Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.019
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cancer Imaging ; 24(1): 60, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38720391

RESUMO

BACKGROUND: This study systematically compares the impact of innovative deep learning image reconstruction (DLIR, TrueFidelity) to conventionally used iterative reconstruction (IR) on nodule volumetry and subjective image quality (IQ) at highly reduced radiation doses. This is essential in the context of low-dose CT lung cancer screening where accurate volumetry and characterization of pulmonary nodules in repeated CT scanning are indispensable. MATERIALS AND METHODS: A standardized CT dataset was established using an anthropomorphic chest phantom (Lungman, Kyoto Kaguku Inc., Kyoto, Japan) containing a set of 3D-printed lung nodules including six diameters (4 to 9 mm) and three morphology classes (lobular, spiculated, smooth), with an established ground truth. Images were acquired at varying radiation doses (6.04, 3.03, 1.54, 0.77, 0.41 and 0.20 mGy) and reconstructed with combinations of reconstruction kernels (soft and hard kernel) and reconstruction algorithms (ASIR-V and DLIR at low, medium and high strength). Semi-automatic volumetry measurements and subjective image quality scores recorded by five radiologists were analyzed with multiple linear regression and mixed-effect ordinal logistic regression models. RESULTS: Volumetric errors of nodules imaged with DLIR are up to 50% lower compared to ASIR-V, especially at radiation doses below 1 mGy and when reconstructed with a hard kernel. Also, across all nodule diameters and morphologies, volumetric errors are commonly lower with DLIR. Furthermore, DLIR renders higher subjective IQ, especially at the sub-mGy doses. Radiologists were up to nine times more likely to score the highest IQ-score to these images compared to those reconstructed with ASIR-V. Lung nodules with irregular margins and small diameters also had an increased likelihood (up to five times more likely) to be ascribed the best IQ scores when reconstructed with DLIR. CONCLUSION: We observed that DLIR performs as good as or even outperforms conventionally used reconstruction algorithms in terms of volumetric accuracy and subjective IQ of nodules in an anthropomorphic chest phantom. As such, DLIR potentially allows to lower the radiation dose to participants of lung cancer screening without compromising accurate measurement and characterization of lung nodules.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/patologia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos
3.
Radiology ; 311(2): e232178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742970

RESUMO

Background Accurate characterization of suspicious small renal masses is crucial for optimized management. Deep learning (DL) algorithms may assist with this effort. Purpose To develop and validate a DL algorithm for identifying benign small renal masses at contrast-enhanced multiphase CT. Materials and Methods Surgically resected renal masses measuring 3 cm or less in diameter at contrast-enhanced CT were included. The DL algorithm was developed by using retrospective data from one hospital between 2009 and 2021, with patients randomly allocated in a training and internal test set ratio of 8:2. Between 2013 and 2021, external testing was performed on data from five independent hospitals. A prospective test set was obtained between 2021 and 2022 from one hospital. Algorithm performance was evaluated by using the area under the receiver operating characteristic curve (AUC) and compared with the results of seven clinicians using the DeLong test. Results A total of 1703 patients (mean age, 56 years ± 12 [SD]; 619 female) with a single renal mass per patient were evaluated. The retrospective data set included 1063 lesions (874 in training set, 189 internal test set); the multicenter external test set included 537 lesions (12.3%, 66 benign) with 89 subcentimeter (≤1 cm) lesions (16.6%); and the prospective test set included 103 lesions (13.6%, 14 benign) with 20 (19.4%) subcentimeter lesions. The DL algorithm performance was comparable with that of urological radiologists: for the external test set, AUC was 0.80 (95% CI: 0.75, 0.85) versus 0.84 (95% CI: 0.78, 0.88) (P = .61); for the prospective test set, AUC was 0.87 (95% CI: 0.79, 0.93) versus 0.92 (95% CI: 0.86, 0.96) (P = .70). For subcentimeter lesions in the external test set, the algorithm and urological radiologists had similar AUC of 0.74 (95% CI: 0.63, 0.83) and 0.81 (95% CI: 0.68, 0.92) (P = .78), respectively. Conclusion The multiphase CT-based DL algorithm showed comparable performance with that of radiologists for identifying benign small renal masses, including lesions of 1 cm or less. Published under a CC BY 4.0 license. Supplemental material is available for this article.


Assuntos
Meios de Contraste , Aprendizado Profundo , Neoplasias Renais , Tomografia Computadorizada por Raios X , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Estudos Prospectivos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Idoso , Algoritmos , Rim/diagnóstico por imagem , Adulto
4.
Eur Radiol Exp ; 8(1): 54, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698099

RESUMO

BACKGROUND: We aimed to improve the image quality (IQ) of sparse-view computed tomography (CT) images using a U-Net for lung metastasis detection and determine the best tradeoff between number of views, IQ, and diagnostic confidence. METHODS: CT images from 41 subjects aged 62.8 ± 10.6 years (mean ± standard deviation, 23 men), 34 with lung metastasis, 7 healthy, were retrospectively selected (2016-2018) and forward projected onto 2,048-view sinograms. Six corresponding sparse-view CT data subsets at varying levels of undersampling were reconstructed from sinograms using filtered backprojection with 16, 32, 64, 128, 256, and 512 views. A dual-frame U-Net was trained and evaluated for each subsampling level on 8,658 images from 22 diseased subjects. A representative image per scan was selected from 19 subjects (12 diseased, 7 healthy) for a single-blinded multireader study. These slices, for all levels of subsampling, with and without U-Net postprocessing, were presented to three readers. IQ and diagnostic confidence were ranked using predefined scales. Subjective nodule segmentation was evaluated using sensitivity and Dice similarity coefficient (DSC); clustered Wilcoxon signed-rank test was used. RESULTS: The 64-projection sparse-view images resulted in 0.89 sensitivity and 0.81 DSC, while their counterparts, postprocessed with the U-Net, had improved metrics (0.94 sensitivity and 0.85 DSC) (p = 0.400). Fewer views led to insufficient IQ for diagnosis. For increased views, no substantial discrepancies were noted between sparse-view and postprocessed images. CONCLUSIONS: Projection views can be reduced from 2,048 to 64 while maintaining IQ and the confidence of the radiologists on a satisfactory level. RELEVANCE STATEMENT: Our reader study demonstrates the benefit of U-Net postprocessing for regular CT screenings of patients with lung metastasis to increase the IQ and diagnostic confidence while reducing the dose. KEY POINTS: • Sparse-projection-view streak artifacts reduce the quality and usability of sparse-view CT images. • U-Net-based postprocessing removes sparse-view artifacts while maintaining diagnostically accurate IQ. • Postprocessed sparse-view CTs drastically increase radiologists' confidence in diagnosing lung metastasis.


Assuntos
Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Feminino , Estudos Retrospectivos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Idoso
5.
J Appl Clin Med Phys ; 25(5): e14337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38576183

RESUMO

PURPOSE: The quality of on-board imaging systems, including cone-beam computed tomography (CBCT), plays a vital role in image-guided radiation therapy (IGRT) and adaptive radiotherapy. Recently, there has been an upgrade of the CBCT systems fused in the O-ring linear accelerators called HyperSight, featuring a high imaging performance. As the characterization of a new imaging system is essential, we evaluated the image quality of the HyperSight system by comparing it with Halcyon 3.0 CBCT and providing benchmark data for routine imaging quality assurance. METHODS: The HyperSight features ultra-fast scan time, a larger kilovoltage (kV) detector, a more substantial kV tube, and an advanced reconstruction algorithm. Imaging protocols in the two modes of operation, treatment mode with IGRT and the CBCT for planning (CBCTp) mode were evaluated and compared with Halcyon 3.0 CBCT. Image quality metrics, including spatial resolution, contrast resolution, uniformity, noise, computed tomography (CT) number linearity, and calibration error, were assessed using a Catphan and an electron density phantom and analyzed with TotalQA software. RESULTS: HyperSight demonstrated substantial improvements in contrast-to-noise ratio and noise in both IGRT and CBCTp modes compared to Halcyon 3.0 CBCT. CT number calibration error of HyperSight CBCTp mode (1.06%) closely matches that of a full CT scanner (0.72%), making it suitable for adaptive planning. In addition, the advanced hardware of HyperSight, such as ultra-fast scan time (5.9 s) or 2.5 times larger heat unit capacity, enhanced the clinical efficiency in our experience. CONCLUSIONS: HyperSight represented a significant advancement in CBCT imaging. With its image quality, CT number accuracy, and ultra-fast scans, HyperSight has a potential to transform patient care and treatment outcomes. The enhanced scan speed and image quality of HyperSight are expected to significantly improve the quality and efficiency of treatment, particularly benefiting patients.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Tomografia Computadorizada de Feixe Cônico/métodos , Aceleradores de Partículas/instrumentação , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Garantia da Qualidade dos Cuidados de Saúde/normas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
6.
Radiol Artif Intell ; 6(3): e230375, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38597784

RESUMO

Purpose To explore the stand-alone breast cancer detection performance, at different risk score thresholds, of a commercially available artificial intelligence (AI) system. Materials and Methods This retrospective study included information from 661 695 digital mammographic examinations performed among 242 629 female individuals screened as a part of BreastScreen Norway, 2004-2018. The study sample included 3807 screen-detected cancers and 1110 interval breast cancers. A continuous examination-level risk score by the AI system was used to measure performance as the area under the receiver operating characteristic curve (AUC) with 95% CIs and cancer detection at different AI risk score thresholds. Results The AUC of the AI system was 0.93 (95% CI: 0.92, 0.93) for screen-detected cancers and interval breast cancers combined and 0.97 (95% CI: 0.97, 0.97) for screen-detected cancers. In a setting where 10% of the examinations with the highest AI risk scores were defined as positive and 90% with the lowest scores as negative, 92.0% (3502 of 3807) of the screen-detected cancers and 44.6% (495 of 1110) of the interval breast cancers were identified with AI. In this scenario, 68.5% (10 987 of 16 040) of false-positive screening results (negative recall assessment) were considered negative by AI. When 50% was used as the cutoff, 99.3% (3781 of 3807) of the screen-detected cancers and 85.2% (946 of 1110) of the interval breast cancers were identified as positive by AI, whereas 17.0% (2725 of 16 040) of the false-positive results were considered negative. Conclusion The AI system showed high performance in detecting breast cancers within 2 years of screening mammography and a potential for use to triage low-risk mammograms to reduce radiologist workload. Keywords: Mammography, Breast, Screening, Convolutional Neural Network (CNN), Deep Learning Algorithms Supplemental material is available for this article. © RSNA, 2024 See also commentary by Bahl and Do in this issue.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Detecção Precoce de Câncer , Mamografia , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/diagnóstico , Feminino , Mamografia/métodos , Noruega/epidemiologia , Estudos Retrospectivos , Pessoa de Meia-Idade , Detecção Precoce de Câncer/métodos , Idoso , Adulto , Programas de Rastreamento/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
7.
Radiol Artif Intell ; 6(3): e230318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38568095

RESUMO

Purpose To develop an artificial intelligence (AI) model for the diagnosis of breast cancer on digital breast tomosynthesis (DBT) images and to investigate whether it could improve diagnostic accuracy and reduce radiologist reading time. Materials and Methods A deep learning AI algorithm was developed and validated for DBT with retrospectively collected examinations (January 2010 to December 2021) from 14 institutions in the United States and South Korea. A multicenter reader study was performed to compare the performance of 15 radiologists (seven breast specialists, eight general radiologists) in interpreting DBT examinations in 258 women (mean age, 56 years ± 13.41 [SD]), including 65 cancer cases, with and without the use of AI. Area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and reading time were evaluated. Results The AUC for stand-alone AI performance was 0.93 (95% CI: 0.92, 0.94). With AI, radiologists' AUC improved from 0.90 (95% CI: 0.86, 0.93) to 0.92 (95% CI: 0.88, 0.96) (P = .003) in the reader study. AI showed higher specificity (89.64% [95% CI: 85.34%, 93.94%]) than radiologists (77.34% [95% CI: 75.82%, 78.87%]) (P < .001). When reading with AI, radiologists' sensitivity increased from 85.44% (95% CI: 83.22%, 87.65%) to 87.69% (95% CI: 85.63%, 89.75%) (P = .04), with no evidence of a difference in specificity. Reading time decreased from 54.41 seconds (95% CI: 52.56, 56.27) without AI to 48.52 seconds (95% CI: 46.79, 50.25) with AI (P < .001). Interreader agreement measured by Fleiss κ increased from 0.59 to 0.62. Conclusion The AI model showed better diagnostic accuracy than radiologists in breast cancer detection, as well as reduced reading times. The concurrent use of AI in DBT interpretation could improve both accuracy and efficiency. Keywords: Breast, Computer-Aided Diagnosis (CAD), Tomosynthesis, Artificial Intelligence, Digital Breast Tomosynthesis, Breast Cancer, Computer-Aided Detection, Screening Supplemental material is available for this article. © RSNA, 2024 See also the commentary by Bae in this issue.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Mamografia , Sensibilidade e Especificidade , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Pessoa de Meia-Idade , Mamografia/métodos , Estudos Retrospectivos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , República da Coreia/epidemiologia , Aprendizado Profundo , Adulto , Fatores de Tempo , Algoritmos , Estados Unidos , Reprodutibilidade dos Testes
8.
Comput Biol Med ; 175: 108505, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688129

RESUMO

The latest developments in deep learning have demonstrated the importance of CT medical imaging for the classification of pulmonary nodules. However, challenges remain in fully leveraging the relevant medical annotations of pulmonary nodules and distinguishing between the benign and malignant labels of adjacent nodules. Therefore, this paper proposes the Nodule-CLIP model, which deeply mines the potential relationship between CT images, complex attributes of lung nodules, and benign and malignant attributes of lung nodules through a comparative learning method, and optimizes the model in the image feature extraction network by using its similarities and differences to improve its ability to distinguish similar lung nodules. Firstly, we segment the 3D lung nodule information by U-Net to reduce the interference caused by the background of lung nodules and focus on the lung nodule images. Secondly, the image features, class features, and complex attribute features are aligned by contrastive learning and loss function in Nodule-CLIP to achieve lung nodule image optimization and improve classification ability. A series of testing and ablation experiments were conducted on the public dataset LIDC-IDRI, and the final benign and malignant classification rate was 90.6%, and the recall rate was 92.81%. The experimental results show the advantages of this method in terms of lung nodule classification as well as interpretability.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/classificação , Neoplasias Pulmonares/patologia , Tomografia Computadorizada por Raios X/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Aprendizado Profundo , Pulmão/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Bases de Dados Factuais
9.
J Thorac Imaging ; 39(3): 194-199, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640144

RESUMO

PURPOSE: To develop and evaluate a deep convolutional neural network (DCNN) model for the classification of acute and chronic lung nodules from nontuberculous mycobacterial-lung disease (NTM-LD) on computed tomography (CT). MATERIALS AND METHODS: We collected a data set of 650 nodules (316 acute and 334 chronic) from the CT scans of 110 patients with NTM-LD. The data set was divided into training, validation, and test sets in a ratio of 4:1:1. Bounding boxes were used to crop the 2D CT images down to the area of interest. A DCNN model was built using 11 convolutional layers and trained on these images. The performance of the model was evaluated on the hold-out test set and compared with that of 3 radiologists who independently reviewed the images. RESULTS: The DCNN model achieved an area under the receiver operating characteristic curve of 0.806 for differentiating acute and chronic NTM-LD nodules, corresponding to sensitivity, specificity, and accuracy of 76%, 68%, and 72%, respectively. The performance of the model was comparable to that of the 3 radiologists, who had area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy of 0.693 to 0.771, 61% to 82%, 59% to 73%, and 60% to 73%, respectively. CONCLUSIONS: This study demonstrated the feasibility of using a DCNN model for the classification of the activity of NTM-LD nodules on chest CT. The model performance was comparable to that of radiologists. This approach can potentially and efficiently improve the diagnosis and management of NTM-LD.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Pneumonia , Humanos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Estudos Retrospectivos , Neoplasias Pulmonares/diagnóstico por imagem
10.
Comput Biol Med ; 174: 108420, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613896

RESUMO

BACKGROUND AND OBJECTIVE: Liver tumor segmentation (LiTS) accuracy on contrast-enhanced computed tomography (CECT) images is higher than that on non-contrast computed tomography (NCCT) images. However, CECT requires contrast medium and repeated scans to obtain multiphase enhanced CT images, which is time-consuming and cost-increasing. Therefore, despite the lower accuracy of LiTS on NCCT images, which still plays an irreplaceable role in some clinical settings, such as guided brachytherapy, ablation, or evaluation of patients with renal function damage. In this study, we intend to generate enhanced high-contrast pseudo-color CT (PCCT) images to improve the accuracy of LiTS and RECIST diameter measurement on NCCT images. METHODS: To generate high-contrast CT liver tumor region images, an intensity-based tumor conspicuity enhancement (ITCE) model was first developed. In the ITCE model, a pseudo color conversion function from an intensity distribution of the tumor was established, and it was applied in NCCT to generate enhanced PCCT images. Additionally, we design a tumor conspicuity enhancement-based liver tumor segmentation (TCELiTS) model, which was applied to improve the segmentation of liver tumors on NCCT images. The TCELiTS model consists of three components: an image enhancement module based on the ITCE model, a segmentation module based on a deep convolutional neural network, and an attention loss module based on restricted activation. Segmentation performance was analyzed using the Dice similarity coefficient (DSC), sensitivity, specificity, and RECIST diameter error. RESULTS: To develop the deep learning model, 100 patients with histopathologically confirmed liver tumors (hepatocellular carcinoma, 64 patients; hepatic hemangioma, 36 patients) were randomly divided into a training set (75 patients) and an independent test set (25 patients). Compared with existing tumor automatic segmentation networks trained on CECT images (U-Net, nnU-Net, DeepLab-V3, Modified U-Net), the DSCs achieved on the enhanced PCCT images are both improved compared with those on NCCT images. We observe improvements of 0.696-0.713, 0.715 to 0.776, 0.748 to 0.788, and 0.733 to 0.799 in U-Net, nnU-Net, DeepLab-V3, and Modified U-Net, respectively, in terms of DSC values. In addition, an observer study including 5 doctors was conducted to compare the segmentation performance of enhanced PCCT images with that of NCCT images and showed that enhanced PCCT images are more advantageous for doctors to segment tumor regions. The results showed an accuracy improvement of approximately 3%-6%, but the time required to segment a single CT image was reduced by approximately 50 %. CONCLUSIONS: Experimental results show that the ITCE model can generate high-contrast enhanced PCCT images, especially in liver regions, and the TCELiTS model can improve LiTS accuracy in NCCT images.


Assuntos
Neoplasias Hepáticas , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Masculino , Feminino , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso
11.
Comput Biol Med ; 173: 108361, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569236

RESUMO

Deep learning plays a significant role in the detection of pulmonary nodules in low-dose computed tomography (LDCT) scans, contributing to the diagnosis and treatment of lung cancer. Nevertheless, its effectiveness often relies on the availability of extensive, meticulously annotated dataset. In this paper, we explore the utilization of an incompletely annotated dataset for pulmonary nodules detection and introduce the FULFIL (Forecasting Uncompleted Labels For Inexpensive Lung nodule detection) algorithm as an innovative approach. By instructing annotators to label only the nodules they are most confident about, without requiring complete coverage, we can substantially reduce annotation costs. Nevertheless, this approach results in an incompletely annotated dataset, which presents challenges when training deep learning models. Within the FULFIL algorithm, we employ Graph Convolution Network (GCN) to discover the relationships between annotated and unannotated nodules for self-adaptively completing the annotation. Meanwhile, a teacher-student framework is employed for self-adaptive learning using the completed annotation dataset. Furthermore, we have designed a Dual-Views loss to leverage different data perspectives, aiding the model in acquiring robust features and enhancing generalization. We carried out experiments using the LUng Nodule Analysis (LUNA) dataset, achieving a sensitivity of 0.574 at a False positives per scan (FPs/scan) of 0.125 with only 10% instance-level annotations for nodules. This performance outperformed comparative methods by 7.00%. Experimental comparisons were conducted to evaluate the performance of our model and human experts on test dataset. The results demonstrate that our model can achieve a comparable level of performance to that of human experts. The comprehensive experimental results demonstrate that FULFIL can effectively leverage an incomplete pulmonary nodule dataset to develop a robust deep learning model, making it a promising tool for assisting in lung nodule detection.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Pulmão/diagnóstico por imagem
12.
Biomed Phys Eng Express ; 10(4)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663368

RESUMO

The intricate nature of lung cancer treatment poses considerable challenges upon diagnosis. Early detection plays a pivotal role in mitigating its escalating global mortality rates. Consequently, there are pressing demands for robust and dependable early detection and diagnostic systems. However, the technological limitations and complexity of the disease make it challenging to implement an efficient lung cancer screening system. AI-based CT image analysis techniques are showing significant contributions to the development of computer-assisted detection (CAD) systems for lung cancer screening. Various existing research groups are working on implementing CT image analysis systems for assessing and classifying lung cancer. However, the complexity of different structures inside the CT image is high and comprehension of significant information inherited by them is more complex even after applying advanced feature extraction and feature selection techniques. Traditional and classical feature selection techniques may struggle to capture complex interdependencies between features. They may get stuck in local optima and sometimes require additional exploration strategies. Traditional techniques may also struggle with combinatorial optimization problems when applied to a prominent feature space. This paper proposed a methodology to overcome the existing challenges by applying feature extraction using Vision Transformer (FexViT) and Feature selection using the Quantum Computing based Quadratic unconstrained binary optimization (QC-FSelQUBO) technique. This algorithm shows better performance when compared with other existing techniques. The proposed methodology showed better performance as compared to other existing techniques when evaluated by applying necessary output measures, such as accuracy, Area under roc (receiver operating characteristics) curve, precision, sensitivity, and specificity, obtained as 94.28%, 99.10%, 96.17%, 90.16% and 97.46%. The further advancement of CAD systems is essential to meet the demand for more reliable detection and diagnosis of cancer, which can be addressed by leading the proposed quantum computation and growing AI-based technology ahead.


Assuntos
Algoritmos , Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Tomografia Computadorizada por Raios X/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Detecção Precoce de Câncer/métodos , Curva ROC , Teoria Quântica
13.
J Cancer Res Ther ; 20(2): 615-624, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687932

RESUMO

AIM: The accurate reconstruction of cone-beam computed tomography (CBCT) from sparse projections is one of the most important areas for study. The compressed sensing theory has been widely employed in the sparse reconstruction of CBCT. However, the total variation (TV) approach solely uses information from the i-coordinate, j-coordinate, and k-coordinate gradients to reconstruct the CBCT image. MATERIALS AND METHODS: It is well recognized that the CBCT image can be reconstructed more accurately with more gradient information from different directions. Thus, this study introduces a novel approach, named the new multi-gradient direction total variation minimization method. The method uses gradient information from the ij-coordinate, ik-coordinate, and jk-coordinate directions to reconstruct CBCT images, which incorporates nine different types of gradient information from nine directions. RESULTS: This study assessed the efficacy of the proposed methodology using under-sampled projections from four different experiments, including two digital phantoms, one patient's head dataset, and one physical phantom dataset. The results indicated that the proposed method achieved the lowest RMSE index and the highest SSIM index. Meanwhile, we compared the voxel intensity curves of the reconstructed images to assess the edge structure preservation. Among the various methods compared, the curves generated by the proposed method exhibited the highest level of consistency with the gold standard image curves. CONCLUSION: In summary, the proposed method showed significant potential in enhancing the quality and accuracy of CBCT image reconstruction.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Humanos , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Cabeça/diagnóstico por imagem
14.
J Appl Clin Med Phys ; 25(5): e14299, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520072

RESUMO

A new generation cone-beam computed tomography (CBCT) system with new hardware design and advanced image reconstruction algorithms is available for radiation treatment simulation or adaptive radiotherapy (HyperSight CBCT imaging solution, Varian Medical Systems-a Siemens Healthineers company). This study assesses the CBCT image quality metrics using the criteria routinely used for diagnostic CT scanner accreditation as a first step towards the future use of HyperSight CBCT images for treatment planning and target/organ delineations. Image performance was evaluated using American College of Radiology (ACR) Program accreditation phantom tests for diagnostic computed tomography systems (CTs) and compared HyperSight images with a standard treatment planning diagnostic CT scanner (Siemens SOMATOM Edge) and with existing CBCT systems (Varian TrueBeam version 2.7 and Varian Halcyon version 2.0).  Image quality performance for all Varian HyperSight CBCT vendor-provided imaging protocols were assessed using ACR head and body ring CT phantoms, then compared to existing imaging modalities. Image quality analysis metrics included contrast-to-noise (CNR), spatial resolution, Hounsfield number (HU) accuracy, image scaling, and uniformity. All image quality assessments were made following the recommendations and passing criteria provided by the ACR. The Varian HyperSight CBCT imaging system demonstrated excellent image quality, with the majority of vendor-provided imaging protocols capable of passing all ACR CT accreditation standards. Nearly all (8/11) vendor-provided protocols passed ACR criteria using the ACR head phantom, with the Abdomen Large, Pelvis Large, and H&N vendor-provided protocols produced HU uniformity values slightly exceeding passing criteria but remained within the allowable minor deviation levels (5-7 HU maximum differences). Compared to other existing CT and CBCT imaging modalities, both HyperSight Head and Pelvis imaging protocols matched the performance of the SOMATOM CT scanner, and both the HyperSight and SOMATOM CT substantially surpassed the performance of the Halcyon 2.0 and TrueBeam version 2.7 systems. Varian HyperSight CBCT imaging system could pass almost all tests for all vendor-provided protocols using ACR accreditation criteria, with image quality similar to those produced by diagnostic CT scanners and significantly better than existing linac-based CBCT imaging systems.


Assuntos
Benchmarking , Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador , Aceleradores de Partículas , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Humanos , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada de Feixe Cônico/instrumentação , Aceleradores de Partículas/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Acreditação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
15.
Cancer Imaging ; 24(1): 40, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509635

RESUMO

BACKGROUND: Low-dose computed tomography (LDCT) has been shown useful in early lung cancer detection. This study aimed to develop a novel deep learning model for detecting pulmonary nodules on chest LDCT images. METHODS: In this secondary analysis, three lung nodule datasets, including Lung Nodule Analysis 2016 (LUNA16), Lung Nodule Received Operation (LNOP), and Lung Nodule in Health Examination (LNHE), were used to train and test deep learning models. The 3D region proposal network (RPN) was modified via a series of pruning experiments for better predictive performance. The performance of each modified deep leaning model was evaluated based on sensitivity and competition performance metric (CPM). Furthermore, the performance of the modified 3D RPN trained on three datasets was evaluated by 10-fold cross validation. Temporal validation was conducted to assess the reliability of the modified 3D RPN for detecting lung nodules. RESULTS: The results of pruning experiments indicated that the modified 3D RPN composed of the Cross Stage Partial Network (CSPNet) approach to Residual Network (ResNet) Xt (CSP-ResNeXt) module, feature pyramid network (FPN), nearest anchor method, and post-processing masking, had the optimal predictive performance with a CPM of 92.2%. The modified 3D RPN trained on the LUNA16 dataset had the highest CPM (90.1%), followed by the LNOP dataset (CPM: 74.1%) and the LNHE dataset (CPM: 70.2%). When the modified 3D RPN trained and tested on the same datasets, the sensitivities were 94.6%, 84.8%, and 79.7% for LUNA16, LNOP, and LNHE, respectively. The temporal validation analysis revealed that the modified 3D RPN tested on LNOP test set achieved a CPM of 71.6% and a sensitivity of 85.7%, and the modified 3D RPN tested on LNHE test set had a CPM of 71.7% and a sensitivity of 83.5%. CONCLUSION: A modified 3D RPN for detecting lung nodules on LDCT scans was designed and validated, which may serve as a computer-aided diagnosis system to facilitate lung nodule detection and lung cancer diagnosis.


A modified 3D RPN for detecting lung nodules on CT images that exhibited greater sensitivity and CPM than did several previously reported CAD detection models was established.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Reprodutibilidade dos Testes , Imageamento Tridimensional/métodos , Pulmão , Tomografia Computadorizada por Raios X/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
16.
PLoS One ; 19(3): e0300325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512860

RESUMO

Worldwide, lung cancer is the leading cause of cancer-related deaths. To manage lung nodules, radiologists observe computed tomography images, review various imaging findings, and record these in radiology reports. The report contents should be of high quality and uniform regardless of the radiologist. Here, we propose an artificial intelligence system that automatically generates descriptions related to lung nodules in computed tomography images. Our system consists of an image recognition method for extracting contents-namely, bronchopulmonary segments and nodule characteristics from images-and a natural language processing method to generate fluent descriptions. To verify our system's clinical usefulness, we conducted an experiment in which two radiologists created nodule descriptions of findings using our system. Through our system, the similarity of the described contents between the two radiologists (p = 0.001) and the comprehensiveness of the contents (p = 0.025) improved, while the accuracy did not significantly deteriorate (p = 0.484).


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Inteligência Artificial , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Pulmão , Radiologistas , Nódulo Pulmonar Solitário/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
17.
Korean J Radiol ; 25(4): 343-350, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528692

RESUMO

OBJECTIVE: Artificial intelligence-based computer-aided diagnosis (AI-CAD) is increasingly used in mammography. While the continuous scores of AI-CAD have been related to malignancy risk, the understanding of how to interpret and apply these scores remains limited. We investigated the positive predictive values (PPVs) of the abnormality scores generated by a deep learning-based commercial AI-CAD system and analyzed them in relation to clinical and radiological findings. MATERIALS AND METHODS: From March 2020 to May 2022, 656 breasts from 599 women (mean age 52.6 ± 11.5 years, including 0.6% [4/599] high-risk women) who underwent mammography and received positive AI-CAD results (Lunit Insight MMG, abnormality score ≥ 10) were retrospectively included in this study. Univariable and multivariable analyses were performed to evaluate the associations between the AI-CAD abnormality scores and clinical and radiological factors. The breasts were subdivided according to the abnormality scores into groups 1 (10-49), 2 (50-69), 3 (70-89), and 4 (90-100) using the optimal binning method. The PPVs were calculated for all breasts and subgroups. RESULTS: Diagnostic indications and positive imaging findings by radiologists were associated with higher abnormality scores in the multivariable regression analysis. The overall PPV of AI-CAD was 32.5% (213/656) for all breasts, including 213 breast cancers, 129 breasts with benign biopsy results, and 314 breasts with benign outcomes in the follow-up or diagnostic studies. In the screening mammography subgroup, the PPVs were 18.6% (58/312) overall and 5.1% (12/235), 29.0% (9/31), 57.9% (11/19), and 96.3% (26/27) for score groups 1, 2, 3, and 4, respectively. The PPVs were significantly higher in women with diagnostic indications (45.1% [155/344]), palpability (51.9% [149/287]), fatty breasts (61.2% [60/98]), and certain imaging findings (masses with or without calcifications and distortion). CONCLUSION: PPV increased with increasing AI-CAD abnormality scores. The PPVs of AI-CAD satisfied the acceptable PPV range according to Breast Imaging-Reporting and Data System for screening mammography and were higher for diagnostic mammography.


Assuntos
Neoplasias da Mama , Mamografia , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Mamografia/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Valor Preditivo dos Testes , Estudos Retrospectivos , Inteligência Artificial , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Detecção Precoce de Câncer , Computadores
18.
J Cardiovasc Comput Tomogr ; 18(3): 304-306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38480035

RESUMO

BACKGROUND: ECG-gated cardiac CT is now widely used in infants with congenital heart disease (CHD). Deep Learning Image Reconstruction (DLIR) could improve image quality while minimizing the radiation dose. OBJECTIVES: To define the potential dose reduction using DLIR with an anthropomorphic phantom. METHOD: An anthropomorphic pediatric phantom was scanned with an ECG-gated cardiac CT at four dose levels. Images were reconstructed with an iterative and a deep-learning reconstruction algorithm (ASIR-V and DLIR). Detectability of high-contrast vessels were computed using a mathematical observer. Discrimination between two vessels was assessed by measuring the CT spatial resolution. The potential dose reduction while keeping a similar level of image quality was assessed. RESULTS: DLIR-H enhances detectability by 2.4% and discrimination performances by 20.9% in comparison with ASIR-V 50. To maintain a similar level of detection, the dose could be reduced by 64% using high-strength DLIR in comparison with ASIR-V50. CONCLUSION: DLIR offers the potential for a substantial dose reduction while preserving image quality compared to ASIR-V.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca , Aprendizado Profundo , Cardiopatias Congênitas , Imagens de Fantasmas , Valor Preditivo dos Testes , Doses de Radiação , Exposição à Radiação , Interpretação de Imagem Radiográfica Assistida por Computador , Humanos , Lactente , Exposição à Radiação/prevenção & controle , Cardiopatias Congênitas/diagnóstico por imagem , Reprodutibilidade dos Testes , Eletrocardiografia , Angiografia Coronária/métodos , Angiografia por Tomografia Computadorizada , Fatores Etários
19.
Zhonghua Yi Xue Za Zhi ; 104(10): 751-757, 2024 Mar 12.
Artigo em Chinês | MEDLINE | ID: mdl-38462355

RESUMO

Objective: To evaluate the application value of reducing tube voltage and iodine delivery rate according to body weight in coronary CT angiography (CCTA). Methods: A prospective randomized controlled study. A total of 297 subjects, 172 males and 125 females, aged [M (Q1, Q3)]60.0 (50.0, 68.0) years, who underwent CCTA examination in Peking University Third Hospital due to clinically suspected coronary heart disease from May to December 2022 were included. According to the odd or even visit dates, the subjects were randomly divided into test group (n=156) and control group (n=141). The subjects in both groups were divided into four sub-groups according to body weight: 50-59 group, 60-69 kg group, 70-79 kg group and 80-89 kg group, respectively. The CCTA images were reconstructed with hybrid iterative algorithm(KARL 3D) with levels of 6 and 8, respectively. 100 kVp and iodine flow rate 1.1, 1.3, 1.4 and 1.5 gI/s recommended by the domestic CCTA application guidelines were used in the control group, while the tube voltage and iodine flow rate were reduced in the test group based on the guidelines and body weight:70 kVp and 0.8 g I/s in 50~59 kg group, 80 kVp and 1.0 gI/s in 60~69 kg group, 80 kVp and 1.1 gI/s in70~79 kg group, and 100 kVp and 1.5 gI/s in 80~89 kg group, respectively. The CT values and standard deviation (SD) of aortic root, proximal left anterior descending branch (LAD) and distal right coronary artery (RCA) luminal CCTA, the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of coronary artery CT images, subjective coronary scores and effective radiation dose (ED) were compared between the both groups. One-way ANOVA or Wilcoxon test was used to analyze the differences of above indicators between the groups to evaluate the application value of low voltage and low iodine flow rate based on weight in coronary CCTA. Results: CT values of aortic root, LAD proximal CT values and SD values of aortic root [411.4 (377.2, 439.8) HU, (366.3±42.9) HU, 26.5±2.3] in the test group were all higher than those in the control group [379.00 (335.2, 415.9) HU, (355.0±46.9) HU and 24.8±2.3]. The differences were statistically significant (all P<0.05), and the other parameters were not statistically significant (all P>0.05). The total subjective image quality score in test group were superior to those in the control group (all P<0.05). The total ED and contrast agent dosage [2.07 (1.52, 3.28) mSv and (38.28±9.68) ml] in CCTA examination in the test group were lower than those in the control group [3.30(2.32, 4.44) mSv and (45.31±5.63) ml], and the differences were statistically significant (all P<0.05). The dosage of ED and contrast agent in the test group was decreased by 37.3% and 15.5%, respectively. Conclusion: Combined with KARL 3D,it is feasible to reduce contrast medium and ED by setting the tube voltage and iodine flow rate of CCTA according to the weight of the subject, which can further reduce the radiation dose and contrast agent dosage of CCTA.


Assuntos
Angiografia por Tomografia Computadorizada , Iodo , Masculino , Feminino , Humanos , Idoso , Angiografia por Tomografia Computadorizada/métodos , Meios de Contraste , Estudos Prospectivos , Doses de Radiação , Angiografia Coronária/métodos , Tomografia Computadorizada por Raios X/métodos , Peso Corporal , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
20.
Clin Radiol ; 79(4): e554-e559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453389

RESUMO

AIM: To compare the radiation dose, image quality, and conspicuity of pancreatic ductal adenocarcinoma (PDAC) in pancreatic protocol dual-energy computed tomography (CT) between two X-ray tubes mounted in the same CT machine. MATERIAL AND METHODS: This retrospective study comprised 80 patients (median age, 73 years; 45 men) who underwent pancreatic protocol dual-energy CT from January 2019 to March 2022 using either old (Group A, n=41) or new (Group B, n=39) X-ray tubes mounted in the same CT machine. The imaging parameters were completely matched between the two groups, and CT data were reconstructed at 70 and 40 keV. The CT dose-index volume (CTDIvol); CT attenuation of the abdominal aorta, pancreas, and PDAC; background noise; and qualitative scores for the image noise, overall image quality, and PDAC conspicuity were compared between the two groups. RESULTS: The CTDIvol was lower in Group B than Group A (7.9 versus 9.2 mGy; p<0.001). The CT attenuation of all anatomical structures at 70 and 40 keV was comparable between the two groups (p=0.06-0.78). The background noise was lower in Group B than Group A (12 versus 14 HU at 70 keV, p=0.046; and 26 versus 30 HU at 40 keV, p<0.001). Qualitative scores for image noise and overall image quality at 70 and 40 keV and PDAC conspicuity at 40 keV were higher in Group B than Group A (p<0.001-0.045). CONCLUSION: The latest X-ray tube could reduce the radiation dose and improve image quality in pancreatic protocol dual-energy CT.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Masculino , Humanos , Idoso , Intensificação de Imagem Radiográfica/métodos , Estudos Retrospectivos , Raios X , Tomografia Computadorizada por Raios X/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Pâncreas/diagnóstico por imagem , Carcinoma Ductal Pancreático/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Doses de Radiação , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA