Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
1.
Biomed Res ; 45(3): 115-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38839354

RESUMO

Mixed lymphocyte culture under the blockade of CD80/CD86-CD28 co-stimulation induces anergic (completely hyporesponsive) T cells with immune suppressive function (inducible suppressing T cells: iTS cells). Previously, iTS cell therapy has demonstrated outstanding benefits in clinical trials for organ transplantation. Here, we examined whether peptide antigen-specific iTS cells are inducible. DO 11.10 iTS cells were obtained from splenocytes of BALB/c DO 11.10 mice by stimulation with OVA peptide and antagonistic anti-CD80/CD86 mAbs. When DO 11.10 iTS or Foxp3- DO 11.10 iTS cells were stimulated with OVA, these cells produced IL-13, but not IL-4. DO 11.10 iTS cells decreased IL-4 and increased IL-13 production from OVA-stimulated naïve DO 11.10 splenocytes. When Foxp3+ DO 11.10 iTS cells were prepared, these cells significantly inhibited the production of IL-4 and IL-13 compared with freshly isolated Foxp3+ DO 11.10 T cells. Moreover, an increase in the population expressing OX40, ICOS, and 4-1BB suggested activation of Foxp3+ DO 11.10 iTS cells. Thus, blockade of CD80/CD86-CD28 co-stimulation during peptide antigen stimulation augments the inhibitory function of Foxp3+ regulatory T cells, and does not induce anergic Foxp3- conventional T cells. Peptide-specific Foxp3+ regulatory iTS cells could be useful for the treatment of allergic and autoimmune diseases without adverse effects.


Assuntos
Antígeno B7-1 , Antígeno B7-2 , Antígenos CD28 , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Camundongos , Antígeno B7-1/metabolismo , Antígeno B7-1/imunologia , Antígeno B7-2/metabolismo , Antígeno B7-2/imunologia , Camundongos Endogâmicos BALB C , Fatores de Transcrição Forkhead/metabolismo , Peptídeos/farmacologia , Peptídeos/imunologia , Ativação Linfocitária/imunologia , Interleucina-4/metabolismo , Interleucina-4/imunologia , Interleucina-13/metabolismo , Interleucina-13/imunologia , Ovalbumina/imunologia , Baço/imunologia , Baço/citologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/imunologia
2.
Front Immunol ; 15: 1356298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690264

RESUMO

Chronic rhinosinusitis with nasal polyps (CRSwNP) is predominantly a type 2 inflammatory disease associated with type 2 (T2) cell responses and epithelial barrier, mucociliary, and olfactory dysfunction. The inflammatory cytokines interleukin (IL)-4, IL-13, and IL-5 are key mediators driving and perpetuating type 2 inflammation. The inflammatory responses driven by these cytokines include the recruitment and activation of eosinophils, basophils, mast cells, goblet cells, M2 macrophages, and B cells. The activation of these immune cells results in a range of pathologic effects including immunoglobulin E production, an increase in the number of smooth muscle cells within the nasal mucosa and a reduction in their contractility, increased deposition of fibrinogen, mucus hyperproduction, and local edema. The cytokine-driven structural changes include nasal polyp formation and nasal epithelial tissue remodeling, which perpetuate barrier dysfunction. Type 2 inflammation may also alter the availability or function of olfactory sensory neurons contributing to loss of sense of smell. Targeting these key cytokine pathways has emerged as an effective approach for the treatment of type 2 inflammatory airway diseases, and a number of biologic agents are now available or in development for CRSwNP. In this review, we provide an overview of the inflammatory pathways involved in CRSwNP and describe how targeting key drivers of type 2 inflammation is an effective therapeutic option for patients.


Assuntos
Interleucina-13 , Interleucina-4 , Pólipos Nasais , Rinite , Sinusite , Humanos , Sinusite/imunologia , Sinusite/metabolismo , Pólipos Nasais/imunologia , Pólipos Nasais/metabolismo , Rinite/imunologia , Rinite/metabolismo , Doença Crônica , Interleucina-13/metabolismo , Interleucina-13/imunologia , Interleucina-4/metabolismo , Interleucina-4/imunologia , Transdução de Sinais , Inflamação/imunologia , Inflamação/metabolismo , Animais , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Rinossinusite
3.
Nat Immunol ; 25(6): 1059-1072, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38802511

RESUMO

Asthma, the most prevalent respiratory disease, affects more than 300 million people and causes more than 250,000 deaths annually. Type 2-high asthma is characterized by interleukin (IL)-5-driven eosinophilia, along with airway inflammation and remodeling caused by IL-4 and IL-13. Here we utilize IL-5 as the targeting domain and deplete BCOR and ZC3H12A to engineer long-lived chimeric antigen receptor (CAR) T cells that can eradicate eosinophils. We call these cells immortal-like and functional IL-5 CAR T cells (5TIF) cells. 5TIF cells were further modified to secrete an IL-4 mutein that blocks IL-4 and IL-13 signaling, designated as 5TIF4 cells. In asthma models, a single infusion of 5TIF4 cells in fully immunocompetent mice, without any conditioning regimen, led to sustained repression of lung inflammation and alleviation of asthmatic symptoms. These data show that asthma, a common chronic disease, can be pushed into long-term remission with a single dose of long-lived CAR T cells.


Assuntos
Asma , Receptores de Antígenos Quiméricos , Animais , Asma/imunologia , Asma/terapia , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , Interleucina-5/imunologia , Interleucina-5/metabolismo , Modelos Animais de Doenças , Humanos , Interleucina-4/imunologia , Interleucina-4/metabolismo , Camundongos Endogâmicos C57BL , Eosinófilos/imunologia , Feminino , Interleucina-13/metabolismo , Interleucina-13/imunologia
4.
J Allergy Clin Immunol ; 153(5): 1355-1368, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38310974

RESUMO

BACKGROUND: Eosinophilic esophagitis (EoE) is an increasingly common inflammatory condition of the esophagus; however, the underlying immunologic mechanisms remain poorly understood. The epithelium-derived cytokine IL-33 is associated with type 2 immune responses and elevated in esophageal biopsy specimens from patients with EoE. OBJECTIVE: We hypothesized that overexpression of IL-33 by the esophageal epithelium would promote the immunopathology of EoE. METHODS: We evaluated the functional consequences of esophageal epithelial overexpression of a secreted and active form of IL-33 in a novel transgenic mouse, EoE33. EoE33 mice were analyzed for clinical and immunologic phenotypes. Esophageal contractility was assessed. Epithelial cytokine responses were analyzed in three-dimensional organoids. EoE33 phenotypes were further characterized in ST2-/-, eosinophil-deficient, and IL-13-/- mice. Finally, EoE33 mice were treated with dexamethasone. RESULTS: EoE33 mice displayed ST2-dependent, EoE-like pathology and failed to thrive. Esophageal tissue remodeling and inflammation included basal zone hyperplasia, eosinophilia, mast cells, and TH2 cells. Marked increases in levels of type 2 cytokines, including IL-13, and molecules associated with immune responses and tissue remodeling were observed. Esophageal organoids suggested reactive epithelial changes. Genetic deletion of IL-13 in EoE33 mice abrogated pathologic changes in vivo. EoE33 mice were responsive to steroids. CONCLUSIONS: IL-33 overexpression by the esophageal epithelium generated immunopathology and clinical phenotypes resembling human EoE. IL-33 may play a pivotal role in the etiology of EoE by activating the IL-13 pathway. EoE33 mice are a robust experimental platform for mechanistic investigation and translational discovery.


Assuntos
Esofagite Eosinofílica , Interleucina-13 , Interleucina-33 , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Esofagite Eosinofílica/imunologia , Esofagite Eosinofílica/genética , Esofagite Eosinofílica/patologia , Eosinófilos/imunologia , Mucosa Esofágica/patologia , Mucosa Esofágica/imunologia , Esôfago/patologia , Esôfago/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-13/metabolismo , Interleucina-33/genética , Interleucina-33/imunologia , Interleucina-33/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
5.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769080

RESUMO

The chemokine CCL18 is produced in cells of the myelomonocytic lineage and represents one of the most highly expressed chemokines in lesional skin and serum of atopic dermatitis patients. We investigated the role of histamine in CCL18 production in human monocyte-derived M2 macrophages differentiated in the presence of M-CSF and activated with IL-4, IL-13 or with IL-10. Since expression and regulation of histamine H1 receptor (H1R), H2R and H4R by IL-4 and IL-13 on human M2 macrophages were described, we analyzed expression of the histamine receptors in response to IL-10 stimulation by quantitative RT-PCR. IL-10 upregulated H2R and downregulated H4R mRNA expression by trend in M2 macrophages. IL-10, but in a more pronounced manner, IL-4 and IL-13, also upregulated CCL18. Histamine increased the cytokine-induced upregulation of CCL18 mRNA expression by stimulating the H2R. This effect was stronger in IL-10-stimulated M2 macrophages where the upregulation of CCL18 was confirmed at the protein level by ELISA using selective histamine receptor agonist and antagonists. The histamine-induced CCL18 upregulation in IL-10-activated M2 macrophages was almost similar in cells obtained from atopic dermatitis patients compared to cells from healthy control persons. In summary, our data stress a new function of histamine showing upregulation of the Th2 cells attracting chemokine CCL18 in human, activated M2 macrophages. This may have an impact on the course of atopic dermatitis and for the development of new therapeutic interventions.


Assuntos
Quimiocinas CC/genética , Histamina/imunologia , Macrófagos/imunologia , Células Cultivadas , Quimiocinas CC/imunologia , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Humanos , Inflamação/imunologia , Interleucina-10/imunologia , Interleucina-13/imunologia , Interleucina-4/imunologia , Ativação de Macrófagos , Macrófagos/citologia , Células Th2/imunologia , Regulação para Cima
6.
Theranostics ; 11(20): 9805-9820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815787

RESUMO

Background: Microglia and macrophages adopt a pro-inflammatory phenotype after spinal cord injury (SCI), what is thought to contribute to secondary tissue degeneration. We previously reported that this is due, in part, to the low levels of anti-inflammatory cytokines, such as IL-4. Since IL-13 and IL-4 share receptors and both cytokines drive microglia and macrophages towards an anti-inflammatory phenotype in vitro, here we studied whether administration of IL-13 and IL-4 after SCI leads to beneficial effects. Methods: We injected mice with recombinant IL-13 or IL-4 at 48 h after SCI and assessed their effects on microglia and macrophage phenotype and functional outcomes. We also performed RNA sequencing analysis of macrophages and microglia sorted from the injured spinal cords of mice treated with IL-13 or IL-4 and evaluated the metabolic state of these cells by using Seahorse technology. Results: We observed that IL-13 induced the expression of anti-inflammatory markers in microglia and macrophages after SCI but, in contrast to IL-4, it failed to mediate functional recovery. We found that these two cytokines induced different gene signatures in microglia and macrophages after SCI and that IL-4, in contrast to IL-13, shifted microglia and macrophage metabolism from glycolytic to oxidative phosphorylation. These findings were further confirmed by measuring the metabolic profile of these cells. Importantly, we also revealed that macrophages stimulated with IL-4 or IL-13 are not deleterious to neurons, but they become cytotoxic when oxidative metabolism is blocked. This suggests that the metabolic shift, from glycolysis to oxidative phosphorylation, is required to minimize the cytotoxic responses of microglia and macrophages. Conclusions: These results reveal that the metabolic fitness of microglia and macrophages after SCI contributes to secondary damage and that strategies aimed at boosting oxidative phosphorylation might be a novel approach to minimize the deleterious actions of microglia and macrophages in neurotrauma.


Assuntos
Interleucina-13/metabolismo , Interleucina-4/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Interleucina-13/imunologia , Interleucina-13/farmacologia , Interleucina-4/imunologia , Interleucina-4/farmacologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/fisiopatologia , Resultado do Tratamento
7.
Nat Commun ; 12(1): 5947, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642338

RESUMO

Systemic sclerosis (SSc) is a chronic multisystem disorder characterized by fibrosis and autoimmunity. Interleukin (IL)-31 has been implicated in fibrosis and T helper (Th) 2 immune responses, both of which are characteristics of SSc. The exact role of IL-31 in SSc pathogenesis is unclear. Here we show the overexpression of IL-31 and IL-31 receptor A (IL-31RA) in dermal fibroblasts (DFs) from SSc patients. We elucidate the dual role of IL-31 in SSc, where IL-31 directly promotes collagen production in DFs and indirectly enhances Th2 immune responses by increasing pro-Th2 cytokine expression in DFs. Furthermore, blockade of IL-31 with anti-IL-31RA antibody significantly ameliorates fibrosis and Th2 polarization in a mouse model of SSc. Therefore, in addition to defining IL-31 as a mediator of fibrosis and Th2 immune responses in SSc, our study provides a rationale for targeting the IL-31/IL-31RA axis in the treatment of SSc.


Assuntos
Fibroblastos/imunologia , Interleucinas/genética , Receptores de Interleucina/genética , Escleroderma Sistêmico/imunologia , Células Th2/imunologia , Adulto , Idoso , Animais , Anticorpos Monoclonais/farmacologia , Colágeno Tipo I/genética , Colágeno Tipo I/imunologia , Cadeia alfa 1 do Colágeno Tipo I , Modelos Animais de Doenças , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibrose , Regulação da Expressão Gênica , Humanos , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucinas/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Receptores de Interleucina/antagonistas & inibidores , Receptores de Interleucina/imunologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th2/efeitos dos fármacos , Células Th2/patologia
8.
Int Immunol ; 33(11): 573-585, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34498703

RESUMO

Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells that play different roles in different organs by sensing surrounding environmental factors. Initially, it was thought that ILC2s in bone marrow (BM) are progenitors for systemic ILC2s, which migrate to other organs and acquire effector functions. However, accumulating evidence that ILC2s differentiate in peripheral tissues suggests that BM ILC2s may play a specific role in the BM as a unique effector per se. Here, we demonstrate that BM ILC2s highly express the receptor activator of nuclear factor κB ligand (RANKL), a robust cytokine for osteoclast differentiation and activation, and RANKL expression on ILC2s is up-regulated by interleukin (IL)-2, IL-7 and all-trans retinoic acid (ATRA). BM ILC2s co-cultured with BM-derived monocyte/macrophage lineage cells (BMMs) in the presence of IL-7 induce the differentiation of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in a RANKL-dependent manner. In contrast, BM ILC2s stimulated with IL-33 down-regulate RANKL expression and convert BMMs differentiation into M2 macrophage-like cells rather than osteoclasts by granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-13 production. Intravital imaging using two-photon microscopy revealed that a depletion of ILC2s prominently impaired in vivo osteoclast activity in an IL-7 plus ATRA-induced bone loss mouse model. These results suggest that ILC2s regulate osteoclast activation and contribute to bone homeostasis in both steady state and IL-33-induced inflammation.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Imunidade Inata/imunologia , Interleucina-13/imunologia , Linfócitos/imunologia , Osteoclastos/imunologia , Ligante RANK/imunologia , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Inflamação/imunologia , Interleucina-13/biossíntese , Linfócitos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/imunologia
9.
Life Sci ; 283: 119871, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352260

RESUMO

Non-communicable, chronic respiratory diseases (CRDs) affect millions of individuals worldwide. The course of these CRDs (asthma, chronic obstructive pulmonary disease, and cystic fibrosis) are often punctuated by microbial infections that may result in hospitalization and are associated with increased risk of morbidity and mortality, as well as reduced quality of life. Interleukin-13 (IL-13) is a key protein that regulates airway inflammation and mucus hypersecretion. There has been much interest in IL-13 from the last two decades. This cytokine is believed to play a decisive role in the exacerbation of inflammation during the course of viral infections, especially, in those with pre-existing CRDs. Here, we discuss the common viral infections in CRDs, as well as the potential role that IL-13 plays in the virus-induced disease pathogenesis of CRDs. We also discuss, in detail, the immune-modulation potential of IL-13 that could be translated to in-depth studies to develop IL-13-based therapeutic entities.


Assuntos
Influenza Humana/imunologia , Interleucina-13/imunologia , Pneumopatias/imunologia , Doença Crônica , Humanos , Inflamação/imunologia , Inflamação/patologia , Influenza Humana/patologia , Pneumopatias/patologia , Muco/imunologia
10.
Reprod Biol Endocrinol ; 19(1): 128, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429116

RESUMO

BACKGROUND: Endometriosis is a serious reproductive and general health consequences. Recombinant human IL-37 (rhIL-37) is an inhibitor of inflammation. METHODS: ELISA assay was performed to detect the concentration of cytokines. Flow cytometry was used to analyze cell proportion. Besides, qRT-PCR and western blotting assay were used to detect the level of gene and protein, respectively. Transwell co-culture system was used for the co-culture of dendritic cells (DCs) and CD4+T cells. RESULTS: Our data showed that rhIL-37 inhibited the development of ectopic lesions in the mice with endometriosis, increased Th1/Th2 ratio and induced DCs maturation. The co-culture system of DCs and CD4+T cells demonstrated that rhIL-37 increased Th1/Th2 cell ratio through promoting DCs maturation. Moreover, the expression of IL-4 in the DCs derived from healthy mice was inhibited by rhIL-37 treatment. rhIL-37 increased Th1/Th2 cell ratio through inhibiting IL-4 in DCs. Subsequently, our results proved that rhIL-37 promoted the maturation of DCs via inhibiting phosphorylation of STAT3. Activation of STAT3 could reverse rhIL-37-induced maturation of DCs. CONCLUSION: Overall, rhIL-37 could protect against endometriosis through increasing the ratio of Th1/Th2 cells via inducing DCs maturation and inhibiting IL-4 expression in the DCs. Furthermore, rhIL-37 induced DCs maturation by inhibiting STAT3 phosphorylation. Our data confirmed the protective effect of rhIL-37 in endometriosis. These data may provide a novel idea for the treatment of the disease.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Endometriose/imunologia , Interleucina-1/farmacologia , Equilíbrio Th1-Th2/efeitos dos fármacos , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cocultura , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Endometriose/metabolismo , Endométrio/transplante , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/efeitos dos fármacos , Interferon gama/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-13/metabolismo , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo , Camundongos , Fosforilação , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas Recombinantes , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/metabolismo , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
11.
Front Immunol ; 12: 692127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305924

RESUMO

Mucus secretion is an important feature of asthma that highly correlates with morbidity. Current therapies, including administration of mucolytics and anti-inflammatory drugs, show limited effectiveness and durability, underscoring the need for novel effective and longer lasting therapeutic approaches. Here we show that mucus production in the lungs is regulated by the TNF superfamily member 15 (TL1A) acting through the mucus-inducing cytokine IL-13. TL1A induces IL13 expression by innate lymphoid cells leading to mucus production, in addition to promoting airway inflammation and fibrosis. Reciprocally, neutralization of IL13 signaling through its receptor (IL4Rα), completely reverses TL1A-induced mucus secretion, while maintaining airway inflammation and fibrosis. Importance of TL1A is further demonstrated using a preclinical asthma model induced by chronic house dust mite exposure where TL1A neutralization by genetic deletion or antagonistic blockade of its receptor DR3 protected against mucus production and fibrosis. Thus, TL1A presents a promising therapeutic target that out benefits IL13 in reversing mucus production, airway inflammation and fibrosis, cardinal features of severe asthma in humans.


Assuntos
Asma/imunologia , Interleucina-13/imunologia , Subunidade alfa de Receptor de Interleucina-4/imunologia , Pulmão/imunologia , Muco/imunologia , Membro 25 de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Animais , Asma/patologia , Proteínas de Ligação a DNA/genética , Feminino , Fibrose , Pulmão/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Transdução de Sinais
12.
Int Immunopharmacol ; 99: 107924, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34217145

RESUMO

Group 2 innate lymphoid cells (ILC2s) are reportedly associated with the progression of many tumors. However, the role of ILC2s in triple-negative breast cancer (TNBC) lung metastasis remains unclear. In this study, we found that ILC2s may be a key element in the process of TNBC lung metastasis since the adoptive transfer of pulmonary ILC2s increased the numbers of metastatic lung nodules and reduced the survival of tumor-bearing mice. ILC2-promoted 4 T1 lung metastasis appears to be related to ILC2-derived IL-13. An expansion of IL-13-producing ILC2s and an elevated expression of IL-13 mRNA in pulmonary ILC2s were determined in tumor-bearing mice, in parallel with an increase in the levels of local IL-13 by ILC2 transfer. The neutralization of IL-13 reduced the increased pulmonary metastatic nodules and improved the decreased survival rate caused by ILC2-adoptive transfer. Interestingly, adoptive transfer of ILC2s elevated IL-13Ra1 expression in myeloid-derived suppressor cells (MDSCs). Treatment of ILC2-transferred tumor-bearing mice with anti-IL-13 antibodies significantly diminished the number of pulmonary MDSCs and inhibited MDSC activation. Moreover, when pulmonary MDSCs were cocultured with ILC2s in the presence of an anti-IL-13 mAb, the number and activation of MDSCs were reduced. Depletion of MDSCs may promote the proliferation of CD4+ T cells and CD8+ T cells, but reduce the expansion of regulatory T cells (Tregs) in the lungs of ILC2-transferred tumor-bearing mice. Our results suggest that pulmonary ILC2s may promote TNBC lung metastasis via the ILC2-derived IL-13-activated MDSC pathway.


Assuntos
Interleucina-13/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos/imunologia , Neoplasias Mamárias Experimentais/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Transferência Adotiva , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Citocinas/genética , Citocinas/imunologia , Feminino , Imunidade Inata , Pulmão/imunologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/patologia , Camundongos Endogâmicos BALB C , Receptores de Citocinas/genética , Receptores de Citocinas/imunologia , Neoplasias de Mama Triplo Negativas/patologia
13.
Front Immunol ; 12: 650779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194428

RESUMO

Listeria monocytogenes (L.m) is efficiently controlled by several cells of the innate immunity, including the Mast Cell (MC). MC is activated by L.m inducing its degranulation, cytokine production and microbicidal mechanisms. TLR2 is required for the optimal control of L.m infection by different cells of the immune system. However, little is known about the MC receptors involved in recognizing this bacterium and whether these interactions mediate MC activation. In this study, we analyzed whether TLR2 is involved in mediating different MC activation responses during L.m infection. We found that despite MC were infected with L.m, they were able to clear the bacterial load. In addition, MC degranulated and produced ROS, TNF-α, IL-1ß, IL-6, IL-13 and MCP-1 in response to bacterial infection. Interestingly, L.m induced the activation of signaling proteins: ERK, p38 and NF-κB. When TLR2 was blocked, L.m endocytosis, bactericidal activity, ROS production and mast cell degranulation were not affected. Interestingly, only IL-6 and IL-13 production were affected when TLR2 was inhibited in response to L.m infection. Furthermore, p38 activation depended on TLR2, but not ERK or NF-κB activation. These results indicate that TLR2 mediates only some MC activation pathways during L.m infection, mainly those related to IL-6 and IL-13 production.


Assuntos
Interleucina-13/imunologia , Interleucina-6/imunologia , Listeria monocytogenes/imunologia , Mastócitos/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Degranulação Celular/imunologia , Degranulação Celular/fisiologia , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Ativação Enzimática/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interleucina-13/metabolismo , Interleucina-6/metabolismo , Listeria monocytogenes/fisiologia , Mastócitos/microbiologia , Mastócitos/fisiologia , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Sci Rep ; 11(1): 11418, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075152

RESUMO

Atopic dermatitis (AD) is one of the most common skin diseases of dogs. Defects in the skin barrier and overproduction of inflammatory cytokines may be the pathogenesis of canine AD. Therefore, the present study was aimed to quantify the gene expression of certain skin barrier proteins and inflammatory cytokines in dogs with AD. Eleven dogs with AD and three healthy dogs were included in the present study. The skin barrier proteins, namely Filaggrin (FLG) and Involucrin (IVL), gene expression was quantified by Real-time PCR in the lesional skin tissues of the atopic dogs and normal skin of the healthy dogs. In addition to the skin proteins, the gene expressions of the interleukin (IL)-13, IL-31, and tumour necrosis factor (TNF)-α were also quantified in the peripheral blood mononuclear cells (PBMCs) of these dogs. Compared to the healthy dogs, significantly higher (P ≤ 0.01) FLG gene expression and significantly (P ≤ 0.05) lower expression of the IVL gene were quantified in the skin of atopic dogs. Further, the dogs with AD revealed significantly higher expression of TNF-α (P ≤ 0.01), IL-31 (P ≤ 0.05), and IL-13 (P ≤ 0.05) as compared to the healthy dogs. The findings of our present study evidently suggest significantly increased and decreased expressions of FLG and IVL genes, respectively, which may be responsible for disruption of the skin barrier in dogs with AD. While, the over-expressions of TNF-α, IL-31, and IL-13 genes might be attributed to the clinical pathology and manifestations of AD in dogs. However, further studies are warranted to substantiate our hypothesis about pathogenesis and clinical manifestation of AD in dogs by including a large number of animals.


Assuntos
Citocinas/imunologia , Dermatite Atópica/imunologia , Doenças do Cão/imunologia , Proteínas de Filamentos Intermediários/imunologia , Precursores de Proteínas/imunologia , Animais , Cães , Feminino , Proteínas Filagrinas , Interleucina-13/imunologia , Masculino , Fator de Necrose Tumoral alfa/imunologia
15.
Benef Microbes ; 12(2): 187-197, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33789554

RESUMO

Asthma is an inflammatory lung disease that affects more women than men in adulthood. Clinical evidence shows that hormonal fluctuation during the menstrual cycle and menopause are related to increased asthma severity in women. Considering that life expectancy has increased and that most women now undergo menopause, strategies to prevent the worsening of asthma symptoms are particularly important. A recent study from our group showed that re-exposure of ovariectomised allergic mice to antigen (ovalbumin) leads to an exacerbation of lung inflammation that is similar to clinical conditions. However, little is known about the role of probiotics in the prevention of asthma exacerbations during the menstrual cycle or menopause. Thus, our objective was to evaluate the effects of supplementation with kefir, a popular fermented dairy beverage, as a preventive strategy for modulating allergic disease. The results show that the preventive kefir administration decreases the influx of inflammatory cells in the airways and exacerbates the production of mucus and the interleukin 13 cytokine. Additionally, kefir changes macrophage polarisation by decreasing the number of M2 macrophages, as shown by RT-PCR assay. Thus, kefir is a functional food that potentially prevents allergic airway inflammation exacerbations in ovariectomised mice.


Assuntos
Asma/prevenção & controle , Kefir/microbiologia , Probióticos/administração & dosagem , Animais , Asma/genética , Asma/imunologia , Feminino , Fermentação , Humanos , Interleucina-13/genética , Interleucina-13/imunologia , Kefir/análise , Lactobacillales/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/efeitos adversos , Ovalbumina/imunologia
16.
Mol Cell Probes ; 56: 101708, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33636281

RESUMO

Mesoporous silica nanoparticles (MSNs) have been used in the field of biomedicine as antigen carriers and adjuvants for protective antigens. In the present study, an oral nanovaccine against Vibrio alginolyticus was prepared employing MSNs as carriers. The uptake of the dihydrolipoamide dehydrogenase (DLDH) antigens in the intestine of large yellow croaker was evaluated using an immunohistochemistry assay. Additionally, the effects of the nanovaccine on the early immune response in large yellow croaker were investigated via oral vaccination. The presence of the antigens was detected in the mucosa and lamina propria of the foregut, midgut, and hindgut of large yellow croaker at 3 h following oral immunization. The expression levels of cytokines (i.e., lysozyme, IFN-γ, IFITM, TNF-α, IL-1ß, IL-2, IL-4, IL-10, and IL-13) in the intestine, spleen, and head kidney tissues of large yellow croaker before and after the immune challenge were determined via RT-qPCR assay. The obtained results revealed that the expression levels of lysozyme, IFN-γ, IFITM, TNF-α, IL-1ß, IL-2, IL-4, IL-10, and IL-13 in the intestine and head kidney of the vaccinated large yellow croaker, as well as the expression of lysozyme, IL-1ß, and IL-10 in the spleen, exhibited time-dependent oscillation regulation patterns. Notably, the nanovaccine immunization could induce early (6 h) and high expression of IFN-γ in the spleen and kidney tissues after the bacterial infection. The current study supplements the available data on the early immune response to fish nanovaccines. It also provides a valuable theoretical basis for the future development of large yellow croaker oral vaccines.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Di-Hidrolipoamida Desidrogenase/imunologia , Doenças dos Peixes/prevenção & controle , Proteínas de Peixes/genética , Vibrioses/veterinária , Vibrio alginolyticus/imunologia , Administração Oral , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Di-Hidrolipoamida Desidrogenase/administração & dosagem , Di-Hidrolipoamida Desidrogenase/genética , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/imunologia , Expressão Gênica , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/microbiologia , Rim/efeitos dos fármacos , Rim/imunologia , Rim/microbiologia , Muramidase/genética , Muramidase/imunologia , Nanopartículas/administração & dosagem , Nanopartículas/química , Perciformes/imunologia , Perciformes/microbiologia , Dióxido de Silício/química , Dióxido de Silício/imunologia , Baço/efeitos dos fármacos , Baço/imunologia , Baço/microbiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Vacinação/métodos , Vibrioses/imunologia , Vibrioses/microbiologia , Vibrioses/prevenção & controle
17.
J Allergy Clin Immunol ; 147(5): 1692-1703, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33340608

RESUMO

BACKGROUND: Stimulator of interferon genes (STING) activation favors effective innate immune responses against viral infections. Its role in chronic rhinosinusitis with nasal polyps (CRSwNP) remains unknown. OBJECTIVE: Our aim was to explore the expression, regulation, and function of STING in CRSwNP. METHODS: STING expression in sinonasal mucosal samples was analyzed by means of quantitative RT-PCR, immunohistochemistry, flow cytometry, and Western blotting. Regulation and function of STING expression were explored by using cultured primary human nasal epithelial cells (HNECs) and cells of the line BEAS-2B in vitro. RESULTS: STING expression was reduced in eosinophilic nasal polyps compared with that in noneosinophilic nasal polyps and control tissues. STING was predominantly expressed by epithelial cells in nasal tissue and was downregulated by IL-4 and IL-13 in a signal transducer and activator of transcription 6 (STAT6)-dependent manner. HNECs derived from eosinophilic polyps displayed compromised STING-dependent type I interferon production but heightened IL-13-induced STAT6 activation and CCL26 production as compared with HNECs from noneosinophilic polyps and control tissues, which were rescued by exogenous STING overexpression. Knocking down or overexpressing STING decreased or enhanced expression of suppressor of cytokine signaling 1 (SOCS1) in BEAS-2B cells, respectively, independent of the canonic STING pathway elements TBK1 and IRF3. Knocking down SOCS1 abolished the inhibitory effect of STING on IL-13 signaling in BEAS-2B cells. STING expression was positively correlated with SOCS1 expression but negatively correlated with CCL26 expression in nasal epithelial cells from patients with CRSwNP. CONCLUSIONS: Reduced STING expression caused by the type 2 milieu not only impairs STING-dependent type I interferon production but also amplifies IL-13 signaling by decreasing SOCS1 expression in nasal epithelial cells in eosinophilic CRSwNP.


Assuntos
Eosinofilia/imunologia , Interleucina-13/imunologia , Proteínas de Membrana/imunologia , Pólipos Nasais/imunologia , Rinite/imunologia , Sinusite/imunologia , Adulto , Células Cultivadas , Doença Crônica , Células Epiteliais/imunologia , Feminino , Proteínas Fetais/genética , Técnicas de Silenciamento de Genes , Humanos , Fator Regulador 3 de Interferon/genética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mucosa Nasal/citologia , Proteínas Tirosina Quinases/genética , Proteína 1 Supressora da Sinalização de Citocina/genética
18.
J Allergy Clin Immunol ; 147(5): 1924-1935, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33289661

RESUMO

BACKGROUND: Proton pump inhibitors (PPIs) have been recognized as a primary treatment of eosinophilic esophagitis (EoE), an allergic inflammatory disease of the esophageal mucosa. The mechanisms underlying esophageal epithelial responses to PPIs remain poorly understood. OBJECTIVE: We hypothesized that PPIs can counteract IL-13-mediated esophageal epithelial responses that are germane for EoE pathogenesis. METHODS: Transcriptional responses of human esophageal cells to IL-13 and the PPIs omeprazole and esomeprazole were assessed by RT-PCR and RNA sequencing. Cytokine secretion was measured by multiplex analysis and ELISA. RESULTS: Human esophageal epithelial cells robustly responded to PPI stimulation by inducing a set of 479 core genes common between omeprazole and esomeprazole treatments. The transcriptional response to PPIs was partially mediated through the aryl hydrocarbon receptor signaling pathway, as the aryl hydrocarbon receptor antagonist GNF-351 modified approximately 200 genes, particularly those enriched in metabolic processes and regulation of cell death. PPI treatment reversed approximately 20% of the IL-13 transcriptome. Functional analysis of the PPI-responsive, upregulated genes revealed enrichment in metabolic and oxidation processes, and the unfolded protein response. In contrast, downregulated genes were overrepresented in functional terms related to cell division and cytoskeletal organization, which were also enriched for the genes in the EoE transcriptome reversed by PPIs. Furthermore, PPI treatment decreased the IL-13-induced proliferative response of esophageal epithelial cells. CONCLUSIONS: These results demonstrate broad effects of PPIs on esophageal epithelium, including their ability to curtail transcriptomic processes involved in cellular proliferation and IL-13-induced responses, and they highlight the importance of AHR signaling in mediating these responses.


Assuntos
Células Epiteliais/efeitos dos fármacos , Mucosa Esofágica/citologia , Interleucina-13/imunologia , Omeprazol/farmacologia , Inibidores da Bomba de Prótons/farmacologia , Receptores de Hidrocarboneto Arílico/imunologia , Animais , Linhagem Celular , Esofagite Eosinofílica/genética , Esofagite Eosinofílica/imunologia , Células Epiteliais/imunologia , Humanos , Camundongos , Transcrição Gênica/efeitos dos fármacos
19.
Allergol Int ; 70(3): 360-367, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33279402

RESUMO

BACKGROUND: Propolis is a resinous mixture produced by honey bees that contains cinnamic acid derivatives and flavonoids. Although propolis has been reported to inhibit mast cell functions and mast cell-dependent allergic responses, the effect of propolis on basophil biology remains unknown. This study aimed to investigate the inhibitory effect of propolis on FcεRI-mediated basophil activation. METHODS: To determine the inhibitory effect of propolis on basophil activation in vitro, cytokine production and FcεRI signal transduction were analyzed by ELISA and western blotting, respectively. To investigate the inhibitory effect of propolis in vivo, IgE-CAI and a food allergy mouse model were employed. RESULTS: Propolis treatment resulted in the suppression of IgE/antigen-induced production of IL-4, IL-6 and IL-13 in basophils. Phosphorylation of FcεRI signaling molecules Lyn, Akt and ERK was inhibited in basophils treated with propolis. While propolis did not affect the basophil population in the treated mice, propolis did inhibit IgE-CAI. Finally, ovalbumin-induced intestinal anaphylaxis, which involves basophils and basophil-derived IL-4, was attenuated in mice prophylactically treated with propolis. CONCLUSIONS: Taken together, these results demonstrate the ability of propolis to suppress IgE-dependent basophil activation and basophil-dependent allergic inflammation. Therefore, prophylactic treatment with propolis may be useful for protection against food allergic reactions in sensitive individuals.


Assuntos
Basófilos/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Hipersensibilidade Alimentar/imunologia , Imunoglobulina E/efeitos dos fármacos , Inflamação/imunologia , Intestinos/efeitos dos fármacos , Própole/farmacologia , Pele/efeitos dos fármacos , Anafilaxia/imunologia , Animais , Basófilos/imunologia , Citocinas/imunologia , Imunoglobulina E/imunologia , Técnicas In Vitro , Interleucina-13/imunologia , Interleucina-4/imunologia , Interleucina-6/imunologia , Intestinos/imunologia , Camundongos , Receptores de IgE/imunologia , Pele/imunologia
20.
Aging (Albany NY) ; 13(2): 2049-2072, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323552

RESUMO

The immune response facilitated by tumor-associated macrophages is a vital determinant of tumor progression. We identified differentially expressed genes between various macrophage phenotypes in the Gene Expression Omnibus, and used Kaplan-Meier Plotter to determine which of them altered the prognosis of esophageal carcinoma patients. Fibrinogen-like protein 2 (FGL2), an immunosuppressive factor in the tumor microenvironment of various cancers, was upregulated in M2 macrophages, and higher FGL2 expression was associated with poorer survival in esophageal carcinoma patients. Using the TIMER database, we found that FGL2 expression correlated positively with the levels of immune markers of infiltrating B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells in esophageal carcinoma samples. Correlation analyses in cBioPortal revealed that the mRNA levels of FGL2 correlated strongly with those of interleukin 10, matrix metalloproteinase 9, C-C motif chemokine ligand 5, T-cell immunoglobulin mucin 3, interleukin 13, vascular cell adhesion molecule 1, macrophage colony-stimulating factor and fibroblast growth factor 7 in esophageal carcinoma tissues. The same cytokines were upregulated when esophageal squamous cell carcinoma cells were co-cultured with M2-like tumor-associated macrophages. Thus, by secreting FGL2, M2-like tumor-associated macrophages may create an immunosuppressive tumor microenvironment that induces the occurrence and progression of esophageal carcinoma.


Assuntos
Neoplasias Esofágicas/imunologia , Carcinoma de Células Escamosas do Esôfago/imunologia , Fibrinogênio/genética , Macrófagos Associados a Tumor/imunologia , Linfócitos B , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Técnicas de Cocultura , Bases de Dados Genéticas , Células Dendríticas , Progressão da Doença , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Fator 7 de Crescimento de Fibroblastos/genética , Fator 7 de Crescimento de Fibroblastos/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-13/genética , Interleucina-13/imunologia , Linfócitos do Interstício Tumoral/imunologia , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/imunologia , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Neutrófilos , RNA Mensageiro , Células THP-1 , Microambiente Tumoral , Regulação para Cima , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA