RESUMO
Diuron (N-(3,4-dichlorophenyl)-N,Ndimethylurea, DCMU), a ureic herbicide, is extensively used in agriculture to boost crop productivity; however, its extensive application culminates in notable environmental pollution, especially in aquatic habitats. Therefore, the present study investigated the effect of diuron on the dinoflagellate Alexandrium pacificum, which is known to induce harmful algal blooms (HAB), and its potential to biodegrade DCMU. Following a four-day DCMU exposure, our results revealed that A. pacificum proficiently assimilated DCMU at concentrations of 0.05 mg/L and 0.1 mg/L in seawater, attaining a complete reduction (100 % efficiency) after 96 h for both concentrations. Moreover, evaluations of paralytic shellfish toxins content indicated that cells subjected to higher DCMU concentrations (0.1 mg/L) exhibited reductions of 73.4 %, 86.7 %, and 75 % in GTX1, GTX4, and NEO, respectively. Exposure to DCMU led to a notable decrease in A. pacificum's photosynthetic efficacy, accompanied by increased levels of reactive oxygen species (ROS) and suppressed cell growth, with a growth inhibition rate of 41.1 % at 72 h. Proteomic investigations pinpointed the diminished expression levels of specific proteins like SxtV and SxtW, linked to paralytic shellfish toxins (PSTs) synthesis, as well as key proteins associated with Photosystem II, namely PsbA, PsbD, PsbO, and PsbU. Conversely, proteins central to the cysteine biosynthesis pathways exhibited enhanced expression. In summary, our results preliminarily resolved the molecular mechanisms underlying the response of A. pacificum to DCMU and revealed that DCMU affected the synthesis of PSTs. Meanwhile, our data suggested that A. pacificum has great potential in scavenging DCMU.
Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Humanos , Diurona/toxicidade , Proteômica , Dinoflagellida/fisiologia , Proliferação Nociva de AlgasRESUMO
The frequency of harmful algal blooms (HABs) has increased over the last two decades, a phenomenon enhanced by global climate change. However, the effects of climate change will not be distributed equally, and Chile has emerged as one important, vulnerable area. The Chilean Patagonian region (41â56°S) hosts two marine ecoregions that support robust blue economies via wild fisheries, aquaculture, and tourism. However, the harmful algal bloom-forming dinoflagellate Alexandrium catenella, a causative agent of paralytic shellfish poisoning outbreaks, threatens the viability of blue industries in this region and others worldwide. Despite the proliferation of A. catenella blooms over the last few decades, the role of sedimentary resting cysts in the recurrence of harmful algal blooms and the species' northward expansion across Chilean Patagonia is not well understood. As a resting cyst-producing species, the sediment-cyst dynamics of A. catenella likely contribute to the geographical expansion and bloom recurrence of this species. For this purpose, we analyzed a decade of A. catenella surface sediment cyst records across the two ecoregions of the Chilean Patagonian System that were further stratified into five subregions based on water temperature, salinity, dissolved oxygen, and nutrient characteristics. We also analyzed spatio-temporal cyst dynamics in a pre-, during-, and post-bloom scenario of the Chiloense ecoregion (more northern) of the Magellanic province. Our results indicated highly variable A. catenella resting cyst abundances, with a maximum of 221 cysts cm-3 recorded in 2002 after an intense bloom. Generalized linear mixed models and linear mixed models found that sampling season, subregion, and Total Organic Matter (%) explained resting cyst presence and density. The results also demonstrated the presence of A. catenella cysts in northern subregions, evidencing the northward geographical expansion observed during the last few decades. The risks of A. catenella bloom recurrence from small, patchy resting cyst distributions across broad geographical areas and under changing environmental conditions are discussed.
Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Proliferação Nociva de Algas , Temperatura , AquiculturaRESUMO
To better understand the role of resting cysts in the outbreak of paralytic shellfish poisoning and bloom dynamics in Jinhae-Masan Bay, Korea, this study investigated the germination features of ellipsoidal Alexandrium cysts isolated from sediments collected in winter and summer under different combinations of temperature and salinity. Morphology and phylogeny of germling cells revealed that the ellipsoidal Alexandrium cysts belong to Alexandrium catenella (Group I). The cysts could germinate across a wide range of temperature (5-25 °C) with germination success within 5 days, indicating that continuous seeding for the maintenance of vegetative cells in the water column may occur through the year without an endogenous clock to regulate germination timing. In addition, the cyst germination of A. catenella (Group I) was not controlled by seasonal salinity changes. Based on the results, this study provides a schematic scenario of the bloom development of A. catenella (Group I) in Jinhae-Masan Bay, Korea.
Assuntos
Cistos , Dinoflagellida , Intoxicação por Frutos do Mar , Humanos , Dinoflagellida/fisiologia , Temperatura , Baías , Salinidade , República da CoreiaRESUMO
Allelopathy between phytoplankton organisms is promoted by substances released into the marine environment that limit the presence of the dominating species. We evaluated the allelopathic effects and response of cell-free media of Chattonella marina var. marina and Gymnodinium impudicum in the toxic dinoflagellate Gymnodinium catenatum. Additionally, single- and four-cell chains of G. catenatum isolated from media with allelochemicals were cultured to evaluate the effects of post exposure on growth and cell viability. Cell diagnosis showed growth limitation and an increase in cell volume, which reduced mobility and led to cell lysis. When G. catenatum was exposed to cell-free media of C. marina and G. impudicum, temporary cysts and an increased concentration of paralytic shellfish toxins were observed. After exposure to allelochemicals, the toxin profile of G. catenatum cells in the allelopathy experiments was composed of gonyautoxins 2/3 (GTX2/3), decarcarbamoyl (dcSTX, dcGTX2/3), and the sulfocarbamoyl toxins (B1 and C1/2). A difference in toxicity (pg STXeq cell−1) was observed between G. catenatum cells in the control and those exposed to the filtrates of C. marina var. marina and G. impudicum. Single cells of G. catenatum had a lower growth rate, whereas chain-forming cells had a higher growth rate. We suggest that a low number of G. catenatum cells can survive the allelopathic effect. We hypothesize that the survival strategy of G. catenatum is migration through the chemical cloud, encystment, and increased toxicity.
Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Alelopatia , Humanos , Toxinas Marinhas/toxicidade , Feromônios/farmacologiaRESUMO
Harmful Algal Blooms (HAB) pose a severe socio-economic problem worldwide. The dinoflagellate species Alexandrium catenella produces potent neurotoxins called saxitoxins (STXs) and its blooms are associated with the human intoxication named Paralytic Shellfish Poisoning (PSP). Knowing where and how these blooms originate is crucial to predict blooms. Most studies in the Chilean Patagonia, were focused on coastal areas, considering that blooms from the adjacent oceanic region are almost non-existent. Using a combination of field studies and modelling approaches, we first evaluated the role of the continental shelf off northern Chilean Patagonia as a source of A. catenella resting cysts, which may act as inoculum for their toxic coastal blooms. This area is characterized by a seasonal upwelling system with positive Ekman pumping during spring-summer, and by the presence of six major submarine canyons. We found out that these submarine canyons increase the vertical advection of bottom waters, and thus, significantly enhance the process of coastal upwelling. This is a previously unreported factor, among those involved in bloom initiation. This finding put this offshore area at high risk of resuspension of resting cysts of A. catenella. Here, we discuss in detail the physical processes promoting this resuspension.
Assuntos
Cistos , Dinoflagellida , Intoxicação por Frutos do Mar , Humanos , Chile , Proliferação Nociva de Algas , Oceanos e MaresRESUMO
In the last 5 years, paralytic shellfish toxins (PSTs) have been recurrently detected in mollusks farmed in the mussel culture area of Qinhuangdao city, along with the occurrence of toxic outbreaks linked to dinoflagellate species of the Alexandrium genus. To understand the formation mechanism and variation of these events, continuous and comprehensive PSTs monitoring was carried out between 2017 and 2020. Through the analysis of both phytoplankton and cysts via light microscopy and quantitative polymerase chain reaction, it was shown that Alexandrium catenella was responsible for the production of PSTs, which consisted mainly of gonyautoxins 1,4 (GTX1/4, 87%) and GTX2/3 (13%). During bloom events in 2019, mussels accumulated the highest PSTs value (929 µg STX di-HCl eq·kg-1) in conjunction with the peak of cell abundances, and toxin profiles were consistent with high distributions of GTX1/4, GTX2/3, and Neosaxitoxin. Toxin metabolites vary in different substances and mainly transferred to a stable proportion of α-epimer: ß-epimers 3:1. The environmental drivers of Alexandrium blooms included the continuous rise of water temperature (>4 °C) and calm weather with low wind speed and no significant precipitation. By comparing toxin profiles and method sensitivity, it was found that dissolved toxins in seawater are more useful for early warning. These results have important implications for the effective monitoring and management of paralytic shellfish poisoning outbreaks.
Assuntos
Bivalves , Dinoflagellida , Intoxicação por Frutos do Mar , Animais , Dinoflagellida/metabolismo , Água do Mar , Água/metabolismoRESUMO
Harmful algal blooms (HABs) are recurrent in the NW Patagonia fjords system and their frequency has increased over the last few decades. Outbreaks of HAB species such as Alexandrium catenella, a causal agent of paralytic shellfish poisoning, and Protoceratium reticulatum, a yessotoxins producer, have raised considerable concern due to their adverse socioeconomic consequences. Monitoring programs have mainly focused on their planktonic stages, but since these species produce benthic resting cysts, the factors influencing cyst distributions are increasingly gaining recognition as potentially important to HAB recurrence in some regions. Still, a holistic understanding of the physico-chemical conditions influencing cyst distribution in this region is lacking, especially as it relates to seasonal changes in drivers of cyst distributions, as the characteristics that favor cyst preservation in the sediment may change through the seasons. In this study, we analyzed the physico-chemical properties of the sediment (temperature, pH, redox potential) and measured the bottom dissolved oxygen levels in a "hotspot" area of southern Chile, sampling during the spring and summer as well as the fall and winter, to determine the role these factors may play as modulators of dinoflagellate cyst distribution, and specifically for the cysts of A. catenella and P. reticulatum. A permutational analysis of variance (PERMANOVA) showed the significant effect of sediment redox conditions in explaining the differences in the cyst assemblages between spring-summer and fall-winter periods (seasonality). In a generalized linear model (GLM), sediment redox potential and pH were associated with the highest abundances of A. catenella resting cysts in the spring-summer, however it was sediment temperature that most explained the distribution of A. catenella in the fall-winter. For P. reticulatum, only spring-summer sediment redox potential and temperature explained the variation in cyst abundances. The implications of environmental (physico-chemical) seasonality for the resting cysts dynamics of both species are discussed.
Assuntos
Cistos , Dinoflagellida , Intoxicação por Frutos do Mar , Estuários , Proliferação Nociva de Algas , Humanos , Estações do AnoRESUMO
Phytoplankton are photosynthetic microorganisms in aquatic environments that produce many bioactive substances. However, some of them are toxic to aquatic organisms via filter-feeding and are even poisonous to humans through the food chain. Human poisoning from these substances and their serious long-term consequences have resulted in several health threats, including cancer, skin disorders, and other diseases, which have been frequently documented. Seafood poisoning disorders triggered by phytoplankton toxins include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP), and azaspiracid shellfish poisoning (AZP). Accordingly, identifying harmful shellfish poisoning and toxin-producing species and their detrimental effects is urgently required. Although the harmful effects of these toxins are well documented, their possible modes of action are insufficiently understood in terms of clinical symptoms. In this review, we summarize the current state of knowledge regarding phytoplankton toxins and their detrimental consequences, including tumor-promoting activity. The structure, source, and clinical symptoms caused by these toxins, as well as their molecular mechanisms of action on voltage-gated ion channels, are briefly discussed. Moreover, the possible stress-associated reactive oxygen species (ROS)-related modes of action are summarized. Finally, we describe the toxic effects of phytoplankton toxins and discuss future research in the field of stress-associated ROS-related toxicity. Moreover, these toxins can also be used in different pharmacological prospects and can be established as a potent pharmacophore in the near future.
Assuntos
Ciguatera , Intoxicação por Frutos do Mar , Animais , Fitoplâncton/química , Espécies Reativas de Oxigênio , Frutos do Mar/análise , Intoxicação por Frutos do Mar/etiologiaRESUMO
Blooms of many dinoflagellates, including several harmful algal bloom (HAB) species, are seeded and revived through the germination of benthic resting cysts. Temperature is a key determinant of cysts' germination rate, and temperature-germination rate relationships are therefore fundamental to understanding species' germling cell production, cyst bed persistence, and resilience to climate warming. This study measured germination by cysts of the HAB dinoflagellate Alexandrium catenella using a growing degree-day (DD) approach that accounts for the time and intensity of warming above a critical temperature. Time courses of germination at different temperatures were fit to lognormal cumulative distribution functions for the estimation of the median days to germination. As temperature increased, germination times decreased hyperbolically. DD scaling collapsed variability in germination times between temperatures after cysts were oxygenated. A parallel experiment demonstrated stable temperature-rate relationships in cysts collected during different phases of seasonal temperature cycles in situ over three years. DD scaling of the results from prior A. catenella germination studies showed consistent differences between populations across a wide range of temperatures and suggests selective pressure for different germination rates. The DD model provides an elegant approach to quantify and compare the temperature dependency of germination among populations, between species, and in response to changing environmental conditions. IMPORTANCE Germination by benthic life history stages is the first step of bloom initiation in many, diverse phytoplankton species. This study outlines a growing degree-day (DD) approach for comparing the temperature dependence of germination rates measured in different populations. Germination by cysts of Alexandrium catenella, a harmful algal bloom dinoflagellate that causes paralytic shellfish poisoning, is shown to require a defined amount of warming, measured in DD after cysts are aerated. Scaling by DD, the time integral of temperature difference from a critical threshold, enabled direct comparison of rates measured at different temperatures and in different studies.
Assuntos
Cistos , Dinoflagellida , Intoxicação por Frutos do Mar , Proliferação Nociva de Algas , Humanos , FitoplânctonRESUMO
The dinoflagellate Alexandrium catenella is a well-known paralytic shellfish toxin producer that forms harmful algal blooms (HABs) worldwide. Blooms of this species have repeatedly brought severe ecological and economic impacts to Chile, especially in the southern region, where the shellfish and salmon industries are world-famous. The mechanisms of such HABs have been intensively studied but are still unclear. Nutrient overloading is one of the often-discussed drivers for HABs. The present study used the A. catenella strain isolated from southern Chile to investigate how iron conditions could affect their growth and toxin production as related to HAB. Our results showed that an optimum concentration of iron was pivotal for proper A. catenella growth. Thus, while excess iron exerted a toxic effect, low iron media led to iron insufficiency and growth inhibition. In addition, the study shows that the degree of paralytic shellfish toxin production by A. catenella varied depending on the iron concentration in the culture media. The A. catenella strain from southern Chile produced GTX1-4 exclusively in the fmol cell-1 scale. Based on these findings, we suggest that including iron and paralytic shellfish toxin measurements in the fields can improve the current HAB monitoring and contribute to an understanding of A. catenella bloom dynamics in Chile.
Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Chile , Proliferação Nociva de Algas , Humanos , Ferro , Frutos do Mar/análiseRESUMO
To better understand the outbreaks of paralytic shellfish poisoning and bloom dynamics caused by Alexandrium species in Jinhae-Masan Bay, Korea, the germination and distributions of ellipsoidal Alexandrium cysts were investigated, and paralytic shellfish toxins (PSTs) profiles and contents were determined using strains established from germling cells. The phylogeny and morphological observations revealed that the germinated vegetative cells from ellipsoidal cysts collected from the surface sediments in Jinhae-Masan Bay belong to Alexandrium catenella (Group I) and A. pacificum (Group IV) nested within A. tamarense species complex. Cyst germinations of A. catenella (Group I) were observed at only 10 °C, whereas cysts of A. pacificum (Group IV) could germinate at temperature ranges of 10 to 25 °C. Maximum germination success (85%) for isolated cysts occurred at 15 °C, and the germling cells were A. pacificum (Group IV). The results indicate that the variation in water temperature in Jinhae-Masan Bay can control the seasonal variations in germination of cysts of A. catenella (Group I) and A. pacificum (Group IV). The germination rates of ellipsoidal Alexandrium cysts were different among sampling sites in Jinhae-Masan Bay, probably because of differences in distribution and abundance of A. catenella (Group I) and A. pacificum (Group IV) in the sediments. The ellipsoidal Alexandrium cyst concentrations were much higher in February than in August, however the distributions were similar. Gonyautoxins 3 and 4 (GTX-3 and GTX-4) contributed a large proportion (>90%) of the toxins produced by strains A. catenella (Group I) and A. pacificum (Group IV) established from germling cells, and the total cellular contents were higher in A. catenella (Group I) than in A. pacificum (Group IV).
Assuntos
Cistos , Dinoflagellida , Intoxicação por Frutos do Mar , Baías , GerminaçãoRESUMO
Among the organisms that spread into and flourish in Arctic waters with rising temperatures and sea ice loss are toxic algae, a group of harmful algal bloom species that produce potent biotoxins. Alexandrium catenella, a cyst-forming dinoflagellate that causes paralytic shellfish poisoning worldwide, has been a significant threat to human health in southeastern Alaska for centuries. It is known to be transported into Arctic regions in waters transiting northward through the Bering Strait, yet there is little recognition of this organism as a human health concern north of the Strait. Here, we describe an exceptionally large A. catenella benthic cyst bed and hydrographic conditions across the Chukchi Sea that support germination and development of recurrent, locally originating and self-seeding blooms. Two prominent cyst accumulation zones result from deposition promoted by weak circulation. Cyst concentrations are among the highest reported globally for this species, and the cyst bed is at least 6× larger in area than any other. These extraordinary accumulations are attributed to repeated inputs from advected southern blooms and to localized cyst formation and deposition. Over the past two decades, warming has likely increased the magnitude of the germination flux twofold and advanced the timing of cell inoculation into the euphotic zone by 20 d. Conditions are also now favorable for bloom development in surface waters. The region is poised to support annually recurrent A. catenella blooms that are massive in scale, posing a significant and worrisome threat to public and ecosystem health in Alaskan Arctic communities where economies are subsistence based.
Assuntos
Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/metabolismo , Proliferação Nociva de Algas/fisiologia , Neurotoxinas/metabolismo , Intoxicação por Frutos do Mar , Alaska , Regiões Árticas , Mudança Climática , Ecossistema , Sedimentos Geológicos/parasitologia , Temperatura Alta , Humanos , Camada de Gelo , Saúde PúblicaRESUMO
An outbreak of paralytic shellfish poisoning, recorded in April 2016 in Qinhuangdao China, was suspected to be caused by a toxic species in genus Alexandrium. Shortly after the poisoning outbreak, shellfish and net-concentrated phytoplankton samples were collected from the Bohai Sea, and analysed using high performance liquid chromatography coupled with fluorescence detection. Paralytic shellfish toxins (PSTs) were detected in both phytoplankton and shellfish samples, with similar toxin profiles dominated by carbamate toxins. High throughput sequencing data for phytoplankton samples collected previously in the coastal waters of Qinhuangdao were then analysed, and 8 operational taxonomic units (OTUs) were assigned to Alexandrium affine, A. andersonii/A. ostenfeldii, A. catenella, A. fraterculus, A. hiranoi/A. pseudogonyaulax, A. margalefii, A. pacificum and A. pohangense, among which A. catenella, A. pacificum and A. ostenfeldii could be potential producers of PSTs. During a cruise in 2019, three isolates of Alexandrium were established by cyst germination, and identified as A. catenella based on the sequences of the 28S ribosomal RNA gene (28S rDNA) D1-D2 region. Interestingly, all the three strains had the same toxin profile consisting of gonyautoxins 1, 3, 4 (GTX1, 3, 4) and neosaxitoxin (NEO). The toxin profile is similar to those of phytoplankton samples collected previously in the coastal waters of Qinhuangdao, but remarkably different from the general toxin profile of A. catenella dominated by N-sulfocarbamoyl toxins C1-2 in the Bohai Sea and the Yellow Sea. The results suggest that A. catenella is most likely to be the causative species of the poisoning outbreak in Qinhuangdao. As far as we know, this is the first report of A. catenella in the Bohai Sea producing PSTs dominated by high potent gonyautoxins GTX1-4. Occurrence of the highly toxic A. catenella will increase the risk of paralytic shellfish poisoning, which necessitates in-depth mechanism studies and increasing monitoring efforts.
Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Carbamatos , China , Alimentos MarinhosRESUMO
BACKGROUND: Paralytic Shellfish Poison (PSP) toxins have been reported in non-bivalve shellfish species, including crustaceans and gastropods. Routine surveillance of these species is currently conducted in parts of England. To date, detection methods have not been validated for these matrices. Validation is required to ensure the test is fit for purpose, to give greater confidence in any results generated and ultimately facilitates accreditation. OBJECTIVE: The aim was to test and validate two independent PSP toxin detection methods previously validated for bivalve shellfish matrices, for applicability to commercial non-bivalve species of interest. METHODS: Matrices were shrimp (Crangon crangon), common whelk (Buccinum undatum), and edible crab (Cancer pagurus). The two methods assessed were the pre-column oxidation high-performance liquid chromatography-fluorescence detection AOAC 2005.06 Official Method of analysis and an internationally validated hydrophilic interaction chromatography-tandem mass spectrometry method. Brown and white crab meat were assessed separately. RESULTS: A refined extraction protocol was implemented with an increased solvent to sample ratio. The same extraction protocol was utilized for both methods, allowing both methods to be run simultaneously. Method sensitivity, recovery, repeatability, and method uncertainty were characterized in all matrix/toxin combinations. Overall, both methods performed similarly to that previously reported in bivalve mollusks. Acceptability of the majority of toxin/matrix combinations was evidenced through comparison of method performance characteristics against specific performance criteria, including Horwitz ratio values. CONCLUSIONS: Both PSP toxin detection methods were found to provide acceptable performance for the monitoring of shrimp, whelk, and crab species. HIGHLIGHTS: Two PSP toxin detection methods have been single-laboratory validated successfully for three non-bivalve shellfish species.
Assuntos
Bivalves , Braquiúros , Intoxicação por Frutos do Mar , Animais , Cromatografia Líquida de Alta Pressão , Toxinas Marinhas/análise , Frutos do Mar/análise , Espectrometria de Massas em TandemRESUMO
Resumen Las floraciones de algas nocivas son un problema cada vez más frecuente a nivel mundial que ocasiona severos daños sobre la salud pública, pérdidas económicas en acuicultura, perjuicios al turismo y episodios de mortalidad de poblaciones naturales de peces, aves y mamíferos marinos. Las toxinas son producidas por el fitoplancton y se acumulan en moluscos bivalvos que se alimentan por filtración del agua siendo estos los principales vectores de intoxicación humana. En el Mar Argentino, se han reportado toxinas marinas de origen microalgal asociadas con cuatro síndromes de intoxicación por moluscos. Los síndromes más graves por su extensión, frecuencia, toxicidad y organismos afectados, son los originados por el dinoflagelado Alexandrium cate-nella responsable de la Intoxicación Paralizante por Moluscos la cual ha ocasionado numerosas muertes humanas. Seguidamente, la más leve, en cuanto a gravedad y frecuencia, ha sido la Intoxicación Diarreica por Moluscos. En contraste, el ácido domoico, conocido como toxina amnésica de moluscos, no ha producido hasta ahora intoxicaciones humanas. Recientemente, se amplió el rango de toxinas para la región al registrarse las toxinas y los dinoflagelados productores de la Intoxicación Azaspirácidos por Moluscos. Además, se han detectado las potencialmente tóxicas Yessotoxinas y Espirolidos, cuyos mecanismos de acción y toxicidad están siendo aún evaluados a nivel mundial. Estas toxinas emergentes para la región, representan un riesgo potencial para la salud e inconvenientes socioeconómicos por el cierre de los sitios de explotación de moluscos. Ciertamente presentan un nuevo desafío, pues la detección y cuantificación sólo puede realizarse por medio de métodos basados en HPLC - espectrometría de masas, lo cual dificulta el monitoreo en laboratorios regionales en el país. La herramienta clave de manejo es la prevención, a través de políticas, regulaciones y sistemas de monitoreo y control de cada grupo de toxinas. A través de estas mejoras, se anticipa que no sólo disminuirá el número de afectados por estas intoxicaciones, si no que se podrán realizar vedas más eficientes, asegurando un equilibrio que proteja tanto la salud pública como el desarrollo de la industria pesquera.
Abstract Harmful algal blooms are an increasingly common problem worldwide, causing severe damage to public health, economic losses in aquaculture, damage to tourism and mortality events of natural populations of fish, birds and marine mammals. The toxins are produced by phytoplankton and accumulated in bivalve molluscs that feed on water filtration, being these main vectors of human intoxication. In the Argentine Sea marine toxins of microalgal origin have been reported associated with four shellfish poisoning syn-dromes. The most serious due to their extension, frequency, toxicity and affected organisms are those caused by the dinoflagellate Alexandrium catenella responsible for the Paralytic shellfish poisoning that has caused numerous human deaths. Then, the mildest, in severity and frequency, is the Diarrhetic shellfish poisoning. In contrast, domoic acid, known as Amnesic shellfish toxin, has not produced human intoxications yet. Recently, toxins and dinoflagellate species causing Azaspiracid shellfish poisoning have been re-corded, expanding the range of toxins for the region. In addition, the potentially toxic Yessotoxins and Spirolides have been detected, whose mechanism of action and toxicity is still being evaluated worldwide. These emerging toxins represent a potential risk to public health and socioeconomic activities due to the eventual closure of mollusc exploitation sites. They certainly present a new challenge, since detection and quantification can only be carried out using methods based on HPLC - mass spectrometry, which makes monitor-ing in regional laboratories difficult. Prevention through policies, regulations, and monitoring and control systems of each toxin group is the key management tool. These preventive measures are expected to contribute to reducing the number of poisonings and to ap-plying more efficient fisheries closures, ensuring a balance that protects both public health and the development of the fishing industry.
Assuntos
Humanos , Animais , Intoxicação por Frutos do Mar/epidemiologia , Microalgas , Toxinas Marinhas/classificação , Moluscos , Argentina/epidemiologia , Fitoplâncton , Frutos do Mar/normas , Frutos do Mar/toxicidade , Impactos da Poluição na Saúde/prevenção & controle , Intoxicação por Frutos do Mar/classificação , Intoxicação por Frutos do Mar/prevenção & controle , Proliferação Nociva de Algas , Toxinas Marinhas/químicaRESUMO
Alexandrium catenella was tracked from seed-bed to bloom at a hot spot of cyst deposition on the southern coast of Korea from June 2016 to Feb. 2020. Changes in cyst abundance and germinability from sediment, as well as the vegetative cell abundance and encystment in the water column were intensively monitored. Cyst germination of ca. 73% occurred synchronously in November of 2016 to 2019, when bottom water temperature was around 15 °C. After mass germination, vegetative cells formed a seed populations at low density (<10 cells L-1) during winter. Overwintering populations initiated growth in March and then proliferated into high density (ca. 4 × 104 cells L-1) spring blooms in mid-April 2017 when moderate temperature (15 °C) was recorded. There was no bloom in spring of 2018 and 2019, but small vegetative populations developed. Decline of the spring bloom was followed by massive encystment and an increase in Noctiluca abundance. An average spring encystment ratio of 0.002 was estimated for the study years. Newly formed cysts lay dormant during the warm season lasting about six months and then seeded the next population of vegetative cells. An average contribution ratio of cells recruited from the sediment was ca. 0.09 for seeding winter populations. The range in shift ratios for spring production of a daughter cyst population to prior cyst abundance of the mother population in fall was 0.1 to 0.6 for consecutive years, depending on annual variation of local environments. Tracking mass transformation of A. catenella cysts will contribute to more effective science based management of paralytic shellfish poisoning on the southern Korean coast.
Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Humanos , República da Coreia , Estações do Ano , SementesRESUMO
Paralytic shellfish poisoning (PSP) toxins have received considerable attention in recent years because of their adverse effects on marine breeding industries and human health. In this study, a reliable method for the analysis of extracellular PSP toxins in the culture medium of marine toxic dinoflagellates was developed for the first time using graphitized carbon black-solid-phase extraction and hydrophilic interaction liquid chromatography-high-resolution mass spectrometry. The limit of quantification of typical PSP toxins in algal culture medium ranged from 0.072 µg/L to 0.151 µg/L under optimal conditions. Satisfactory absolute recoveries (87.5%-102.4%), precision (relative standard deviation ≤ 7.6%), and linearity (R2 ≥ 0.9998) were also achieved. In addition, the proposed method was applied to screen and determine the extracellular PSP toxins of two typical toxigenic dinoflagellates, Alexandrium minutum and Alexandrium tamarense. The total concentrations of the extracellular PSP toxins in A. minutum and A. tamarense over the whole growth period were within 2.0-735.5 and 2.0-19.2 µg/L, respectively. The concentrations of extracellular PSP toxins varied remarkably in the different growth stages of A. minutum and A. tamarense, and the contents of some extracellular PSP toxins were substantially higher than those of intracellular PSP toxins. Therefore, the extracellular PSP toxins released by toxigenic red tide algae cannot be ignored, and their environmental fate, bioavailability, and potential harm to aquatic environment need to be investigated in future studies.
Assuntos
Cromatografia Líquida/métodos , Meios de Cultura/química , Dinoflagellida/metabolismo , Toxinas Marinhas/análise , Espectrometria de Massas/métodos , Extração em Fase Sólida/métodos , Interações Hidrofóbicas e Hidrofílicas , Intoxicação por Frutos do Mar , Fuligem/químicaRESUMO
Okadaic acid (OA), one of the most important phycotoxins, is widely distributed around the world, concerning diarrheic shellfish poisoning (DSP), and even colorectal cancer. Here, we found that long-term exposure of OA at a low dose (80 µg kg-1 body weight) had certain effects on colonic microbiotas and tract in rat. In the OA-exposed rat, colonic epithelium layer was damaged, and relative abundance of some microbiotas were significantly changed, especially genera in Clostridiales. However, no intestinal inflammation or significant disease was observed. Combined with the increase in relative abundance of some genera in Clostridiales induced by OA in the fermentation experiment, we proposed that OA could cause damage to the intestinal epithelium and increase the relative abundance of pathogenic bacteria, thereby increasing the probability of contact between intestinal epithelium and pathogenic bacteria and leading to an easier pathogenicity.
Assuntos
Carcinógenos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Ácido Okadáico/toxicidade , Animais , Colo , Inflamação , Mucosa Intestinal , Intestinos , Microbiota , Ratos , Intoxicação por Frutos do Mar , Testes de Toxicidade CrônicaRESUMO
Physiological plasticity gives HABs species the ability to respond to variations in the surrounding environment. The aim of this study was to examine morphological and physiological variability in Alexandrium pacificum R.W. Litaker (Group IV) (former Alexandrium catenella) blooming in Annaba bay, Algeria. Monoclonal cultures of up to 30 strains of this neurotoxic dinoflagellate were established by the germination of single resting cysts from the surface sediment of this southern Mediterranean marine ecosystem. Ribotyping confirmed formally for the first time that A. pacificum is developing in Eastern Algerian waters. Toxin analyses of A. pacificum strains revealed substantial intraspecific variability in both the profile and toxin amount. However, the toxin profile of most strains is characterized by the dominance of GTX6 (up to 96 mol %) which is the less toxic paralytic molecule. The toxin concentrations in the isolated strains varied widely between 3.8 and 30.82 fmol cell-1. We observed an important variation in the growth rate of the studied A. pacificum strains with values ranging from 0.05 to 0.33 d-1. The lag time of the studied strains varied widely and ranged from 4 to 20 days. The intraspecific diversity could be a response to the selection pressure which may be exerted by different environmental conditions over time and which can be genetically and in turn physiologically expressed. This study highlights, for the first time, that the sediment of a limited area holds an important diversity of A. pacificum cysts which give when germinate populations with noticeable physiological plasticity. Consequently, this diversified natural populations allow an exceptional adaptation to specific environmental conditions to outcompete local microalgae and to establish HABs which could explain why this dinoflagellate is successful and expanding worldwide.
Assuntos
Dinoflagellida/fisiologia , Toxinas Marinhas/análise , Argélia , Baías , Ecossistema , Toxinas Marinhas/metabolismo , Intoxicação por Frutos do Mar , Toxinas Biológicas , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismoRESUMO
The Alexandrium tamarense species complex consists of 5 closely related species that are important bloom-forming dinoflagellates with a complex life cycle. The formation of resting cyst is a key strategy to resist harsh environmental conditions. In this study, the resting cysts of two major bloom-forming species of the A. tamarense species complex in China, A. catenella (Whedon & Kof.) Balech (previously A. fundyense, or A. tamarense species complex Group I) and A. pacificum Litaker (A. tamarense species complex Group IV), were studied in surface sediment collected from the Bohai Sea (BS) and Yellow Sea (YS) during two cruises conducted in 2012 and 2015. Cyst abundance of the A. tamarense species complex was first quantified by the primuline-staining method, and cysts of the two species were subsequently determined using two real-time quantitative PCR (qPCR) assays. Results showed that resting cysts of the A. tamarense species complex were more abundant in the YS than the BS (mean of 480 and 33 cysts g dry weight, DW-1 of sediment, respectively). Cysts were mainly found in the central portion of the northern YS, the area SE (southeast) of the Shandong peninsula, and the area near the Subei Shoal in the southern YS, where surface sediment had a high percentage of clay and silt (particle size < 63 µm) content. The maximum cyst abundance recorded was 3090 cysts g DW-1 of sediment in 2012 and 3448 cysts g DW-1 in 2015, respectively. Cysts were mainly composed of A. catenella in the YS and the BS, while those of A. pacificum were only detected occasionally at some sampling sites in the YS. Highly abundant resting cysts in surface sediment of the YS may serve as "seed banks" for recurrent toxic blooms of A. catenella and the associated shellfish contamination by paralytic shellfish toxins in the YS.