Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.730
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1455819, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39431054

RESUMO

Tuberculosis(TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb) infections, remains the leading cause of mortality from a single infectious agent globally. The progression of tuberculosis disease is contingent upon the complex interplay between the host's immune system and the pathogen Mtb. Interleukin-26 (IL-26), the most recently identified cytokine belonging to the IL-10 family, exhibits both extracellular antimicrobial properties and pro-inflammatory functions. However, the precise role of IL-26 in the host immune defense against Mtb infections and intracellular killing remains largely unexplored. In this study, we observed significantly elevated IL-26 mRNA expression in peripheral blood mononuclear cells of active-TB patients compared to healthy individuals. Conversely, circulating IL-26 levels in the plasma of adult TB patients were markedly lower than those of healthy cohorts. We purified recombinant IL-26 from an E. coli expression system using the Ni-NTA resin. Upon stimulations with the recombinant IL-26, human THP1 cells exhibited rapid morphological changes characterized by increased irregular spindle shape and formation of granular structures. Treating THP1 cells with IL-26 can also lead to heightened expressions of CD80, TNF-α, and iNOS but not CD206 and Arg1 in these cells, indicating an M1 macrophage differentiation phenotype. Furthermore, our investigations revealed a dose-dependent escalation of reactive oxygen species production, decreased mitochondrial membrane potential, and enhanced autophagy flux activity in THP1 macrophages following IL-26 treatment. Moreover, our results demonstrated that IL-26 contributed to the elimination of intracellular Mycobacterium tuberculosis via orchestrated ROS production. In conclusion, our findings elucidated the role of IL-26 in the development of tuberculosis and its contributions to intracellular bacilli killing by macrophages through the induction of M1-polarization and ROS production. These insights may have significant implications for understanding the pathogenesis of tuberculosis and developing novel therapeutic strategies.


Assuntos
Interleucinas , Macrófagos , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/imunologia , Interleucinas/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Tuberculose/microbiologia , Tuberculose/imunologia , Tuberculose/metabolismo , Adulto , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Células THP-1 , Espécies Reativas de Oxigênio/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Ativação de Macrófagos , Interações Hospedeiro-Patógeno
2.
J Med Microbiol ; 73(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39360709

RESUMO

Introduction. Peri-implantitis is a plaque-associated disease that leads to implant loss and arises from bacterial biofilms on the surface of the implant. Smoking is a risk factor for peri-implantitis and impedes treatment effectiveness. Additionally, aryl hydrocarbon receptor (AHR), IL-6, and IL-22 levels are related to peri-implantitis.Aim. We aimed to investigate the effects of nicotine on inflammatory response, bacterial growth and biofilm formation.Hypothesis/Gap Statement. We hypothesized that nicotine promoted pathogenic bacterial growth and biofilm formation, thereby aggravating inflammation.Methodology. The expression of AHR, IL-6 and IL-22 was measured in peri-implant sulci fluid using quantitative PCR and Western blot analyses. The cementum was incubated with bacterial suspension including Porphyromonas gingivalis, Streptococcus sanguinis and Fusobacterium nucleatum and treated with 100, 200, 250 and 300 µg ml-1 nicotine, and then, the absorbance and number of colony-forming units were detected. Biofilm formation was evaluated using the tissue culture plate method and safranin O staining. Carbohydrates and proteins were measured by the phenol-sulfuric acid method and the bicinchoninic acid method, respectively.Results. The results indicated that smoking increased the levels of AHR, IL-6 and IL-22. Functionally, nicotine promoted the growth of P. gingivalis, S. sanguinis and F. nucleatum. Additionally, it promoted the biofilm formation of these bacteria and increased the contents of carbohydrates and proteins.Conclusion. Nicotine promoted bacterial growth and biofilm build-up, suggesting that smoking may aggravate the progression of peri-implantitis.


Assuntos
Biofilmes , Nicotina , Peri-Implantite , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Nicotina/farmacologia , Humanos , Peri-Implantite/microbiologia , Fusobacterium nucleatum/efeitos dos fármacos , Fusobacterium nucleatum/crescimento & desenvolvimento , Fusobacterium nucleatum/fisiologia , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/crescimento & desenvolvimento , Masculino , Implantes Dentários/microbiologia , Feminino , Interleucina-6/metabolismo , Pessoa de Meia-Idade , Interleucinas/metabolismo , Streptococcus sanguis/efeitos dos fármacos , Streptococcus sanguis/crescimento & desenvolvimento , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Fumar/efeitos adversos
3.
Front Immunol ; 15: 1449441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39380989

RESUMO

In the field of breast cancer treatment, the immunotherapy involving natural killer (NK) cells is increasingly highlighting its distinct potential and significance. Members of the interleukin (IL) family play pivotal regulatory roles in the growth, differentiation, survival, and apoptosis of NK cells, and are central to their anti-tumor activity. These cytokines enhance the ability of NK cells to recognize and eliminate tumor cells by binding to specific receptors and activating downstream signaling pathways. Furthermore, interleukins do not function in isolation; the synergistic or antagonistic interactions between different interleukins can drive NK cells toward various functional pathways, ultimately leading to diverse outcomes for breast cancer patients. This paper reviews the intricate relationship between NK cells and interleukins, particularly within the breast cancer tumor microenvironment. Additionally, we summarize the latest clinical studies and advancements in NK cell therapy for breast cancer, along with the potential applications of interleukin signaling in these therapies. In conclusion, this article underscores the critical role of NK cells and interleukin signaling in breast cancer treatment, providing valuable insights and a significant reference for future research and clinical practice.


Assuntos
Neoplasias da Mama , Interleucinas , Células Matadoras Naturais , Transdução de Sinais , Microambiente Tumoral , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Microambiente Tumoral/imunologia , Interleucinas/imunologia , Interleucinas/metabolismo , Animais
4.
Sci Rep ; 14(1): 23742, 2024 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390111

RESUMO

B cells play a key role in humoral immune responses by producing antibodies. Although there are numerous research on memory B cells definition markers and cytokines on B cell development, different studies have yielded contradictory conclusions due to species studied, the different cells and stimulating agents used. In the current study, we conducted a detailed characterization of B cells in human CBMCs, PBMCs and tonsil, including expression of Igs, activation and memory markers. Furthermore, we found that considerable amounts of IgA and IgG were expressed by CD27- B cells. These "Atypical" memory B cells corresponded to approximately 50% of IgG+ and IgA+B cells in blood, this proportion even reached 90% in tonsil. In addition, we investigated the effect of IL-21 and TGF-ß1 on the membrane-bound form and secreted form of Igs using PBMCs and purified blood B cells. There were actual differences between the effect of cytokines on Igs secretion and surface expression. Our study will be helpful to advance the knowledge and understanding of humoral memory.


Assuntos
Biomarcadores , Antígenos CD40 , Interleucinas , Células B de Memória , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral , Humanos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/efeitos dos fármacos , Biomarcadores/análise , Antígenos CD40/metabolismo , Imunoglobulina A/metabolismo , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Memória Imunológica/efeitos dos fármacos , Interleucinas/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/efeitos dos fármacos , Células B de Memória/imunologia , Células B de Memória/metabolismo , Tonsila Palatina/citologia , Tonsila Palatina/imunologia , Tonsila Palatina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
5.
BMC Immunol ; 25(1): 66, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39385103

RESUMO

BACKGROUND: There is substantial evidence indicating that cytokines play a role in the immune defense against tuberculosis. This study aims to evaluate the levels of various cytokines in pleural effusion to ditinguish between tuberculosis pleurisy and malignant pleurisy. METHODS: A total of 82 participants with pleural effusion were included in the training cohort, and 76 participants were included in the validation cohort. The individuals were divided into tuberculosis and malignant pleurisy groups. The concentrations of interleukin-1ß (IL-1ß), IL-4, IL-6, IL-10, IL-17 A, IL-17 F, IL-21, IL-22, IL-25, IL-31, IL-33, interferon-γ (IFN-γ), soluble CD40 ligand (sCD40L) and tumor necrosis factor-α (TNF-α) in pleural effusion were measured using a multiplex cytokine assay. The threshold values were calculated according to the receiver operating characteristic (ROC) curve analysis to aid in diagnosing tuberculosis pleurisy. Furthermore, the combined measure was validated in the validation cohort. RESULTS: The levels of all 14 cytokines in pleural effusion were significantly higher in participants with tuberculosis compared to those with malignant pleurisy (all P < 0.05). The area under the curve (AUC) was ≥ 0.920 for the IL-22, sCD40L, IFN-γ, TNF-α and IL-31, which were significantly increased in tuberculous pleural effusion (TPE) compared to MPE in the training cohort. Threshold values of 95.80 pg/mL for IFN-γ, 41.80 pg/mL for IL-31, and 18.87 pg/mL for IL-22 provided ≥ 90% sensitivity and specificity in distinguishing between tuberculosis pleurisy and malignant pleurisy in the training cohort. Among these, IL-22 combined with sCD40L showed the best sensitivity and specificity (94.0% and 96.9%) for diagnosing tuberculosis pleurisy, and this finding was validated in the validation cohort. CONCLUSION: We demonstrated that the levels of IL-1ß, IL-4, IL-6, IL-10, IL-17 A, IL-17 F, IL-21, IL-22, IL-25, IL-31, IL-33, IFN-γ, sCD40L and TNF-α in pleural effusion had significant difference between tuberculosis pleurisy and malignant pleurisy. Specifically, IL-22 ≥ 18.87 pg/mL and sCD40L ≥ 53.08 pg/mL can be clinically utilized as an efficient diagnostic strategy for distinguishing tuberculosis pleurisy from malignant pleurisy.


Assuntos
Ligante de CD40 , Interleucina 22 , Interleucinas , Derrame Pleural , Tuberculose Pleural , Humanos , Interleucinas/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Ligante de CD40/metabolismo , Tuberculose Pleural/diagnóstico , Tuberculose Pleural/imunologia , Adulto , Derrame Pleural/diagnóstico , Idoso , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/imunologia , Curva ROC , Biomarcadores/metabolismo , Citocinas/metabolismo , Diagnóstico Diferencial
6.
Mol Hum Reprod ; 30(10)2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39423135

RESUMO

Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease, which leads to serious impairment of reproductive health in women of child-bearing age. Anovulation or oligo-ovulation is a common clinical manifestation of PCOS patients. A disturbance of the ovarian immune microenvironment contributes to the disorders of follicle development and ovulation; however, the underlying mechanism remains unclear. Here we demonstrated the protective effect of immune factor interleukin-22 (IL-22) on PCOS follicle development and ovulation. Follicular IL-22 levels were significantly lower in PCOS patients than in the control group and were positively correlated with oocyte fertilization rate and high-quality embryo rate. Additionally, IL-22 evidently improved follicle development in vitro and promoted ovulation-related gene expression, which was disrupted by the depletion of interleukin-22 receptor 1 (IL-22R1) or inhibition of STAT3 in granulosa cells. This indicates that IL-22 acts through IL-22R1 and the STAT3 signaling pathway to promote follicle development and ovulation in PCOS. In summary, this study has elucidated the vital role of the ovarian immune microenvironment in follicle development and ovulation. Application of IL-22 may provide new insights into the treatment of PCOS patients.


Assuntos
Interleucina 22 , Interleucinas , Ovulação , Síndrome do Ovário Policístico , Receptores de Interleucina , Fator de Transcrição STAT3 , Transdução de Sinais , Síndrome do Ovário Policístico/metabolismo , Feminino , Interleucinas/metabolismo , Interleucinas/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Humanos , Ovulação/efeitos dos fármacos , Receptores de Interleucina/metabolismo , Receptores de Interleucina/genética , Adulto , Folículo Ovariano/metabolismo , Folículo Ovariano/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Animais
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(5): 1578-1584, 2024 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-39479851

RESUMO

OBJECTIVE: To investigate the effect of feeder layer cells expressing interleukin (IL)-21 on the amplification of NK cells In Vitro . METHODS: The K562 cell line with IL-21 expression on its membrane was constructed by electroporation, and co-cultured with NK cells after inactivation. The proliferation of NK cells was observed. The killing function of the amplified NK cells In Vitro was evaluated by the lactate dehydrogenase (LDH) and interferon-γ (IFN-γ) release assay. A colorectal cancer xenograft model in NOD/SCID mice was established, and a blank control group, a NK cell group and an amplified NK cell group were set up to detect the tumor killing effect of amplified NK cells in vivo. RESULTS: K562 cells expressing IL-21 on the membrane were successfully constructed by electroporation. After co-culturing with K562 cells expressing IL-21 on the membrane for 17 days, the NK cells increased to 700 times, which showed an enhanced amplification ability compared with control group (P < 0.001). In the tumor cell killing experiment In Vitro , there was no significant difference in the killing activity on tumor cells between NK cells and amplified NK cells, and there was also no significant difference in mice in vivo. CONCLUSION: K562 cells expressing IL-21 on the membrane can significantly increase the amplification ability of NK cells In Vitro , but do not affect the killing function of NK cells In Vitro and in vivo. It can be used for the subsequent large-scale production of NK cells In Vitro .


Assuntos
Técnicas de Cocultura , Células Alimentadoras , Interleucinas , Células Matadoras Naturais , Camundongos Endogâmicos NOD , Camundongos SCID , Interleucinas/metabolismo , Animais , Camundongos , Humanos , Células K562 , Interferon gama/metabolismo , Proliferação de Células , Eletroporação , Neoplasias Colorretais
8.
Int J Mol Sci ; 25(20)2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39456897

RESUMO

Interleukins play dual roles in breast cancer, acting as both promoters and inhibitors of tumorigenesis within the tumor microenvironment, shaped by their inflammatory functions. This study analyzed the subtype-specific prognostic significance of an acute inflammatory versus a chronic inflammatory interleukin signature using microarray-based gene expression analysis. Correlations between these interleukin signatures and immune cell markers (CD8, IgKC, and CD20) and immune checkpoints (PD-1) were also evaluated. This study investigated the prognostic significance of an acute inflammatory IL signature (IL-12, IL-21, and IFN-γ) and a chronic inflammatory IL signature (IL-4, IL-5, IL-10, IL-13, IL-17, and CXCL1) for metastasis-free survival (MFS) using Kaplan-Meier curves and Cox regression analyses in a cohort of 461 patients with early breast cancer. Correlations were analyzed using the Spearman-Rho correlation coefficient. Kaplan-Meier curves revealed that the prognostic significance of the acute inflammatory IL signature was specifically pronounced in the basal-like subtype (p = 0.004, Log Rank). This signature retained independent prognostic significance in multivariate Cox regression analysis (HR 0.463, 95% CI 0.290-0.741; p = 0.001). A higher expression of the acute inflammatory IL signature was associated with longer MFS. The chronic inflammatory IL signature showed a significant prognostic effect in the whole cohort, with higher expression associated with shorter MFS (p = 0.034). Strong correlations were found between the acute inflammatory IL signature and CD8 expression (ρ = 0.391; p < 0.001) and between the chronic inflammatory IL signature and PD-1 expression (ρ = 0.627; p < 0.001). This study highlights the complex interaction between acute and chronic inflammatory interleukins in breast cancer progression and prognosis. These findings provide insight into the prognostic relevance of interleukin expression patterns in breast cancer and may inform future therapeutic strategies targeting the immune-inflammatory axis.


Assuntos
Neoplasias da Mama , Interleucinas , Microambiente Tumoral , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/imunologia , Neoplasias da Mama/genética , Microambiente Tumoral/imunologia , Prognóstico , Interleucinas/metabolismo , Interleucinas/genética , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Adulto , Inflamação/metabolismo , Inflamação/patologia , Estimativa de Kaplan-Meier , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica
9.
Cells ; 13(20)2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39451216

RESUMO

Experimental evidence suggests that, in the inflamed gut of inflammatory bowel disease (IBD) patients, interleukin-34 (IL-34) triggers detrimental signaling pathways. Factors/mechanisms regulating IL-34 production in IBD remain poorly characterized. Bromodomain-containing 4 (BRD4), a transcriptional and epigenetic regulator, is over-expressed in IBD, and studies in cancer cells suggest that BRD4 might positively control IL-34 expression. This study aimed to assess whether, in IBD, BRD4 regulates IL-34 expression. In IBD, there was an up-regulation of both IL-34 and BRD4 compared to the controls, and the two proteins co-localized in both lamina propria mononuclear cells (LPMCs) and epithelial cells. Flow cytometry analysis of CD45+ LPMCs confirmed that the percentages of IL-34- and BRD4-co-expressing cells were significantly higher in IBD than in the controls and showed that more than 80% of the IL-34-positive CD45-LPMCs expressed BRD4. IL-34 and BRD4 were mainly expressed by T cells and macrophages. IL-34 expression was reduced in IBD LPMCs transfected with BRD4 antisense oligonucleotide and in the colons of mice with dextran sulfate sodium-induced colitis treated with JQ1, a pharmacological inhibitor of BRD4. These data indicate that BRD4 is a positive regulator of IL-34 in IBD, further supporting the pathogenic role of BRD4 in IBD-associated mucosal inflammation.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Interleucinas , Fatores de Transcrição , Interleucinas/metabolismo , Interleucinas/genética , Animais , Humanos , Fatores de Transcrição/metabolismo , Camundongos , Colite/metabolismo , Colite/patologia , Colite/induzido quimicamente , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/genética , Masculino , Feminino , Camundongos Endogâmicos C57BL , Mucosa Intestinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Azepinas/farmacologia , Adulto , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Triazóis/farmacologia , Sulfato de Dextrana , Proteínas que Contêm Bromodomínio
10.
Front Immunol ; 15: 1397916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346912

RESUMO

Introduction: NK cells are dysfunctional in myasthenia gravis (MG), but the mechanism is unclear. This study aims to measure associations and underlying mechanisms between the NK cells and the development of MG. Methods: Twenty healthy controls (HCs) and 53 MG patients who did not receive glucocorticoids and immunosuppressants were collected. According to the Myasthenia Gravis Foundation of America (MGFA) classification, MG patients were categorized into MGFA I group (n = 18) and MGFA II-IV group (n = 35). Flow cytometry, cell sorting, ELISA, mRNA-sequencing, RT-qPCR, western blot, and cell culture experiments were performed to evaluate the regulatory mechanism of exhausted NK cells. Results: Peripheral NK cells in MGFA II-IV patients exhibit exhausted phenotypes than HCs, marked by the dramatic loss of total NK cells, CD56dimCD16- NK cells, elevated PD1 expression, reduced NKG2D expression, impaired cytotoxic activity (perforin, granzyme B, CD107a) and cytokine secretion (IFN-γ). Plasma IL-6 and IL-21 are elevated in MG patients and mainly derived from the aberrant expansion of monocytes and Tfh cells, respectively. IL-6/IL-21 cooperatively induced NK-cell exhausted signature via upregulating SOCS2 and inhibiting the phosphorylation of STAT5. SOCS2 siRNA and IL-2 supplement attenuated the IL-6/IL-21-mediated alteration of NK-cell phenotypes and function. Discussion: Inhibition of IL-6/IL-21/SOCS2/STAT5 pathway and recovery of NK-cell ability to inhibit autoimmunity may be a new direction in the treatment of MG.


Assuntos
Células Matadoras Naturais , Miastenia Gravis , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Miastenia Gravis/imunologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Interleucinas/metabolismo , Interleucina-6/metabolismo , Interleucina-6/sangue , Transdução de Sinais , Estudos de Casos e Controles
11.
J Immunol ; 213(8): 1115-1124, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39240167

RESUMO

EBV-induced gene 3 (Ebi3) is a ß subunit within the IL-12 cytokine family that canonically binds to α subunits p19, p28, or p35 to form the heterodimeric cytokines IL-39, IL-27, and IL-35, respectively. In the last decade, the binding partners for Ebi3 have continued to expand to include IL-6 and the other IL-12 family ß subunit p40, revealing the possibility that Ebi3 may be able to bind to other cytokines and have distinct functions. We first explored this possibility utilizing an in vivo mouse model of regulatory T cell-restricted deletions of the subunits composing the cytokine IL-35, p35, and Ebi3, and we observed a differential impact on CD8+ T cell inhibitory receptor expression despite comparable reduction in tumor growth. We then screened the ability of Ebi3 to bind to different cytokines with varying structural resemblance to the IL-12 family α subunits. These in vitro screens revealed extracellular binding of Ebi3 to both IFN-γ and IL-10. Ebi3 bound to IFN-γ and IL-10 abrogated signal transduction and downstream functions of both cytokines. Lastly, we validated that extracellular complex formation after mixing native proteins resulted in loss of function. These data suggest that secreted partnerless Ebi3 may bind to cytokines within the extracellular microenvironment and act as a cytokine sink, further expanding the potential immunological impact of Ebi3.


Assuntos
Interferon gama , Interleucina-10 , Antígenos de Histocompatibilidade Menor , Animais , Camundongos , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Ligação Proteica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/imunologia , Transdução de Sinais/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Interleucinas/metabolismo , Interleucinas/imunologia , Receptores de Citocinas
12.
J Gastrointest Cancer ; 55(4): 1498-1510, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39256264

RESUMO

PURPOSE: This review article summarizes the pathophysiological aspects of interleukins (ILs) including IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, and IL-10 in pancreatic cancer (PC). METHODS: Science Direct, PubMed, and Google Scholar were used for the literature review. The search was conducted until August 12, 2024, and particular keywords such as "Pancreatic Cancer," "Interleukins," "Pathophysiological Aspects," "Immunosuppression," "Invasiveness," and "Metastasis" were used. Focusing on interleukins related to pancreatic cancer, 61 original studies were included: 32 studies for human patients, 16 studies for animal models, and 13 studies for both animal models and human patients. All types of PC were considered. The timeframe of 1991 to 2024 was chosen for clinical studies. RESULTS: In epithelial pancreatic tumors, IL-1 is a major inflammation factor. Serum concentrations of soluble interleukin-2-receptor were considerably greater in patients with PC and chronic pancreatitis than in healthy individuals. In comparison to controls, pancreatic cancer patients had considerably greater levels of macrophage colony-stimulating factor and significantly lower levels of stem cell factor and IL-3. The tissues and cells of pancreatic cancer have higher concentrations of IL-4 receptors. IL-5 has a role in the accumulation of pancreatic fibrosis. For individuals with pancreatic ductal adenocarcinoma (PDAC), a high serum level of IL-6 may be a separate risk factor for the development of widespread liver metastases. PDAC patients' peripheral blood mononuclear cells exhibit a substantial upregulation of IL-7 receptor. The role of IL-8 in the growth and spread of PC in humans. The miR-200a/ß-catenin axis may be the mechanism by which IL-9 stimulates the proliferation and metastasis of PC cells. Blocking IL-10 in the local microenvironment appears to result in a significant reversal of tumor-induced immunosuppression. CONCLUSION: The article concludes that interleukins 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 played significant roles in the pathogenesis of PC.


Assuntos
Interleucinas , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/imunologia , Interleucinas/sangue , Interleucinas/metabolismo , Animais
13.
Nat Commun ; 15(1): 7662, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266531

RESUMO

Most patients with advanced cancer develop cachexia, a multifactorial syndrome characterized by progressive skeletal muscle wasting. Despite its catastrophic impact on survival, the critical mediators responsible for cancer cachexia development remain poorly defined. Here, we show that a distinct subset of neutrophil-like monocytes, which we term cachexia-inducible monocytes (CiMs), emerges in the advanced cancer milieu and promotes skeletal muscle loss. Unbiased transcriptome analysis reveals that interleukin 36 gamma (IL36G)-producing CD38+ CiMs are induced in chronic monocytic blood cancer characterized by prominent cachexia. Notably, the emergence of CiMs and the activation of CiM-related gene signatures in monocytes are confirmed in various advanced solid cancers. Stimuli of toll-like receptor 4 signaling are responsible for the induction of CiMs. Genetic inhibition of IL36G-mediated signaling attenuates skeletal muscle loss and rescues cachexia phenotypes in advanced cancer models. These findings indicate that the IL36G-producing subset of neutrophil-like monocytes could be a potential therapeutic target in cancer cachexia.


Assuntos
Caquexia , Monócitos , Músculo Esquelético , Neoplasias , Neutrófilos , Caquexia/metabolismo , Caquexia/etiologia , Monócitos/metabolismo , Monócitos/imunologia , Humanos , Neoplasias/complicações , Neoplasias/metabolismo , Neoplasias/imunologia , Neutrófilos/metabolismo , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Masculino , Transdução de Sinais , Linhagem Celular Tumoral , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Camundongos Endogâmicos C57BL , Interleucinas/metabolismo , Interleucinas/genética , Feminino , Perfilação da Expressão Gênica
14.
Front Biosci (Landmark Ed) ; 29(9): 312, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344323

RESUMO

Interleukin 31 (IL-31) is a proinflammatory cytokine, mainly secreted by Type II helper T cells. It signals through a heterodimeric receptor complex composed of IL-31 receptor α and oncostatin-M receptor ß chain. The hallmark feature of IL-31, in its pathological role, is its ability to induce pruritus in mammals. Pruritus is a common symptom and major reason of morbidity in cancer patients, compromising their quality of life. Although, IL-31 is differentially expressed in different tumor types and could promote or inhibit cancer progression, high expression of IL-31 is a contributing factor to advanced stage tumor and severity of pruritus. The simultaneous existence of pruritus and cancer could either result from the aberrations in common proteins that co-exist in both cancer and pruritus or the therapeutic treatment of cancer could indirectly induce pruritus. Although the biology of IL-31 has predominantly been described in skin diseases such as atopic dermatitis and other inflammatory diseases, the precise role of IL-31 in the tumor biology of different cancer types remains elusive. Herein, we summarize the current understanding on the role of this cytokine in the pathogenesis of different cancers.


Assuntos
Interleucinas , Neoplasias , Prurido , Humanos , Prurido/metabolismo , Prurido/imunologia , Prurido/etiologia , Neoplasias/metabolismo , Neoplasias/complicações , Neoplasias/imunologia , Interleucinas/metabolismo , Animais , Transdução de Sinais , Inflamação/metabolismo
15.
Appl Microbiol Biotechnol ; 108(1): 469, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298023

RESUMO

Prior research has indicated that the gut-lung-axis can be influenced by the intestinal microbiota, thereby impacting lung immunity. Rifaximin is a broad-spectrum antibacterial drug that can maintain the homeostasis of intestinal microflora. In this study, we established an influenza A virus (IAV)-infected mice model with or without rifaximin supplementation to investigate whether rifaximin could ameliorate lung injury induced by IAV and explore the molecular mechanism involved. Our results showed that IAV caused significant weight loss and disrupted the structure of the lung and intestine. The analysis results of 16S rRNA and metabolomics indicated a notable reduction in the levels of probiotics Lachnoclostridium, Ruminococcaceae_UCG-013, and tryptophan metabolites in the fecal samples of mice infected with IAV. In contrast, supplementation with 50 mg/kg rifaximin reversed these changes, including promoting the repair of the lung barrier and increasing the abundance of Muribaculum, Papillibacter and tryptophan-related metabolites content in the feces. Additionally, rifaximin treatment increased ILC3 cell numbers, IL-22 level, and the expression of RORγ and STAT-3 protein in the lung. Furthermore, our findings demonstrated that the administration of rifaximin can mitigate damage to the intestinal barrier while enhancing the expression of AHR, IDO-1, and tight junction proteins in the small intestine. Overall, our results provided that rifaximin alleviated the imbalance in gut microbiota homeostasis induced by IAV infection and promoted the production of tryptophan-related metabolites. Tryptophan functions as a signal to facilitate the activation and movement of ILC3 cells from the intestine to the lung through the AHR/STAT3/IL-22 pathway, thereby aiding in the restoration of the barrier. KEY POINTS: • Rifaximin ameliorated IAV infection-caused lung barrier injury and induced ILC3 cell activation. • Rifaximin alleviated IAV-induced gut dysbiosis and recovered tryptophan metabolism. • Tryptophan mediates rifaximin-induced ILC3 cell activation via the AHR/STAT3/IL-22 pathway.


Assuntos
Microbioma Gastrointestinal , Vírus da Influenza A , Pulmão , Infecções por Orthomyxoviridae , Rifaximina , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Rifaximina/uso terapêutico , Camundongos , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Vírus da Influenza A/efeitos dos fármacos , Modelos Animais de Doenças , RNA Ribossômico 16S/genética , Interleucinas/metabolismo , Interleucinas/genética , Interleucina 22 , Camundongos Endogâmicos C57BL , Antibacterianos/farmacologia , Fator de Transcrição STAT3/metabolismo , Fezes/microbiologia , Triptofano/metabolismo , Lesão Pulmonar/tratamento farmacológico , Probióticos/administração & dosagem , Probióticos/farmacologia
16.
Immunity ; 57(10): 2344-2361.e7, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39321806

RESUMO

As the most frequent genetic alteration in cancer, more than half of human cancers have p53 mutations that cause transcriptional inactivation. However, how p53 modulates the immune landscape to create a niche for immune escape remains elusive. We found that cancer stem cells (CSCs) established an interleukin-34 (IL-34)-orchestrated niche to promote tumorigenesis in p53-inactivated liver cancer. Mechanistically, we discovered that Il34 is a gene transcriptionally repressed by p53, and p53 loss resulted in IL-34 secretion by CSCs. IL-34 induced CD36-mediated elevations in fatty acid oxidative metabolism to drive M2-like polarization of foam-like tumor-associated macrophages (TAMs). These IL-34-orchestrated TAMs suppressed CD8+ T cell-mediated antitumor immunity to promote immune escape. Blockade of the IL-34-CD36 axis elicited antitumor immunity and synergized with anti-PD-1 immunotherapy, leading to a complete response. Our findings reveal the underlying mechanism of p53 modulation of the tumor immune microenvironment and provide a potential target for immunotherapy of cancer with p53 inactivation.


Assuntos
Interleucinas , Evasão Tumoral , Microambiente Tumoral , Proteína Supressora de Tumor p53 , Macrófagos Associados a Tumor , Animais , Humanos , Camundongos , Antígenos CD36/metabolismo , Antígenos CD36/genética , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Reprogramação Celular/imunologia , Reprogramação Celular/genética , Imunoterapia/métodos , Interleucinas/metabolismo , Interleucinas/imunologia , Neoplasias Hepáticas/imunologia , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
17.
Med Oncol ; 41(10): 240, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39231878

RESUMO

Interleukin-22, discovered in the year of 2000, is a pleiotropic Th17 cytokine from the IL-10 family of cytokines. IL-22 signals through the type 2 cytokine receptor complex IL-22R and predominantly activates STAT3. This pathway leads to the transcription of several different types of genes, giving IL-22 context-specific functions ranging from inducing antimicrobial peptide expression to target cell proliferation. In recent years, it has been shown that IL-22 is involved in the pathogenesis of neoplasia in some cancers through its pro-proliferative and anti-apoptotic effects. This review highlights studies with recent discoveries and conclusions drawn on IL-22 and its involvement and function in various cancers. Such a study may be helpful to better understand the role of IL-22 in cancer so that new treatment could be developed targeting IL-22.


Assuntos
Interleucina 22 , Interleucinas , Neoplasias , Humanos , Interleucinas/metabolismo , Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Animais , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Receptores de Interleucina/metabolismo , Receptores de Interleucina/genética
18.
Front Immunol ; 15: 1441908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224597

RESUMO

Introduction: The antiviral activity of recombinant bovine interferon lambda 3 (bovIFN-λ3) against bovine viral diarrhea virus (BVDV) has been demonstrated in vitro in Madin-Darby bovine kidney cells (MDBK) and in vivo in cattle. However, anti-BVDV activity of bovIFN-λ3 has not been studied in bovine respiratory tract epithelial cells, supposedly a primary target of BVDV infection when entering the host by the oronasal route. Methods: Here we investigated the anti-BVDV activity of bovIFN-λ3 in bovine turbinate-derived primary epithelial cells (BTu) using BVDV infection and immunoperoxidase staining, TCID50, RT-qPCR, DNA and transcriptome sequencing, and transfection with plasmids containing the two subunits, IL-28Rα and IL-10Rß that constitute the bovIFN-λ3 receptor. Results: Our immunoperoxidase staining, RT-qPCR, and TCID50 results show that while BVDV was successfully cleared in MDBK cells treated with bovIFN-λ3 and bovIFN-α, only the latter, bovIFN-α, cleared BVDV in BTu cells. Preincubation of MDBK cells with bovIFN-λ3 before BVDV infection was needed to induce optimal antiviral state. Both cell types displayed intact type I and III IFN signaling pathways and expressed similar levels of IL-10Rß subunit of the type III IFN receptor. Sequencing of PCR amplicon of the IL-28Rα subunit revealed intact transmembrane domain and lack of single nucleotide polymorphisms (SNPs) in BTu cells. However, RT-qPCR and transcriptomic analyses showed a lower expression of IL-28Rα transcripts in BTu cells as compared to MDBK cells. Interestingly, transfection of BTu cells with a plasmid encoding IL-28Rα subunit, but not IL-10Rß subunit, established the bovIFN-λ3 sensitivity showing similar anti-BVDV activity to the response in MDBK cells. Conclusion: Our results demonstrate that the sensitivity of cells to bovIFN-λ3 depends not only on the quality but also of the quantity of the IL-28Rα subunit of the heterodimeric receptor. A reduction in IL-28Rα transcript expression was detected in BTu as compared to MDBK cells, despite the absence of spliced variants or SNPs. The establishment of bovIFN-λ3 induced anti-BVDV activity in BTu cells transfected with an IL-28Rα plasmid suggests that the level of expression of this receptor subunit is crucial for the specific antiviral activity of type III IFN in these cells.


Assuntos
Interferon lambda , Interferons , Conchas Nasais , Animais , Bovinos , Interferons/metabolismo , Interferons/imunologia , Conchas Nasais/virologia , Conchas Nasais/imunologia , Conchas Nasais/metabolismo , Antivirais/farmacologia , Vírus da Diarreia Viral Bovina/imunologia , Vírus da Diarreia Viral Bovina/fisiologia , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Células Epiteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Interleucinas/genética , Interleucinas/farmacologia , Interleucinas/imunologia , Interleucinas/metabolismo , Linhagem Celular , Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Proteínas Recombinantes/farmacologia , Subunidade beta de Receptor de Interleucina-10/genética , Subunidade beta de Receptor de Interleucina-10/metabolismo , Receptores de Citocinas
19.
Arch Dermatol Res ; 316(8): 561, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177716

RESUMO

Circular RNAs (circRNAs) are demonstrated to be involved in psoriasis progression. CircRNAs can act as RNA-binding protein (RBP) sponges. Here, we investigated the action of circAKR1B10 in psoriasis, and explored the potential proteins interacted with circAKR1B10. Levels of genes and proteins were assayed by qRT-PCR and western blotting analyses. Keratinocytes in functional groups were treated with interleukin (IL)-22. Functional analysis were conducted using MTT, 5-ethynyl-2'-deoxyuridine (EdU), and transwell assays, respectively. Interaction analysis among circAKR1B10, Eukaryotic initiation factor 4 A-III (EIF4A3) and Aurora Kinase A (AURKA) was conducted using bioinformatics analysis, RNA pull-down assay, and RNA immunoprecipitation (RIP) assay. CircAKR1B10 was highly expressed in psoriasis patients and IL-22-induced keratinocytes. Functionally, knockdown of circAKR1B10 abolished IL-22-induced proliferation, migration and invasion in keratinocytes. AURKA expression was also higher in psoriasis patients and IL-22-induced keratinocytes, and was negatively correlated with circAKR1B10 expression. Moreover, AURKA silencing reduced the proliferative, migratory and invasive abilities of IL-22-induced keratinocytes. Mechanistically, circAKR1B10 interacted with EIF4A3 protein to stabilize and regulate AURKA expression. CircAKR1B10 contributes to IL-22-induced proliferation, migration and invasion in keratinocytes via up-regulating AURKA expression through interacting with EIF4A3 protein.


Assuntos
Aurora Quinase A , Movimento Celular , Proliferação de Células , Fator de Iniciação 4A em Eucariotos , Interleucina 22 , Interleucinas , Queratinócitos , Psoríase , RNA Circular , Humanos , Aurora Quinase A/metabolismo , Aurora Quinase A/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , RNA Helicases DEAD-box , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Interleucinas/metabolismo , Interleucinas/genética , Queratinócitos/metabolismo , Psoríase/patologia , Psoríase/metabolismo , Psoríase/genética , RNA Circular/genética , RNA Circular/metabolismo , Aldo-Ceto Redutases/genética
20.
Biol Reprod ; 111(4): 780-799, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39101465

RESUMO

Interleukin-32 is a species-specific cytokine that plays an important role in inflammation, cancer, and other diseases; however, its role in reproductive and pregnancy-related diseases remains unknown. This study aimed to investigate the role of interleukin-32 in reproductive and pregnancy-related diseases. Placental tissues from patients with pregnancy-induced hypertension, healthy pregnant women, and trophoblast lines were analysed. Interleukin-32 expression was quantified via polymerase chain reaction and immunohistochemistry, and functional assays were performed after interleukin-32 modulation. Interleukin-32 was identified only in placental mammals, such as Carnivora, Cetartiodactyla, Chiroptera, Dermoptera, Lagomorpha, Perissodactyla, and Primates via bioinformatics. Immunohistochemistry and polymerase chain reaction revealed that interleukin-32 was highly expressed in human placental villi, poorly expressed in decidua and endometrial tissues, and was not detected in mouse tissues. Second, interleukin-32 upregulates miR-205 expression by increasing DROSHA expression, and miR-205 promotes interleukin-32 expression by targeting its promoter region. Interleukin-32 and miR-205 significantly enhanced the invasion ability of HTR8/SVneo cells (a trophoblast cell line) and the tube formation ability of human umbilical vein endothelial cells. Through quantitative reverse transcription polymerase chain reaction and western blotting, the interleukin-32/miR-205 loop increased MMP2 and MMP9 expression in HTR-8/SVneo cells via the nuclear factor kappa B signaling pathway. Finally, using quantitative reverse transcription polymerase chain reaction, interleukin-32 and miR-205 expression levels were significantly lower in the placentas of patients with pregnancy-induced hypertension than in women with normal pregnancies. In conclusion, interleukin-32 regulates trophoblast invasion through the miR-205-nuclear factor kappa B-MMP2/9 pathway, which is involved in pregnancy-induced hypertension.


Assuntos
Hipertensão Induzida pela Gravidez , Interleucinas , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , MicroRNAs , NF-kappa B , Trofoblastos , Feminino , Humanos , Gravidez , Trofoblastos/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Interleucinas/metabolismo , Interleucinas/genética , Hipertensão Induzida pela Gravidez/metabolismo , Hipertensão Induzida pela Gravidez/genética , NF-kappa B/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Animais , Transdução de Sinais , Adulto , Placenta/metabolismo , Camundongos , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA