Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
J Cell Mol Med ; 28(6): e18137, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38445791

RESUMO

Hepatocellular cancer is one of the most serious types of cancer in the world, with high incidence and mortality rates. Most HCC patients with long-term chemotherapy develop chemoresistance, leading to a poor prognosis. However, the underlying mechanism of circRNAs in HCC chemoresistance remains unclear. Our research found that circ_0072391(circ_HMGCS1) expression was significantly upregulated in cisplatin-resistant HCC cells. The silence of circ_HMGCS1 attenuated the cisplatin resistance in HCC. Results showed that circ_HMGCS1 regulated the expression of miR-338-5p via acting as microRNA sponges. Further study confirmed that miR-338-5p regulated the expression of IL-7. IL-7 could remodel the immune system by improving T-cell function and antagonising the immunosuppressive network. IL-7 is an ideal target used to enhance the function of the immune system. circ_HMGCS1 exerts its oncogenic function through the miR-338-5p/IL-7 pathway. Inhibition of circ_HMGCS1/miR-338-5p/IL-7 could effectively attenuate the chemoresistance of HCC. IL-7 might be a promising immunotherapy target for HCC cancer treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Interleucina-7/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , MicroRNAs/genética , Hidroximetilglutaril-CoA Sintase
2.
Br J Cancer ; 130(8): 1388-1401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424167

RESUMO

BACKGROUND: Immune checkpoint inhibitors unleash inhibitory signals on T cells conferred by tumors and surrounding stromal cells. Despite the clinical efficacy of checkpoint inhibitors, the lack of target expression and persistence of immunosuppressive cells limit the pervasive effectiveness of the therapy. These limitations may be overcome by alternative approaches that co-stimulate T cells and the immune microenvironment. METHODS: We analyzed single-cell RNA sequencing data from multiple human cancers and a mouse tumor transplant model to discover the pleiotropic expression of the Interleukin 7 (IL-7) receptor on T cells, macrophages, and dendritic cells. RESULTS: Our experiment on the mouse model demonstrated that recombinant IL-7 therapy induces tumor regression, expansion of effector CD8 T cells, and pro-inflammatory activation of macrophages. Moreover, spatial transcriptomic data support immunostimulatory interactions between macrophages and T cells. CONCLUSION: These results indicate that IL-7 therapy induces anti-tumor immunity by activating T cells and pro-inflammatory myeloid cells, which may have diverse therapeutic applicability.


Assuntos
Interleucina-7 , Neoplasias , Humanos , Animais , Camundongos , Interleucina-7/genética , Interleucina-7/farmacologia , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Linfócitos T , Análise de Sequência de RNA , Microambiente Tumoral/genética , Linfócitos T CD8-Positivos
3.
Int Immunopharmacol ; 124(Pt B): 110974, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757633

RESUMO

CAR-T targeting CD19 have achieved significant effects in the treatment of B-line leukemia and lymphoma. However, the treated patients frequently relapsed and could not achieve complete remission. Therefore, improving the proliferation and cytotoxicity of CAR-T cells, reducing exhaustion and enhancing infiltration capacity are still issues to be solved. The IL-7 has been shown to enhance the memory characteristics of CAR-T cells, but the specific mechanism has yet to be elaborated. miRNAs play an important role in T cell activity. However, whether miRNA is involved in the activation of CAR-T cells by IL-7 has not yet been reported. Our previous study had established the 3rd generation CAR-T cells. The present study further found that IL-7 significantly increased the proliferation of anti-CD19 CAR-T cells, the ratio of CD4 + CAR + cells and the S phase of cell cycle. In vivo study NAMALWA xenograft model showed that IL-7-stimulated CAR-T cells possessed stronger tumoricidal efficiency. Further we validated that IL-7 induced CAR-T cells had low expression of CDKN1A and high expression of miRNA-98-5p. Additionally, CDKN1A was associated with miRNA-98-5p. Our results, for the first time, suggested IL-7 could conspicuously enhance the proliferation of CAR-T cells through miRNA-98-5p targeting CDKN1A expression, which should be applied to CAR-T production.


Assuntos
MicroRNAs , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Interleucina-7/genética , Interleucina-7/metabolismo , MicroRNAs/genética , Proliferação de Células , Antígenos CD19/genética , Antígenos CD19/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
4.
J Clin Immunol ; 43(8): 1927-1940, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37581646

RESUMO

Genetic variants in cell division cycle 42 (CDC42) can manifest with dysmorphic features, autoinflammation, hemophagocytic lymphohistiocytosis, and thrombocytopenia, whereas defective thymopoiesis is a rare disease manifestation. We report a novel CDC42 missense variant (c.46A > G, p.Lys16Glu) resulting in infection and HPV-driven carcinogenesis in the mosaic mother and impaired thymopoiesis and profound T cell lymphopenia in the heterozygous daughter identified through newborn screening for SCID. We found that surface expression of IL-7Rα (CD127) was decreased, consistent with reduced IL-7-induced STAT5 phosphorylation and accelerated apoptotic T cell death. Consistent with the vital role of IL-7 in regulating thymopoiesis, both patients displayed reduced T cell receptor CDR3 repertoires. Moreover, the CDC42 variant prevented binding to the downstream effector, p21-activated kinase (PAK)1, suggesting this impaired interaction to underlie reduced IL-7Rα expression and signaling. Here, we provide the first report of severely compromised thymopoiesis and perturbed IL-7Rα signaling caused by a novel CDC42 variant and presenting with diverging clinical and immunological phenotypes in patients.


Assuntos
Interleucina-7 , Quinases Ativadas por p21 , Humanos , Recém-Nascido , Apoptose , Interleucina-7/genética , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais
5.
Blood ; 142(3): 274-289, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-36989489

RESUMO

Interleukin-7 (IL-7) supports the growth and chemoresistance of T-cell acute lymphoblastic leukemia (T-ALL), particularly the early T-cell precursor subtype (ETP-ALL), which frequently has activating mutations of IL-7 signaling. Signal transducer and activator of transcription (STAT5) is an attractive therapeutic target because it is almost universally activated in ETP-ALL, even in the absence of mutations of upstream activators such as the IL-7 receptor (IL-7R), Janus kinase, and Fms-like tyrosine kinase 3 (FLT3). To examine the role of activated STAT5 in ETP-ALL, we have used a Lmo2-transgenic (Lmo2Tg) mouse model in which we can monitor chemoresistant preleukemia stem cells (pre-LSCs) and leukemia stem cells (LSCs) that drive T-ALL development and relapse following chemotherapy. Using IL-7R-deficient Lmo2Tg mice, we show that IL-7 signaling was not required for the formation of pre-LSCs but essential for their expansion and clonal evolution into LSCs to generate T-ALL. Activated STAT5B was sufficient for the development of T-ALL in IL-7R-deficient Lmo2Tg mice, indicating that inhibition of STAT5 is required to block the supportive signals provided by IL-7. To further understand the role of activated STAT5 in LSCs of ETP-ALL, we developed a new transgenic mouse that enables T-cell specific and doxycycline-inducible expression of the constitutively activated STAT5B1∗6 mutant. Expression of STAT5B1∗6 in T cells had no effect alone but promoted expansion and chemoresistance of LSCs in Lmo2Tg mice. Pharmacologic inhibition of STAT5 with pimozide-induced differentiation and loss of LSCs, while enhancing response to chemotherapy. Furthermore, pimozide significantly reduced leukemia burden in vivo and overcame chemoresistance of patient-derived ETP-ALL xenografts. Overall, our results demonstrate that STAT5 is an attractive therapeutic target for eradicating LSCs in ETP-ALL.


Assuntos
Células Precursoras de Linfócitos T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Camundongos , Animais , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Interleucina-7/genética , Interleucina-7/metabolismo , Pimozida/uso terapêutico , Camundongos Transgênicos
6.
Mol Oncol ; 17(3): 384-386, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36748568

RESUMO

Treatment with immune checkpoint inhibitors (ICIs) is frequently associated with immune-related adverse events (irAEs). A new study identified an interleukin 7 (IL-7) allelic variant-rs16906115-as a major risk factor for the development of ICI-associated irAEs. This association is of great significance as it indicates that germline genetic variants influence the occurrence of irAEs, thus opening a new avenue for identifying high-risk patients to enable better management of ICI therapy and associated irAEs.


Assuntos
Antineoplásicos Imunológicos , Interleucina-7 , Humanos , Células Germinativas , Imunoterapia , Interleucina-7/genética , Estudos Retrospectivos , Fatores de Risco
7.
Blood ; 141(14): 1708-1717, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36599086

RESUMO

The downstream signaling of the interleukin-7 (IL-7) receptor (IL-7R) plays important physiological and pathological roles, including the differentiation of lymphoid cells and proliferation of acute lymphoblastic leukemia cells. Gain-of-function mutations in the IL-7Rα chain, the specific component of the receptor for IL-7, result in constitutive, IL-7-independent signaling and trigger acute lymphoblastic leukemia. Here, we show that the loss of the phosphoinositide 5-phosphatase INPP5K is associated with increased levels of the INPP5K substrate phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2) and causes an altered dynamic structure of the IL-7 receptor. We discovered that the IL-7Rα chain contains a very conserved positively charged polybasic amino acid sequence in its cytoplasmic juxtamembrane region; this region establish stronger ionic interactions with negatively charged PtdIns(4,5)P2 in the absence of INPP5K, freezing the IL-7Rα chain structure. This dynamic structural alteration causes defects in IL-7R signaling, culminating in decreased expressions of EBF1 and PAX5 transcription factors, in microdomain formation, cytoskeletal reorganization, and bone marrow B-cell differentiation. Similar alterations after the reduced INPP5K expression also affected mutated, constitutively activated IL-7Rα chains that trigger leukemia development, leading to reduced cell proliferation. Altogether, our results indicate that the lipid 5-phosphatase INPP5K hydrolyzes PtdIns(4,5)P2, allowing the requisite conformational changes of the IL-7Rα chain for optimal signaling.


Assuntos
Interleucina-7 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Interleucina-7/genética , Interleucina-7/metabolismo , Fosfatidilinositol 4,5-Difosfato , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/metabolismo , Transdução de Sinais/genética
8.
J Virol ; 97(1): e0125422, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36541802

RESUMO

Posttreatment controllers (PTCs) are rare HIV-infected individuals who can limit viral rebound after antiretroviral therapy interruption (ATI), but the mechanisms of this remain unclear. To investigate these mechanisms, we quantified various HIV RNA transcripts (via reverse transcription droplet digital PCR [RT-ddPCR]) and cellular transcriptomes (via RNA-seq) in blood cells from PTCs and noncontrollers (NCs) before and two time points after ATI. HIV transcription initiation did not significantly increase after ATI in PTCs or in NCs, whereas completed HIV transcripts increased at early ATI in both groups and multiply-spliced HIV transcripts increased only in NCs. Compared to NCs, PTCs showed lower levels of HIV DNA, more cell-associated HIV transcripts per total RNA at all times, no increase in multiply-spliced HIV RNA at early or late ATI, and a reduction in the ratio of completed/elongated HIV RNA after early ATI. NCs expressed higher levels of the IL-7 pathway before ATI and expressed higher levels of multiple cytokine, inflammation, HIV transcription, and cell death pathways after ATI. Compared to the baseline, the NCs upregulated interferon and cytokine (especially TNF) pathways during early and late ATI, whereas PTCs upregulated interferon and p53 pathways only at early ATI and downregulated gene translation during early and late ATI. In NCs, viral rebound after ATI is associated with increases in HIV transcriptional completion and splicing, rather than initiation. Differences in HIV and cellular transcription may contribute to posttreatment control, including an early limitation of spliced HIV RNA, a delayed reduction in completed HIV transcripts, and the differential expression of the IL-7, p53, and TNF pathways. IMPORTANCE The findings presented here provide new insights into how HIV and cellular gene expression change after stopping ART in both noncontrollers and posttreatment controllers. Posttreatment control is associated with an early ability to limit increases in multiply-spliced HIV RNA, a delayed (and presumably immune-mediated) ability to reverse an initial rise in processive/completed HIV transcripts, and multiple differences in cellular gene expression pathways. These differences may represent correlates or mechanisms of posttreatment control and may provide insight into the development and/or monitoring of therapeutic strategies that are aimed at a functional HIV cure.


Assuntos
Infecções por HIV , RNA Viral , Transcriptoma , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/genética , Interferons/genética , Interleucina-7/genética , RNA Viral/genética , Transcriptoma/imunologia , Proteína Supressora de Tumor p53/genética
9.
Oncoimmunology ; 11(1): 1965317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36524211

RESUMO

Glioma is emerging as an aggressive type of glioma characterized by invasive growth pattern and dismal oncologic outcomes. microRNAs (miRNAs) have been attracting research attention in tumorigenesis. Herein, the aim of the current investigation was to explore the functional role of mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) containing miR-503 in glioma. The glioma tissues and corresponding normal brain tissues were collected from patients with glioma, followed by quantification of miR-503, kinesin family member 5A (KIF5A) and interleukin-7 (IL-7). EVs were isolated from bone marrow MSCs and identified by transmission electron microscope and nanoparticle tracking analysis. EVs from miR-503 mimic-transfected MSCs, miR-503 agomir,, oe-KIF5A, or sh-IL-7 was delivered into glioma cells to determine their effects on biological behaviors of glioma and T cells as well as the release of immunosuppressive factors. Lastly, a mouse model of glioma was developed to validate the function in vivo. miR-503 was expressed at a high level in glioma tissues while KIF5A was poorly expressed and targeted by miR-503. Furthermore, miR-503 loaded in MSC-EVs or upregulated miR-503 was demonstrated to facilitate glioma cell proliferation, migration and invasion accompanied by promoted release of immunosuppressive factors. Effects of overexpressed KIF5A on T cell behavior modulation were dependent on the IL-7 signaling pathway. Such results were reproduced in mice with glioma. Collectively, the discovery of miR-503 incorporated in MSC-EVs being a regulator that controls immune escape in glioma provides a novel molecular insight that holds promises to develop therapeutic strategies against glioma.


Assuntos
Vesículas Extracelulares , Glioma , Células-Tronco Mesenquimais , MicroRNAs , Animais , Camundongos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Glioma/genética , Glioma/imunologia , Interleucina-7/genética , Interleucina-7/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Humanos
10.
Nat Med ; 28(12): 2592-2600, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36526722

RESUMO

Treatment with immune checkpoint blockade (ICB) frequently triggers immune-related adverse events (irAEs), causing considerable morbidity. In 214 patients receiving ICB for melanoma, we observed increased severe irAE risk in minor allele carriers of rs16906115, intronic to IL7. We found that rs16906115 forms a B cell-specific expression quantitative trait locus (eQTL) to IL7 in patients. Patients carrying the risk allele demonstrate increased pre-treatment B cell IL7 expression, which independently associates with irAE risk, divergent immunoglobulin expression and more B cell receptor mutations. Consistent with the role of IL-7 in T cell development, risk allele carriers have distinct ICB-induced CD8+ T cell subset responses, skewing of T cell clonality and greater proportional repertoire occupancy by large clones. Finally, analysis of TCGA data suggests that risk allele carriers independently have improved melanoma survival. These observations highlight key roles for B cells and IL-7 in both ICB response and toxicity and clinical outcomes in melanoma.


Assuntos
Interleucina-7 , Melanoma , Humanos , Interleucina-7/genética , Interleucina-7/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Melanoma/tratamento farmacológico , Melanoma/genética , Linfócitos T CD8-Positivos , Variação Genética
11.
Front Immunol ; 13: 943510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059467

RESUMO

γδ T cells play important roles in immune responses by rapidly producing large quantities of cytokines. Recently, γδ T cells have been found to be involved in tissue homeostatic regulation, playing roles in thermogenesis, bone regeneration and synaptic plasticity. Nonetheless, the mechanisms involved in γδ T-cell development, especially the regulation of TCRδ gene transcription, have not yet been clarified. Previous studies have established that NOTCH1 signaling plays an important role in the Tcrg and Tcrd germline transcriptional regulation induced by enhancer activation, which is mediated through the recruitment of RUNX1 and MYB. In addition, interleukin-7 signaling has been shown to be required for Tcrg germline transcription, VγJγ rearrangement and γδ T-lymphocyte generation as well as for promoting T-cell survival. In this study, we discovered that interleukin-7 is required for the activation of enhancer-dependent Tcrd germline transcription during thymocyte development. These results indicate that the activation of both Tcrg and Tcrd enhancers during γδ T-cell development in the thymus depends on the same NOTCH1- and interleukin-7-mediated signaling pathways. Understanding the regulation of the Tcrd enhancer during thymocyte development might lead to a better understanding of the enhancer-dependent mechanisms involved in the genomic instability and chromosomal translocations that cause leukemia.


Assuntos
Receptores de Interleucina-7 , Fator de Transcrição STAT5 , Elementos Facilitadores Genéticos , Células Germinativas/metabolismo , Interleucina-7/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Interleucina-7/genética , Fator de Transcrição STAT5/metabolismo
12.
Sci Rep ; 12(1): 12506, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869100

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising novel therapeutic approach. However, primary and secondary resistance to CAR-T cell therapy is commonly encountered in various clinical trials. Despite the comprehensive studies to elucidate the mechanisms of resistance, effective resolution in clinical practice is still elusive. Inadequate persistence and subsequent loss of infused CAR-T cells are proposed major resistance mechanism associated with CAR-T cell treatment failure. Thus, we generated CAR-T cells armored with IL-7 to prolong the persistence of infused T-cells, particularly CD4 + T cells, and enhanced anti-tumor response. IL-7 increased CAR-T-cell persistence in vivo and contributed to the distinct T-cell cytotoxicity profile. Using mass cytometry (CyTOF), we further assessed the phenotypic and metabolic profiles of IL-7-secreting CAR-T cells, along with conventional CAR-T cells at the single-cell level. With in-depth analysis, we found that IL-7 maintained CAR-T cells in a less differentiated T-cell state, regulated distinct metabolic activity, and prevented CAR-T-cell exhaustion, which could be essential for CAR-T cells to maintain their metabolic fitness and anti-tumor response. Our findings thus provided clinical rationale to exploit IL-7 signaling for modulation and metabolic reprogramming of T-cell function to enhance CAR-T cell persistence and induce durable remission upon CAR-T cell therapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Diferenciação Celular , Humanos , Imunoterapia Adotiva , Interleucina-7/genética , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo
13.
Sci Rep ; 12(1): 10461, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729189

RESUMO

HER-2 targeted therapies, such as monoclonal antibodies (mAbs) and CAR-T cell therapy have been applied in the treatment of various of cancers. However, the anti-HER2 CAR-T cell therapy are limited by its expensive production procedure and fatal side effects such as cytokine storm or "On target, off tumor". The application of anti-HER2 mAbs to the soild tumor are also plagued by the patients resistant with different mechanisms. Thus, the recombinant protein technology can be presented as an attractive methods in advantage its less toxic and lower cost. In this study, we produced a HER-2-targeting recombinant protein, which is the fusion of the anti-HER-2 single chain fragment variable domain, CCL19 and IL7 (HCI fusion protein). Our results showed that the recombinant protein can induce the specific lysis effects of immune cells on HER-2-positive gastric tumor cells and can suppress gastric tumor growth in a xenograft model by chemotactic autoimmune cell infiltration into tumor tissues and activated T cells. Taken together, our results revealed that the HCI fusion protein can be applied as a subsequent clinical drug in treating HER-2 positive gastric tumors.


Assuntos
Quimiocina CCL19 , Interleucina-7 , Receptores de Antígenos Quiméricos , Proteínas Recombinantes de Fusão , Neoplasias Gástricas , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Quimiocina CCL19/genética , Quimiocina CCL19/farmacologia , Humanos , Interleucina-7/genética , Interleucina-7/farmacologia , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
PeerJ ; 10: e13454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602889

RESUMO

Background: Myasthenia gravis (MG) is an antibody-mediated autoimmune disease. In recent years, accumulating evidence has indicated that long non-coding RNAs (lncRNAs) can function as competing endogenous RNAs (ceRNAs), contributing to the progression of various autoimmune diseases. Nevertheless, the regulatory roles of ceRNAs in MG pathogenesis remain unclear. In this study, we aimed to elucidate the role of lncRNA OIP5-AS1 as a ceRNA associated with MG progression. Methods: Real-time PCR was used to detect OIP5-AS1 levels in peripheral blood mononuclear cells (PBMCs) from patients with MG. Luciferase reporter assays were performed to validate the relationship between OIP5-AS1 and miR-181c-5p. CCK-8 and flow cytometry were performed to test the proliferation and apoptotic abilities of OIP5-AS1 in Jurkat cells. Furthermore, real-time PCR and Western blot assays were performed to explore the interactions between OIP5-AS1, miR-181c-5p, and IL-7. Results: The expression of OIP5-AS1 was up-regulated in patients with MG. Luciferase reporter assay indicated that OIP5-AS1 targeted the miR-181c-5p. Functional assays showed that OIP5-AS1 suppressed Jurkat cell apoptosis and promoted cell proliferation by sponging miR-181c-5p. Mechanistically, knockdown of OIP5-AS1 inhibited IL-7 expression at both the mRNA and protein levels in Jurkat cells, whereas the miR-181c-5p inhibitor blocked the reduction of IL-7 expression induced by OIP5-AS1 suppression. Conclusions: We confirmed that OIP5-AS1 serves as an endogenous sponge for miR-181c-5p to regulate the expression of IL-7. Our findings provide novel insights into MG processes and suggests potential therapeutic targets for patients with MG.


Assuntos
MicroRNAs , Miastenia Gravis , RNA Longo não Codificante , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Células Jurkat , Interleucina-7/genética , Leucócitos Mononucleares/metabolismo , Miastenia Gravis/genética , Apoptose/genética , Proliferação de Células/genética
15.
Autoimmun Rev ; 21(7): 103120, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35595051

RESUMO

While physiological levels of IL-7 are essential for T cell proliferation, survival and co-stimulation, its escalated concentration has been associated with autoimmune diseases such as Rheumatoid arthritis (RA). Expression of IL-7 and IL-7R in RA monocytes is linked to disease activity score and TNF transcription. TNF stimulation can modulate IL-7 secretion and IL-7R frequency in myeloid cells, however, only IL-7R transcription levels are downregulated in anti-TNF responsive patients. Elevated levels of IL-7 in RA synovial tissue and fluid are involved in attracting RA monocytes into the inflammatory joints and remodeling them into proinflammatory macrophages and mature osteoclasts. Further, IL-7 amplification of RA Th1 cell differentiation and IFNγ secretion, can directly prime myeloid IL-7R expression and thereby exacerbate IL-7-mediated joint inflammatory and erosive imprints. In parallel, IL-7 accentuates joint angiogenesis by expanding the production of proangiogenic factors from RA macrophages and endothelial cells. In preclinical models, blockade of IL-7 or IL-7R can effectively impair joint inflammation, osteoclast formation, and neovascularization primarily by impeding monocyte and endothelial cell infiltration as well as inhibition of pro-inflammatory macrophage and Th1/Th17 cell differentiation. In conclusion, disruption of IL-7/IL-7R signaling can uniquely intercept the crosstalk between RA myeloid and lymphoid cells in their ability to trigger neovascularization.


Assuntos
Artrite Reumatoide , Interleucina-7 , Artrite Reumatoide/genética , Autoimunidade , Células Endoteliais/metabolismo , Humanos , Interleucina-7/genética , Interleucina-7/metabolismo , Líquido Sinovial/metabolismo , Inibidores do Fator de Necrose Tumoral
16.
Virol J ; 19(1): 74, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459242

RESUMO

BACKGROUND: Selectively replicating herpes simplex virus-2 (HSV-2) vector is a promising treatment for cancer therapy. The insertion of multiple transgenes into the viral genome has been performed to improve its oncolytic activity. METHODS: Herein, we simultaneously constructed five "armed" oncolytic viruses (OVs), designated oHSV2-IL12, -IL15, GM-CSF, -PD1v, and IL7 × CCL19. These OVs delete the ICP34.5 and ICP47 genes with the insertion of transgenes into the deleted ICP34.5 locus. The anti-tumor efficacy in vivo was tested in the syngeneic 4T1 and CT26 tumor-bearing mice model. RESULTS: The OVs showed comparable oncolytic capability in vitro. The combination therapy of oHSV2-IL12, -IL15, GM-CSF, -PD1v, and IL7 × CCL19 exhibited the highest tumor inhibition efficacy compared with the treatment of single OV or two OVs combination. CONCLUSIONS: The OVs armed with different transgenes combination therapy also named 5-valent oHSV2 (also called cocktail therapy) might be an effective therapeutic strategy for solid tumors.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Vetores Genéticos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Herpesvirus Humano 2/genética , Interleucina-12/genética , Interleucina-15/genética , Interleucina-7/genética , Camundongos , Neoplasias/tratamento farmacológico , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética
17.
Cell Death Differ ; 29(11): 2163-2176, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35459909

RESUMO

The processes leading from disturbed B-cell development to adult B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) remain poorly understood. Here, we describe Irf4-/- mice as prone to developing BCP-ALL with age. Irf4-/- preB-I cells exhibited impaired differentiation but enhanced proliferation in response to IL-7, along with reduced retention in the IL-7 providing bone marrow niche due to decreased CXCL12 responsiveness. Thus selected, preB-I cells acquired Jak3 mutations, probably following irregular AID activity, resulting in malignant transformation. We demonstrate heightened IL-7 sensitivity due to Jak3 mutants, devise a model to explain it, and describe structural and functional similarities to Jak2 mutations often occurring in human Ph-like ALL. Finally, targeting JAK signaling with Ruxolitinib in vivo prolonged survival of mice bearing established Irf4-/- leukemia. Intriguingly, organ infiltration including leukemic meningeosis was selectively reduced without affecting blood blast counts. In this work, we present spontaneous leukemogenesis following IRF4 deficiency with potential implications for high-risk BCP-ALL in adult humans.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Animais , Humanos , Camundongos , Linfócitos B , Linfoma de Burkitt/patologia , Interleucina-7/genética , Janus Quinase 3/genética , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transdução de Sinais
18.
J Immunol ; 208(1): 155-168, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34872976

RESUMO

CD8+ memory T (TM) cells play a critical role in immune defense against infection. Two common γ-chain family cytokines, IL-2 and IL-7, although triggering the same mTORC1-S6K pathway, distinctly induce effector T (TE) cells and TM cells, respectively, but the underlying mechanism(s) remains elusive. In this study, we generated IL-7R-/and AMPKα1-knockout (KO)/OTI mice. By using genetic and pharmaceutical tools, we demonstrate that IL-7 deficiency represses expression of FOXO1, TCF1, p-AMPKα1 (T172), and p-ULK1 (S555) and abolishes T cell memory differentiation in IL-7R KO T cells after Listeria monocytogenesis rLmOVA infection. IL-2- and IL-7-stimulated strong and weak S6K (IL-2/S6Kstrong and IL-7/S6Kweak) signals control short-lived IL-7R-CD62L-KLRG1+ TE and long-term IL-7R+CD62L+KLRG1- TM cell formations, respectively. To assess underlying molecular pathway(s), we performed flow cytometry, Western blotting, confocal microscopy, and Seahorse assay analyses by using the IL-7/S6Kweak-stimulated TM (IL-7/TM) and the control IL-2/S6Kstrong-stimulated TE (IL-2/TE) cells. We determine that the IL-7/S6Kweak signal activates transcriptional FOXO1, TCF1, and Id3 and metabolic p-AMPKα1, p-ULK1, and ATG7 molecules in IL-7/TM cells. IL-7/TM cells upregulate IL-7R and CD62L, promote mitochondria biogenesis and fatty acid oxidation metabolism, and show long-term cell survival and functional recall responses. Interestingly, AMPKα1 deficiency abolishes the AMPKα1 but maintains the FOXO1 pathway and induces a metabolic switch from fatty acid oxidation to glycolysis in AMPKα1 KO IL-7/TM cells, leading to loss of cell survival and recall responses. Taken together, our data demonstrate that IL-7-stimulated weak strength of mTORC1-S6K signaling controls T cell memory via activation of transcriptional FOXO1-TCF1-Id3 and metabolic AMPKα1-ULK1-ATG7 pathways. This (to our knowledge) novel finding provides a new mechanism for a distinct IL-2/IL-7 stimulation model in T cell memory and greatly impacts vaccine development.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proteína Forkhead Box O1/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Interleucina-7/metabolismo , Listeria monocytogenes/fisiologia , Listeriose/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células T de Memória/imunologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Citotoxicidade Imunológica , Ácidos Graxos/metabolismo , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica , Glicólise , Fator 1-alfa Nuclear de Hepatócito/genética , Memória Imunológica , Proteínas Inibidoras de Diferenciação/genética , Interleucina-7/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-7/genética , Transdução de Sinais , Desenvolvimento de Vacinas
19.
Cancer Gene Ther ; 29(7): 961-972, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34645974

RESUMO

Engineered T-cell therapies have proven to be successful in cancer and their clinical effectiveness is directly correlated with the infused T-cell differentiation profile. Indeed, stem cell memory and central memory T cells proliferate and persist longer in vivo compared with more-differentiated T cells, while conferring enhanced antitumor activity. Here, we propose an optimized process using cord blood (CB) to generate minimally differentiated T-cell products in terms of phenotype, function, gene expression, and metabolism, using peripheral blood (PB)-derived T cells cultured with IL-2 as a standard. Phenotypically, CB-derived T cells, particularly CD4 T cells, are less differentiated than their PB counterparts when cultured with IL-2 or with IL-7 and IL-15. Furthermore, culture with IL-7 and IL-15 enables better preservation of less-differentiated CB-derived T cells compared with IL-2. In addition, transcriptomic and metabolic assessments of CB-derived transgenic T cells cultured with IL-7 and IL-15 point out their naivety and stemness signature. These relatively quiescent transgenic T cells are nevertheless primed for secondary stimulation and cytokine production. In conclusion, our study indicates that CB may be used as a source of early differentiated T cells to develop more effective adoptive cancer immunotherapy.


Assuntos
Citocinas , Sangue Fetal , Células Cultivadas , Interleucina-15/genética , Interleucina-2/genética , Interleucina-2/farmacologia , Interleucina-7/genética
20.
J Cell Mol Med ; 25(21): 9939-9952, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34581005

RESUMO

Interleukin (IL)-7 is known to enhance the macrophages cytotoxic activity and that macrophages play a pivotal role in the development and progression of myocardial ischaemia/reperfusion (I/R) injury. However, the effects of IL-7 on macrophages infiltration and polarization in myocardial I/R injury are currently unclear. This study aimed to evaluate the effects of the IL-7 expression on myocardial I/R injury and their relationship with macrophages. The data showed that IL-7 expression in mouse heart tissue increases following I/R injury and that IL-7 knockout or anti-IL-7 antibody treatment significantly improve I/R injury, including reduction in myocardial infarction area, a serum troponin T level decreases and an improvement in cardiac function. On the other hand, recombinant IL-7 (rIL-7) supplementation induces opposite effects and the anti-IL-7 antibody significantly reduces the cardiomyocyte apoptosis and macrophage infiltration. rIL-7 cannot directly cause apoptosis, but it can induce cardiomyocyte apoptosis through macrophages, in addition to increase the macrophages migration in vitro. Anti-IL-7 antibody affects the cytokine production in T helper (Th) 1 and Th2 cells and also promotes the macrophages differentiation to M2 macrophages. However, anti-IL-7 antibody does not reduce the M1 macrophage number, and it only increases the ratio of M2/M1 macrophages in mice heart tissues after I/R injury. Taking together, these data reveal that IL-7 plays an intensifying role in myocardial I/R injury by promoting cardiomyocyte apoptosis through the regulation of macrophage infiltration and polarization.


Assuntos
Interleucina-7/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Apoptose/genética , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Expressão Gênica , Testes de Função Cardíaca , Hemodinâmica , Imunofenotipagem , Interleucina-7/genética , Macrófagos/patologia , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/diagnóstico , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA