 146(37): 25490-25500, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39226482

RESUMO

The emergence of lysosome-targeting chimeras (LYTACs), which represents a promising strategy for membrane protein degradation based on lysosomal pathways, has attracted much attention in disease intervention and treatment. However, the expression level of commonly used lysosome-targeting receptors (LTRs) varies in different cell lines, thus limiting the broad applications of LYTACs. To overcome this difficulty, we herein report the development of integrin α3ß1 (ITGA3B1)-facilitated bispecific aptamer chimeras (ITGBACs) as a platform for the degradation of membrane proteins. ITGBACs consist of two aptamers, one targeting ITGA3B1 and another binding to the membrane-associated protein of interest (POI), effectively transporting the POI into lysosomes for degradation. Our findings demonstrate that ITGBACs effectively eliminate pathological membrane proteins, such as CD71 and PTK7, inducing significant cell-cycle arrest and apoptosis and markedly inhibiting tumor growth in tumor-bearing mice models. Therefore, this work provides a novel and versatile membrane protein degradation platform, offering a promising targeted therapy based on tumor-specific LTRs.


Assuntos
Aptâmeros de Nucleotídeos , Receptores da Transferrina , Humanos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Animais , Camundongos , Receptores da Transferrina/metabolismo , Proteínas de Membrana/metabolismo , Proteólise/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/química , Integrina alfa3beta1/metabolismo , Linhagem Celular Tumoral , Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Receptores Proteína Tirosina Quinases
2.
Shock ; 62(2): 165-172, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38813923

RESUMO

ABSTRACT: Background: The recruitment of neutrophils to sites of localized injury or infection is initiated by changes on the surface of endothelial cells located in proximity to tissue damage. Inflammatory mediators, such as TNF-α, increase surface expression of adhesive ligands and receptors on the endothelial surface to which neutrophils tether and adhere. Neutrophils then transit through the activated endothelium to reach sites of tissue injury with little lasting vascular injury. However, in cases of sepsis, the interaction of endothelial cells with highly activated neutrophils can cause damage vascular damage. The identification of molecules that are essential for neutrophil diapedesis may reveal targets of therapeutic opportunity for preservation of endothelial function in the presence of critical illness. We tested the hypothesis that inhibition of neutrophil ß1 integrin very late antigen-3 (VLA-3; α3ß1) and/or inhibition of the tetraspanin (TM4) family member CD151 would protect against neutrophil-mediated loss of endothelial function. Methods: Blood was obtained from septic patients or healthy donors. Neutrophils were purified, and aliquots were treated with/without proinflammatory molecules. Confluent human umbilical vascular endothelial cells were activated with TNF-α. Electric cell impedance sensing was used to determine monolayer resistance over time after the addition of neutrophils that were treated with blocking antibodies against VLA-3 and/or CD151 or isotype controls. Groups (depending on relevancy) were analyzed by Mann-Whitney U test, Wilcoxon test, or repeated-measures one-way ANOVA. Results: Neutrophils from septic patients and neutrophils activated ex vivo reduced endothelial monolayer resistance to a greater extent than neutrophils from healthy donors. Antibody blockade of VLA-3 and/or CD151 significantly reduced activation-associated endothelial damage. Similar findings were demonstrated on fibronectin, collagen I, collagen IV, and laminin, suggesting that neutrophil surface VLA-3 and CD151 are responsible for endothelial damage regardless of substrata and are likely to be operative in all bodily tissues. Conclusion: This report identifies VLA-3 and CD151 on the activated human neutrophil, which are responsible for damage to endothelial function. Targeting these molecules in vivo may demonstrate preservation of organ function during critical illness.


Assuntos
Integrina alfa3beta1 , Neutrófilos , Sepse , Tetraspanina 24 , Humanos , Neutrófilos/metabolismo , Tetraspanina 24/metabolismo , Sepse/metabolismo , Integrina alfa3beta1/metabolismo , Masculino , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Pessoa de Meia-Idade , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo
3.
Am J Physiol Cell Physiol ; 326(5): C1308-C1319, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497112

RESUMO

Integrin receptors for the extracellular matrix activate intracellular signaling pathways that are critical for tissue development, homeostasis, and regeneration/repair, and their loss or dysregulation contributes to many developmental defects and tissue pathologies. This review will focus on tissue remodeling roles for integrin α3ß1, a receptor for laminins found in the basement membranes (BMs) that underlie epithelial cell layers. As a paradigm, we will discuss literature that supports a role for α3ß1 in promoting ability of epidermal keratinocytes to modify their tissue microenvironment during skin development, wound healing, or tumorigenesis. Preclinical and clinical studies have shown that this role depends largely on ability of α3ß1 to govern the keratinocyte's repertoire of secreted proteins, or the "secretome," including 1) matrix proteins and proteases involved in matrix remodeling and 2) paracrine-acting growth factors/cytokines that stimulate other cells with important tissue remodeling functions (e.g., endothelial cells, fibroblasts, inflammatory cells). Moreover, α3ß1 signaling controls gene expression that helps epithelial cells carry out these functions, including genes that encode secreted matrix proteins, proteases, growth factors, or cytokines. We will review what is known about α3ß1-dependent gene regulation through both transcription and posttranscriptional mRNA stability. Regarding the latter, we will discuss examples of α3ß1-dependent alternative splicing (AS) or alternative polyadenylation (APA) that prevents inclusion of cis-acting mRNA sequences that would otherwise target the transcript for degradation via nonsense-mediated decay or destabilizing AU-rich elements (AREs) in the 3'-untranslated region (3'-UTR). Finally, we will discuss prospects and anticipated challenges of exploiting α3ß1 as a clinical target for the treatment of cancer or wound healing.


Assuntos
Células Endoteliais , Integrina alfa3beta1 , Integrina alfa3beta1/genética , Integrina alfa3beta1/metabolismo , Células Endoteliais/metabolismo , Queratinócitos/metabolismo , Peptídeo Hidrolases/metabolismo , Citocinas/metabolismo , Adesão Celular
4.
Med ; 5(4): 348-367.e7, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38521069

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) cancer cells specifically produce abnormal oncogenic collagen to bind with integrin α3ß1 receptor and activate the downstream focal adhesion kinase (FAK), protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) signaling pathway. Collectively, this promotes immunosuppression and tumor proliferation and restricts the response rate of clinical cancer immunotherapies. METHODS: Here, by leveraging the hypoxia tropism and excellent motility of the probiotic Escherichia coli strain Nissle 1917 (ECN), we developed nanodrug-bacteria conjugates to penetrate the extracellular matrix (ECM) and shuttle the surface-conjugated protein cages composed of collagenases and anti-programmed death-ligand 1 (PD-L1) antibodies to PDAC tumor parenchyma. FINDINGS: We found the oncogenic collagen expression in human pancreatic cancer patients and demonstrated its interaction with integrin α3ß1. We proved that reactive oxygen species (ROS) in the microenvironment of PDAC triggered collagenase release to degrade oncogenic collagen and block integrin α3ß1-FAK signaling pathway, thus overcoming the immunosuppression and synergizing with anti-PD-L1 immunotherapy. CONCLUSIONS: Collectively, our study highlights the significance of oncogenic collagen in PDAC immunotherapy, and consequently, we developed a therapeutic strategy that can deplete oncogenic collagen to synergize with immune checkpoint blockade for enhanced PDAC treatment efficacy. FUNDING: This work was supported by the University of Wisconsin Carbone Cancer Center Research Collaborative and Pancreas Cancer Research Task Force, UWCCC Transdisciplinary Cancer Immunology-Immunotherapy Pilot Project, and the start-up package from the University of Wisconsin-Madison (to Q.H.).


Assuntos
Carcinoma Ductal Pancreático , Nanopartículas , Neoplasias Pancreáticas , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Integrina alfa3beta1 , Projetos Piloto , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Colágeno , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Microambiente Tumoral
5.
Toxins (Basel) ; 15(12)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38133204

RESUMO

Podocyte dysfunction plays a crucial role in renal injury and is identified as a key contributor to proteinuria in Fabry disease (FD), primarily impacting glomerular filtration function (GFF). The α3ß1 integrins are important for podocyte adhesion to the glomerular basement membrane, and disturbances in these integrins can lead to podocyte injury. Therefore, this study aimed to assess the effects of chloroquine (CQ) on podocytes, as this drug can be used to obtain an in vitro condition analogous to the FD. Murine podocytes were employed in our experiments. The results revealed a dose-dependent reduction in cell viability. CQ at a sub-lethal concentration (1.0 µg/mL) induced lysosomal accumulation significantly (p < 0.0001). Morphological changes were evident through scanning electron microscopy and immunofluorescence, highlighting alterations in F-actin and nucleus morphology. No significant changes were observed in the gene expression of α3ß1 integrins via RT-qPCR. Protein expression of α3 integrin was evaluated with Western Blotting and immunofluorescence, demonstrating its lower detection in podocytes exposed to CQ. Our findings propose a novel in vitro model for exploring secondary Fabry nephropathy, indicating a modulation of α3ß1 integrin and morphological alterations in podocytes under the influence of CQ.


Assuntos
Doença de Fabry , Integrina alfa3beta1 , Nefropatias , Podócitos , Animais , Camundongos , Doença de Fabry/metabolismo , Integrina alfa3beta1/genética , Integrina alfa3beta1/metabolismo , Nefropatias/metabolismo , Podócitos/metabolismo , Insuficiência Renal
6.
J Extracell Vesicles ; 12(4): e12323, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37073802

RESUMO

Extracellular vesicles (EVs) influence a host of normal and pathophysiological processes in vivo. Compared to soluble mediators, EVs can traffic a wide range of proteins on their surface including extracellular matrix (ECM) binding proteins, and their large size (∼30-150 nm) limits diffusion. We isolated EVs from the MCF10 series-a model human cell line of breast cancer progression-and demonstrated increasing presence of laminin-binding integrins α3ß1 and α6ß1 on the EVs as the malignant potential of the MCF10 cells increased. Transport of the EVs within a microfluidic device under controlled physiological interstitial flow (0.15-0.75 µm/s) demonstrated that convection was the dominant mechanism of transport. Binding of the EVs to the ECM enhanced the spatial concentration and gradient, which was mitigated by blocking integrins α3ß1 and α6ß1. Our studies demonstrate that convection and ECM binding are the dominant mechanisms controlling EV interstitial transport and should be leveraged in nanotherapeutic design.


Assuntos
Vesículas Extracelulares , Laminina , Humanos , Laminina/metabolismo , Convecção , Integrina alfa6beta1/metabolismo , Vesículas Extracelulares/metabolismo , Integrina alfa3beta1/metabolismo , Matriz Extracelular/metabolismo
7.
Eur J Pharm Sci ; 180: 106336, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403717

RESUMO

Integrins are cell surface receptors involved in multiple functions vital for cellular proliferation. Various tumor cells overexpress αß-integrins, making them ideal biomarkers for diagnostic imaging and tumor-targeted drug delivery. LXY30 is a peptide that can specifically recognize and interact with the integrin α3ß1, a molecule overexpressed in breast, ovarian and colorectal cancer. Hepatitis E virus nanoparticles (HEVNPs) are virus-like particles that have been investigated as drug delivery agents for the targeted delivery of nucleic acids and small proteins. HEVNPs can be a theranostic platform for monitoring and evaluating tumor-targeted therapies if tagged with a suitable diagnostic marker. Herein, we describe the radiolabeling and biological evaluation of integrin α3ß1-targeted HEVNPs. HEVNPs were conjugated with DOTA and radiolabeled with gallium-68 (t1/2 = 67.7 min), a short-lived positron emitter used in positron emission tomography (PET). The synthesized [68Ga]Ga-DOTA-HEVNPs were used to evaluate the efficacy of conjugated LXY30 peptide to improve HEVNPs binding and internalization to integrin α3ß1 expressing human colorectal HCT 116 cells. In vivo tumor accumulation of [68Ga]Ga-DOTA-HEVNP-LXY30 was evaluated in HCT 116 colorectal tumor-bearing mice. [68Ga]Ga-DOTA-HEVNP-LXY30 and non-targeted [68Ga]Ga-DOTA-HEVNP were radiolabeled with radiochemical yields (RCY) of 67.9 ± 3.3% and 73.7 ± 9.8%, respectively. [68Ga]Ga-DOTA-HEVNP-LXY30 exhibited significantly higher internalization in HCT 116 cells than the non-targeted [68Ga]Ga-DOTA-HEVNPs (21.0 ± 0.7% vs. 10.5 ± 0.3% at 3 h, ****P<0.0001). After intravenous administration to mice, accumulation of [68Ga]Ga-DOTA-HEVNP-LXY30 to HCT 116 xenograft tumors was at its highest rate of 0.8 ± 0.4%ID/g at 60 min. [68Ga]Ga-DOTA-HEVNP-LXY30 accumulated mainly in the liver and spleen (39.8 ± 13.0%%ID/g and 24.6 ± 24.1%ID/g, respectively). Despite the low targeting efficiency in vivo, we demonstrated that [68Ga]Ga-DOTA-HEVNP is a promising diagnostic platform for quantitative analysis of HEVNP distribution in vivo. This nanosystem can be utilized in future studies assessing the success of further engineered HEVNP structures with optimized targeting efficiency in vivo.


Assuntos
Neoplasias Colorretais , Radioisótopos de Gálio , Integrina alfa3beta1 , Compostos Radiofarmacêuticos , Animais , Humanos , Camundongos , Neoplasias Colorretais/diagnóstico por imagem , Integrina alfa3beta1/metabolismo , Peptídeos/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Células HCT116
8.
Oncogene ; 41(48): 5176-5185, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36271029

RESUMO

Tissue Factor (TF) is the initiator of blood coagulation but also functions as a signal transduction receptor. TF expression in breast cancer is associated with higher tumor grade, metastasis and poor survival. The role of TF signaling on the early phases of metastasis has never been addressed. Here, we show an association between TF expression and metastasis as well as cancer stemness in 574 breast cancer patients. In preclinical models, blockade of TF signaling inhibited metastasis tenfold independent of primary tumor growth. TF blockade caused a reduction in epithelial-to-mesenchymal-transition, cancer stemness and expression of the pro-metastatic markers Slug and SOX9 in several breast cancer cell lines and in ex vivo cultured tumor cells. Mechanistically, TF forms a complex with ß1-integrin leading to inactivation of ß1-integrin. Inhibition of TF signaling induces a shift in TF-binding from α3ß1-integrin to α6ß4 and dictates FAK recruitment, leading to reduced epithelial-to-mesenchymal-transition and tumor cell differentiation. In conclusion, TF signaling inhibition leads to reduced pro-metastatic transcriptional programs, and a subsequent integrin ß1 and ß4-dependent reduction in metastasic dissemination.


Assuntos
Neoplasias da Mama , Tromboplastina , Humanos , Feminino , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Integrina beta1/genética , Integrina beta1/metabolismo , Integrina alfa3beta1
9.
Cancer Cell ; 40(8): 818-834.e9, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35868307

RESUMO

In contrast to normal type I collagen (Col1) heterotrimer (α1/α2/α1) produced by fibroblasts, pancreatic cancer cells specifically produce unique Col1 homotrimer (α1/α1/α1). Col1 homotrimer results from epigenetic suppression of the Col1a2 gene and promotes oncogenic signaling, cancer cell proliferation, tumor organoid formation, and growth via α3ß1 integrin on cancer cells, associated with tumor microbiome enriched in anaerobic Bacteroidales in hypoxic and immunosuppressive tumors. Deletion of Col1 homotrimers increases overall survival of mice with pancreatic ductal adenocarcinoma (PDAC), associated with reprograming of the tumor microbiome with increased microaerophilic Campylobacterales, which can be reversed with broad-spectrum antibiotics. Deletion of Col1 homotrimers enhances T cell infiltration and enables efficacy of anti-PD-1 immunotherapy. This study identifies the functional impact of Col1 homotrimers on tumor microbiome and tumor immunity, implicating Col1 homotrimer-α3ß1 integrin signaling axis as a cancer-specific therapeutic target.


Assuntos
Carcinoma Ductal Pancreático , Microbiota , Neoplasias Pancreáticas , Animais , Carcinogênese , Carcinoma Ductal Pancreático/genética , Colágeno , Colágeno Tipo I , Integrina alfa3beta1 , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
10.
Nat Commun ; 13(1): 4268, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879332

RESUMO

Therapeutic targeting of angiogenesis in glioblastoma has yielded mixed outcomes. Investigation of tumor-associated angiogenesis has focused on the factors that stimulate the sprouting, migration, and hyperproliferation of the endothelial cells. However, little is known regarding the processes underlying the formation of the tumor-associated vessels. To address this issue, we investigated vessel formation in CD31+ cells isolated from human glioblastoma tumors. The results indicate that overexpression of integrin α3ß1 plays a central role in the promotion of tube formation in the tumor-associated endothelial cells in glioblastoma. Blocking α3ß1 function reduced sprout and tube formation in the tumor-associated endothelial cells and vessel density in organotypic cultures of glioblastoma. The data further suggest a mechanistic model in which integrin α3ß1-promoted calcium influx stimulates macropinocytosis and directed maturation of the macropinosomes in a manner that promotes lysosomal exocytosis during nascent lumen formation. Altogether, our data indicate that integrin α3ß1 may be a therapeutic target on the glioblastoma vasculature.


Assuntos
Glioblastoma , Integrina alfa3beta1 , Cálcio , Movimento Celular , Células Endoteliais/patologia , Exocitose , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Lisossomos/patologia , Neovascularização Patológica/patologia
11.
Cells ; 11(5)2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269439

RESUMO

Endothelial cells engage extracellular matrix and basement membrane components through integrin-mediated adhesion to promote angiogenesis. Angiogenesis involves the sprouting of endothelial cells from pre-existing vessels, their migration into surrounding tissue, the upregulation of angiogenesis-associated genes, and the formation of new endothelial tubes. To determine whether the endothelial laminin-binding integrins, α6ß4, and α3ß1 contribute to these processes, we employed RNAi technology in organotypic angiogenesis assays, as well in migration assays, in vitro. The endothelial depletion of either α6ß4 or α3ß1 inhibited endothelial sprouting, indicating that these integrins have non-redundant roles in this process. Interestingly, these phenotypes were accompanied by overlapping and distinct changes in the expression of angiogenesis-associated genes. Lastly, depletion of α6ß4, but not α3ß1, inhibited migration. Taken together, these results suggest that laminin-binding integrins regulate processes associated with angiogenesis by distinct and overlapping mechanisms.


Assuntos
Integrina alfa6beta4 , Laminina , Adesão Celular/fisiologia , Células Endoteliais/metabolismo , Integrina alfa3beta1/genética , Integrina alfa3beta1/metabolismo , Integrina alfa6beta4/genética , Integrina alfa6beta4/metabolismo , Laminina/metabolismo
12.
Pediatr Nephrol ; 37(12): 3105-3115, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35278129

RESUMO

BACKGROUND: CD151 is a cell-surface molecule of the tetraspanin family. Its lateral interaction with laminin-binding integrin ɑ3ß1 is important for podocyte adhesion to the glomerular basement membrane (GBM). Deletion of Cd151 in mice induces glomerular dysfunction, with proteinuria and associated focal glomerulosclerosis, disorganisation of GBM and tubular cystic dilation. Despite this, CD151 is not routinely screened for in patients with nephrotic-range proteinuria. We aimed to better understand the relevance of CD151 in human kidney disease. METHODS: Next-generation sequencing (NGS) was used to detect the variant in CD151. Electron and light microscopy were used to visualise the filtration barrier in the patient kidney biopsy, and immunoreactivity of patient red blood cells to anti-CD151/MER2 antibodies was performed. Further validation of the CD151 variant as disease-causing was performed in zebrafish using CRISPR-Cas9. RESULTS: We report a young child with nail dystrophy and persistent urinary tract infections who was incidentally found to have nephrotic-range proteinuria. Through targeted NGS, a novel, homozygous truncating variant was identified in CD151, a gene rarely reported in patients with nephrotic syndrome. Electron microscopy imaging of patient kidney tissue showed thickening of GBM and podocyte effacement. Immunofluorescence of patient kidney tissue demonstrated that CD151 was significantly reduced, and we did not detect immunoreactivity to CD151/MER2 on patient red blood cells. CRISPR-Cas9 depletion of cd151 in zebrafish caused proteinuria, which was rescued by injection of wild-type CD151 mRNA, but not CD151 mRNA containing the variant sequence. CONCLUSIONS: Our results indicate that a novel variant in CD151 is associated with nephrotic-range proteinuria and microscopic haematuria and provides further evidence for a role of CD151 in glomerular disease. Our work highlights a functional testing pipeline for future analysis of patient genetic variants. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Nefropatias , Podócitos , Animais , Criança , Humanos , Membrana Basal Glomerular/patologia , Integrina alfa3beta1 , Nefropatias/genética , Nefropatias/complicações , Laminina/genética , Podócitos/patologia , Proteinúria/etiologia , RNA Mensageiro , Tetraspanina 24/genética , Peixe-Zebra
13.
Biomed Khim ; 68(1): 39-46, 2022 Jan.
Artigo em Russo | MEDLINE | ID: mdl-35221295

RESUMO

Using a model of the human SK-Mel-147 melanoma cell line, it was shown that blocking the expression of integrin α3ß1 by transduction of cells with α3-specific shRNA did not affect their proliferation, but sharply increased the proportion of SA-ß-Gal-positive cells, a phenotypic feature of cell senescence. These findings were accompanied by a significant increase in the activity of the Akt and mTOR protein kinases and the expression of p53 and p21 oncosupressors. Pharmacological inhibition of mTORC1 reduced the number SA-ß-Gal-positive cells in the SK-Mel-147 cell population depleted of α3ß1. Based on our recent data on a non-canonical function of Akt isomers in the regulation of SK-Mel-147 cell senescence caused by deficiency of α2ß1 receptor, we investigated the role of Akt isomers in senescence induced by the α3ß1 knockdown. It appeared that in the cell population with downregulated α3ß1, inhibition of Akt1 reduced the number SA-ß-Gal positive cells to the level of control cell population, while inhibition of Akt2 had no visible effect. Our results demonstrate that the laminin-specific integrin α3ß1, like the collagen-specific receptor α2ß1, is involved in tumor cell protection from senescence, and senescence induced by α3ß1 depletion, like that caused by α2ß1 deficiency, is based on a signaling mechanism employing a non-canonical function of the Akt1 isoform.


Assuntos
Integrina alfa3beta1 , Melanoma , Senescência Celular/genética , Humanos , Integrina alfa3beta1/metabolismo , Melanoma/genética , Melanoma/metabolismo , Transdução de Sinais
14.
Cell Mol Life Sci ; 79(2): 88, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35067832

RESUMO

Junctional adhesion molecule (JAM)-A is a cell adhesion receptor localized at epithelial cell-cell contacts with enrichment at the tight junctions. Its role during cell-cell contact formation and epithelial barrier formation has intensively been studied. In contrast, its role during collective cell migration is largely unexplored. Here, we show that JAM-A regulates collective cell migration of polarized epithelial cells. Depletion of JAM-A in MDCK cells enhances the motility of singly migrating cells but reduces cell motility of cells embedded in a collective by impairing the dynamics of cryptic lamellipodia formation. This activity of JAM-A is observed in cells grown on laminin and collagen-I but not on fibronectin or vitronectin. Accordingly, we find that JAM-A exists in a complex with the laminin- and collagen-I-binding α3ß1 integrin. We also find that JAM-A interacts with tetraspanins CD151 and CD9, which both interact with α3ß1 integrin and regulate α3ß1 integrin activity in different contexts. Mapping experiments indicate that JAM-A associates with α3ß1 integrin and tetraspanins CD151 and CD9 through its extracellular domain. Similar to depletion of JAM-A, depletion of either α3ß1 integrin or tetraspanins CD151 and CD9 in MDCK cells slows down collective cell migration. Our findings suggest that JAM-A exists with α3ß1 integrin and tetraspanins CD151 and CD9 in a functional complex to regulate collective cell migration of polarized epithelial cells.


Assuntos
Moléculas de Adesão Celular/metabolismo , Integrina alfa3beta1/metabolismo , Tetraspanina 24/metabolismo , Tetraspanina 29/metabolismo , Animais , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Cães , Doxorrubicina/farmacologia , Humanos , Molécula A de Adesão Juncional/antagonistas & inibidores , Molécula A de Adesão Juncional/genética , Células Madin Darby de Rim Canino , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo
15.
J Cell Sci ; 134(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34841431

RESUMO

The main laminin-binding integrins α3ß1, α6ß1 and α6ß4 are co-expressed in the developing kidney collecting duct system. We previously showed that deleting the integrin α3 or α6 subunit in the ureteric bud, which gives rise to the kidney collecting system, caused either a mild or no branching morphogenesis phenotype, respectively. To determine whether these two integrin subunits cooperate in kidney collecting duct development, we deleted α3 and α6 in the developing ureteric bud. The collecting system of the double knockout phenocopied the α3 integrin conditional knockout. However, with age, the mice developed severe inflammation and fibrosis around the collecting ducts, resulting in kidney failure. Integrin α3α6-null collecting duct epithelial cells showed increased secretion of pro-inflammatory cytokines and displayed mesenchymal characteristics, causing loss of barrier function. These features resulted from increased nuclear factor kappa-B (NF-κB) activity, which regulated the Snail and Slug (also known as Snai1 and Snai2, respectively) transcription factors and their downstream targets. These data suggest that laminin-binding integrins play a key role in the maintenance of kidney tubule epithelial cell polarity and decrease pro-inflammatory cytokine secretion by regulating NF-κB-dependent signaling.


Assuntos
Integrinas , Túbulos Renais Coletores , Animais , Células Epiteliais , Inflamação/genética , Integrina alfa3beta1 , Integrinas/genética , Laminina/genética , Camundongos , NF-kappa B/genética
16.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199232

RESUMO

Non-muscle-invasive bladder cancer is the most common form of bladder cancer. The main problem in managing bladder tumors is the high recurrence after the transurethral resection of bladder tumors (TURBT). Our study aimed to examine the fate of intravesically applied cancer cells as the implantation of cancer cells after TURBT is thought to be a cause of tumor recurrence. We established an orthotopic mouse bladder tumor model with MB49-GFP cancer cells and traced them during the first three days to define their location and contacts with normal urothelial cells. Data were obtained by Western blot, immunolabeling, and light and electron microscopy. We showed that within the first two hours, applied cancer cells adhered to the traumatized epithelium by cell projections containing α3ß1 integrin on their tips. Cancer cells then migrated through the epithelium and on day 3, they reached the basal lamina or even penetrated it. In established bladder tumors, E-cadherin and desmoplakin 1/2 were shown as feasible immunohistochemical markers of tumor margins based on the immunolabeling of various junctional proteins. Altogether, these results for the first time illustrate cancer cell implantation in vivo mimicking cellular events of tumor recurrence in bladder cancer patients.


Assuntos
Epitélio/patologia , Recidiva Local de Neoplasia/patologia , Neoplasias da Bexiga Urinária/patologia , Bexiga Urinária/patologia , Animais , Caderinas/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Feminino , Integrina alfa3beta1/metabolismo , Junções Intercelulares/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Bexiga Urinária/ultraestrutura , Neoplasias da Bexiga Urinária/ultraestrutura , Urotélio/patologia , Urotélio/ultraestrutura
17.
PLoS One ; 16(7): e0254714, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270616

RESUMO

Integrin receptors for the extracellular matrix play critical roles at all stages of carcinogenesis, including tumor growth, tumor progression and metastasis. The laminin-binding integrin α3ß1 is expressed in all epithelial tissues where it has important roles in cell survival, migration, proliferation, and gene expression programs during normal and pathological tissue remodeling. α3ß1 signaling and adhesion functions promote tumor growth and metastasis in a number of different types of cancer cells. Previously, we used RNA interference (RNAi) technology to suppress the expression of the ITGA3 gene (encoding the α3 subunit) in the triple-negative breast cancer cell line, MDA-MB-231, thereby generating variants of this line with reduced expression of integrin α3ß1. This approach revealed that α3ß1 promotes pro-tumorigenic functions such as cell invasion, lung metastasis, and gene regulation. In the current study, we used CRISPR technology to knock out the ITGA3 gene in MDA-MB-231 cells, thereby ablating expression of integrin α3ß1 entirely. RNA-seq analysis revealed that while the global transcriptome was altered substantially by RNAi-mediated suppression of α3ß1, it was largely unaffected following CRISPR-mediated ablation of α3ß1. Moreover, restoring α3ß1 to the latter cells through inducible expression of α3 cDNA failed to alter gene expression substantially, suggesting that use of CRISPR to abolish α3ß1 led to a decoupling of the integrin from its ability to regulate the transcriptome. Interestingly, both cell invasion in vitro and metastatic colonization in vivo were reduced when α3ß1 was abolished using CRISPR, as we observed previously using RNAi to suppress α3ß1. Taken together, our results show that pro-invasive/pro-metastatic roles for α3ß1 are not dependent on its ability to regulate the transcriptome. Moreover, our finding that use of RNAi versus CRISPR to target α3ß1 produced distinct effects on gene expression underlines the importance of using multiple approaches to obtain a complete picture of an integrin's functions in cancer cells.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Integrina alfa3beta1/genética , Neoplasias Pulmonares/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Conjuntos de Dados como Assunto , Feminino , Edição de Genes , Humanos , Neoplasias Pulmonares/secundário , Camundongos , Invasividade Neoplásica/genética , Interferência de RNA , RNA-Seq , Transcriptoma/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Exp Clin Cancer Res ; 40(1): 192, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108040

RESUMO

BACKGROUND: Tetraspanins CD151, a transmembrane 4 superfamily protein, has been identified participating in the initiation of a variety of cancers. However, the precise function of CD151 in non-small cell lung cancer (NSCLC) remains unclear. Here, we addressed the pro-tumoral role of CD151 in NSCLC by targeting EGFR/ErbB2 which favors tumor proliferation, migration and invasion. METHODS: First, the mRNA expression levels of CD151 in NSCLC tissues and cell lines were measured by RT-PCR. Meanwhile, CD151 and its associated proteins were analyzed by western blotting. The expression levels of CD151 in NSCLC samples and its paired adjacent lung tissues were then verified by Immunohistochemistry. The protein interactions are evaluated by co-immunoprecipitation. Flow cytometry was applied to cell cycle analysis. CCK-8, EdU Incorporation, and clonogenic assays were used to analyze cell viability. Wound healing, transwell migration, and matrigel invasion assays were utilized to assess the motility of tumor cells. To investigate the role of CD151 in vivo, lung carcinoma xenograft mouse model was applied. RESULTS: High CD151 expression was identified in NSCLC tissues and cell lines, and its high expression was significantly associated with poor prognosis of NSCLC patients. Further, knockdown of CD151 in vitro inhibited tumor proliferation, migration, and invasion. Besides, inoculation of nude mice with CD151-overexpressing tumor cells exhibited substantial tumor proliferation compared to that in control mice which inoculated with vector-transfected tumor cells. Noteworthy, we found that overexpression of CD151 conferred cell migration and invasion by interacting with integrins. We next sought to demonstrate that CD151 regulated downstream signaling pathways via activation of EGFR/ErbB2 in NSCLC cells. Therefore, we infer that CD151 probably affects the sensitivity of NSCLC in response to anti-cancer drugs. CONCLUSIONS: Based on these results, we demonstrated a new mechanism of CD151-mediated tumor progression by targeting EGFR/ErbB2 signaling pathway, by which CD151 promotes NSCLC proliferation, migration, and invasion, which may considered as a potential target of NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Integrina alfa3beta1/metabolismo , Neoplasias Pulmonares/metabolismo , Tetraspanina 24/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais , Transfecção
19.
J Invest Dermatol ; 141(4): 713-716, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33752808

RESUMO

The epidermal integrin α3ß1 promotes skin tumorigenesis in experimental models; yet, the underlying molecular mechanisms remain mostly unclear. In their article, Ramovs et al. (2020a) identify two spatially separated α3ß1-dependent signaling branches fostering skin tumor outgrowth. In basal keratinocytes, α3ß1/laminin (LN)-332 drives FAK/Src activation, whereas in suprabasal layers, junctional α3ß1 and the tetraspanin CD151 mediate signal transducer and protein kinase B (Akt)‒dependent survival that is independent of LN-332 binding.


Assuntos
Integrina alfa3 , Laminina , Adesão Celular , Integrina alfa3beta1 , Tetraspanina 24
20.
J Invest Dermatol ; 141(4): 732-741.e6, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32805217

RESUMO

Integrin α3ß1 plays a crucial role in tumor formation in the two-stage chemical carcinogenesis model (DMBA and TPA treatment). However, the mechanisms whereby the expression of α3ß1 influences key oncogenic drivers of this established model are not known yet. Using an in vivo mouse model with epidermal deletion of α3ß1 and in vitro Matrigel cultures of transformed keratinocytes, we demonstrate the central role of α3ß1 in promoting the activation of several protumorigenic signaling pathways during the initiation of DMBA/TPA‒driven tumorigenesis. In transformed keratinocytes, α3ß1-mediated focal adhesion kinase/Src activation leads to in vitro growth of spheroids and to strong Akt and STAT 3 activation when the α3ß1-binding partner tetraspanin CD151 is present to stabilize cell‒cell adhesion and promote Smad2 phosphorylation. Remarkably, α3ß1 and CD151 can support Akt and STAT 3 activity independently of α3ß1 ligation by laminin-332 and as such control the essential survival signals required for suprabasal keratin-10 expression during keratinocyte differentiation. These data demonstrate that α3ß1 together with CD151 regulate the signaling pathways that control the survival of differentiating keratinocytes and provide a mechanistic understanding of the essential role of α3ß1 in early stages of skin cancer development.


Assuntos
Transformação Celular Neoplásica/patologia , Integrina alfa3beta1/metabolismo , Queratinócitos/patologia , Neoplasias Experimentais/patologia , Neoplasias Cutâneas/patologia , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Carcinógenos/toxicidade , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/induzido quimicamente , Epiderme/efeitos dos fármacos , Epiderme/patologia , Humanos , Integrina alfa3beta1/genética , Queratinócitos/efeitos dos fármacos , Camundongos , Neoplasias Experimentais/induzido quimicamente , Transdução de Sinais , Neoplasias Cutâneas/induzido quimicamente , Esferoides Celulares , Acetato de Tetradecanoilforbol/toxicidade , Tetraspanina 24/metabolismo , Calinina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA