Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Carbohydr Polym ; 340: 122311, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858027

RESUMO

Modified biopolymers that are based on prebiotics have been found to significantly contribute to immunomodulatory events. In recent years, there has been a growing use of modified biomaterials and polymer-functionalized nanomaterials in the treatment of various tumors by activating immune cells. However, the effectiveness of immune cells against tumors is hindered by several biological barriers, which highlights the importance of harnessing prebiotic-based biopolymers to enhance host defenses against cancer, thus advancing cancer prevention strategies. Inulin, in particular, plays a crucial role in activating immune cells and promoting the secretion of cytokines. Therefore, this mini-review aims to emphasize the importance of inulin in immunomodulatory responses, the development of inulin-based hybrid biopolymers, and the role of inulin in enhancing immunity and modifying cell surfaces. Furthermore, we discuss the various approaches of chemical modification for inulin and their potential use in cancer treatment, particularly in the field of cancer immunotherapy.


Assuntos
Materiais Biocompatíveis , Inulina , Neoplasias , Inulina/química , Inulina/farmacologia , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Imunoterapia/métodos
2.
Int J Biol Macromol ; 270(Pt 2): 132232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734349

RESUMO

High polymerization persimmon tannin has been reported to have lipid-lowering effects. Unfortunately, the poor solubility restricts its application. This research aimed to investigate the effect and mechanism of inulin on solubilizing of persimmon tannin. Furthermore, we examined whether the addition of inulin would affect the attenuated obesity effect of persimmon tannin. Transmission electron microscope (TEM), Isothermal titration calorimetry (ITC) and Fourier transform infrared spectroscopy (FT-IR) results demonstrated that inulin formed a gel-like network structure, which enabled the encapsulation of persimmon tannin through hydrophobic and hydrogen bond interactions, thereby inhibiting the self-aggregation of persimmon tannin. The turbidity of the persimmon tannin solution decreased by 56.2 %, while the polyphenol content in the supernatant increased by 60.0 %. Furthermore, biochemical analysis and 16s rRNA gene sequencing technology demonstrated that persimmon tannin had a significant anti-obesity effect and improved intestinal health in HFD-fed mice. Moreover, inulin was found to have a positive effect on enhancing the health benefits of persimmon tannin, including improving hepatic steatosis and gut microbiota dysbiosis. it enhanced the abundance of beneficial core microbes while decreasing the abundance of harmful bacteria. Our findings expand the applications of persimmon tannin in the food and medical sectors.


Assuntos
Fármacos Antiobesidade , Microbioma Gastrointestinal , Inulina , Obesidade , Solubilidade , Taninos , Inulina/química , Inulina/farmacologia , Taninos/química , Taninos/farmacologia , Animais , Camundongos , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/química , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Polimerização , Diospyros/química , Masculino , Dieta Hiperlipídica/efeitos adversos , Polifenóis/química , Polifenóis/farmacologia
3.
Sci Rep ; 14(1): 11291, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760355

RESUMO

In the current study, we utilized molecular modeling and simulation approaches to define putative potential molecular targets for Burdock Inulin, including inflammatory proteins such as iNOS, COX-2, TNF-alpha, IL-6, and IL-1ß. Molecular docking results revealed potential interactions and good binding affinity for these targets; however, IL-1ß, COX-2, and iNOS were identified as the best targets for Inulin. Molecular simulation-based stability assessment demonstrated that inulin could primarily target iNOS and may also supplementarily target COX-2 and IL-1ß during DSS-induced colitis to reduce the role of these inflammatory mechanisms. Furthermore, residual flexibility, hydrogen bonding, and structural packing were reported with uniform trajectories, showing no significant perturbation throughout the simulation. The protein motions within the simulation trajectories were clustered using principal component analysis (PCA). The IL-1ß-Inulin complex, approximately 70% of the total motion was attributed to the first three eigenvectors, while the remaining motion was contributed by the remaining eigenvectors. In contrast, for the COX2-Inulin complex, 75% of the total motion was attributed to the eigenvectors. Furthermore, in the iNOS-Inulin complex, the first three eigenvectors contributed to 60% of the total motion. Furthermore, the iNOS-Inulin complex contributed 60% to the total motion through the first three eigenvectors. To explore thermodynamically favorable changes upon mutation, motion mode analysis was carried out. The Free Energy Landscape (FEL) results demonstrated that the IL-1ß-Inulin achieved a single conformation with the lowest energy, while COX2-Inulin and iNOS-Inulin exhibited two lowest-energy conformations each. IL-1ß-Inulin and COX2-Inulin displayed total binding free energies of - 27.76 kcal/mol and - 37.78 kcal/mol, respectively, while iNOS-Inulin demonstrated the best binding free energy results at - 45.89 kcal/mol. This indicates a stronger pharmacological potential of iNOS than the other two complexes. Thus, further experiments are needed to use inulin to target iNOS and reduce DSS-induced colitis and other autoimmune diseases.


Assuntos
Ciclo-Oxigenase 2 , Interleucina-1beta , Inulina , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase Tipo II , Inulina/química , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/química , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/química , Interleucina-1beta/metabolismo , Animais , Simulação de Dinâmica Molecular , Colite/induzido quimicamente , Colite/metabolismo , Colite/prevenção & controle , Ligação Proteica , Ligação de Hidrogênio , Camundongos , Modelos Moleculares , Fator de Necrose Tumoral alfa/metabolismo
4.
Int J Biol Macromol ; 263(Pt 1): 130139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354927

RESUMO

In this study, phosphorylated derivatives of long-chain inulin with different substitution degrees were prepared. The synthesized samples were named PFXL-1, PFXL-2, PFXL-3, and PFXL-4 according to their degree of substitution (from low to high). The structures of FXL and PFXL were characterized by infrared spectroscopy and nuclear magnetic resonance spectroscopy, and the results indicated the successful introduction of phosphate groups. FXL and PFXL were composed of two types of sugar, fructose and glucose, with a molar ratio of 0.977:0.023. The SEM results showed that phosphorylation changed the morphology of FXL from an irregular mass to small spherical aggregates. The XRD pattern showed that the crystallinity was reduced by the introduction of phosphate groups. The Mw of FXL was 2649 g/mol, and the Mw of PFXL-4 increased the most (2965 g/mol). Additionally, PFXL was more stable and uniform, and the absolute value of the PFXL potential reached 7.83 mV. Phosphorylation decreased the weight loss rate of FXL and improved the viscoelastic properties and antioxidant activity of FXL. This study presents a method for the modification of FXL, demonstrating that phosphorylation can enhance its physicochemical properties and physiological activity and suggesting its potential as a functional food and quality modifier.


Assuntos
Antioxidantes , Inulina , Antioxidantes/farmacologia , Antioxidantes/química , Inulina/química , Espectrofotometria Infravermelho , Espectroscopia de Ressonância Magnética , Fosfatos
5.
Int J Biol Macromol ; 259(Pt 1): 129216, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185294

RESUMO

Cancer stands as the second leading cause of death in the United States (US). Most chemotherapeutic agents exhibit severe adverse effects that are attributed to exposure of drugs to off-target tissues, posing a significant challenge in cancer therapy management. In recent years, inulin, a naturally occurring prebiotic fiber has gained substantial attention for its potential in cancer treatment owing to its multitudinous health values. Its distinctive structure, stability, and nutritional properties position it as an effective adjuvant and carrier for drug delivery in cancer therapy. To address some of the above unmet clinical issues, this review summarizes the recent efforts towards the development of inulin-based nanomaterials and nanocomposites for healthcare applications with special emphasis on the multifunctional role of inulin in cancer therapy as a synergist, signaling molecule, immunomodulatory and anticarcinogenic molecule. Furthermore, the review provides a concise overview of ongoing clinical trials and observational studies associated with inulin-based therapy. In conclusion, the current review offers insights on the significant role of inulin interventions in exploring its potential as a therapeutic agent to treat cancer.


Assuntos
Inulina , Neoplasias , Humanos , Inulina/uso terapêutico , Inulina/química , Prebióticos , Preparações Farmacêuticas , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos
6.
Food Chem ; 434: 137325, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37696152

RESUMO

Encapsulation of quercetin (Q) with inulin (In) by spray-drying was performed applying a Box-Behnken design where the effect of the inlet air temperature, percentage of inulin crystallite dispersion and Q content were studied on the crystallinity index (CI). Three microparticle systems with CI between 2 % and 20 % (Q-In-2 %, Q-In-12 % and Q-In-20 %) were selected to study the CI effect on Q release during an in vitro digestion. The higher the CI of microparticles, the higher the encapsulation efficiency (76.4 %, Q-In-20 %). Surface quercetin was steadily released during the oral, gastric, and intestinal phases of the digestion. The CI of the microparticles did not influence the Q bioaccessibility values (23.1-29.7 %). The highest Q delivery occurred during the simulated colonic phase (44.4-66.4 %) due to the action of the inulinase. The controlled crystallization in spray-dried microparticles is a promising strategy for the designing of polyphenol-based microparticles with specific delivery properties.


Assuntos
Inulina , Quercetina , Inulina/química , Polifenóis , Temperatura , Digestão
7.
Int J Biol Macromol ; 206: 213-221, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35181329

RESUMO

Achieving controlled and site-specific delivery of hydrophobic drugs in the colon environment is a major challenge. The primary goal of this research was to synthesize inulin-stearic acid (INU-SA) conjugate and to evaluate its potential in the site-specific delivery of genistein (GEN) for the treatment of colon cancer. INU is a hydrophilic polysaccharide biological macromolecule was modified with hydrophobic SA to form amphiphilic conjugate (INU-SA) which can self-assemble into spherical nanoparticles with interesting drug release properties. The hydrophobic GEN was encapsulated into the INU-SA conjugate to prepare GEN loaded nanoparticles (GNP). The prepared GNP possessed nano size (115 nm), good colloidal dispersibility (0.066 PDI), and high drug encapsulation efficiency (92.2%). The release behaviour of GNP indicated the site-specific release of GEN, only 3.4% at gastric pH while 94% at intestinal pH. The prepared GNP showed potential cytotoxicity against HCT 116 human colorectal cancer cells, as demonstrated by antiproliferation and apoptosis assays. The observed half maximum inhibitory concentration (IC50) value of GNP (5.5 µg/mL) was significantly lower than pure GEN (28.2 µg/mL) due to higher cellular internalization of GNP than free GEN. Therefore, this research suggests a way to improve the therapeutic effectiveness of natural biomolecules using modified and biocompatible polysaccharide INU.


Assuntos
Inulina , Nanopartículas , Portadores de Fármacos/química , Genisteína/farmacologia , Humanos , Inulina/química , Nanopartículas/química , Polissacarídeos , Ácidos Esteáricos
8.
Carbohydr Polym ; 275: 118706, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742431

RESUMO

Inulin, a fructan-type non-digestible carbohydrate, is a natural functional dietary fiber found in selected plants including chicory, garlic, onion, leeks and asparagus. Due to increasing popularity of inulin and rising awareness toward its low calorie value and prebiotic related health implications, consumers are becoming more conscious on consuming inulin incorporated foods. In this review, the scientific studies published in recent years regarding potential applications of inulin in meat products; and their effects on physicochemical and sensory properties, and health implications are discussed. Meat based functional foods with inulin can lead to enhance digestive health by reducing the risk of diseases like constipation, irritable bowel syndrome, inflammatory bowel disease and colorectal cancer. Inulin can be an interesting prebiotic ingredient in healthier meat formulations, apart from being a fat replacer and dietary fiber enhancer.


Assuntos
Fibras na Dieta/metabolismo , Alimento Funcional/análise , Inulina/metabolismo , Produtos da Carne/análise , Fibras na Dieta/análise , Humanos , Inulina/química
9.
Eur J Pharm Biopharm ; 168: 1-14, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34438018

RESUMO

A variety of polymer:polymer blends was used to prepare hot melt extrudates and empty capsules (bodies and caps) by injection-molding using a benchtop extruder (Babyplast). KollidonSR:inulin and Carbothane:inulin blends were investigated. The impact of the blend ratio on the water uptake and dry mass loss kinetics upon exposure to 0.1 MHCl, phosphate buffer pH6.8 and culture medium optionally inoculated with fecal samples from Inflammatory Bowel Disease (IBD) patients were studied. Hot melt extrudates were loaded with up to 60% theophylline, capsules were filled with drug powder. Increasing the inulin content led to increased water uptake and dry mass loss rates, resulting in accelerated drug release from the dosage forms, irrespective of the type of polymer blend. This can be attributed to the higher hydrophilicity/water-solubility of this polymer compared to KollidonSR and Carbothane. Interestingly, the presence of fecal samples in culture medium increased the water uptake and dry mass loss of hot melt extrudates to a certain extent, suggesting partial system degradation by bacterial enzymes. However, these phenomena did not translate into any noteworthy impact of the presence of colonic bacteria on theophylline release from the investigated extrudates or capsules. Hence, drug release can be expected to be independent of the location "small intestine vs. colon" from these dosage forms, which can be advantageous for long term release throughout the entire gastro intestinal tract.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros/química , Tecnologia Farmacêutica/métodos , Teofilina/administração & dosagem , Química Farmacêutica/métodos , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Inulina/química , Poliuretanos/química , Povidona/química , Solubilidade , Teofilina/química
10.
Glycoconj J ; 38(5): 599-607, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34313918

RESUMO

An inulin polysaccharide with a molecular weight of ~ 2600 Da was derived from Jerusalem artichoke tubers and referred to as "JAP". Previous studies have shown that inulin can improve glucose tolerance and the liver lipid profile; however, its antitumor activity remains to be examined in detail. Therefore, to investigate the possible improvement of the antitumor activity of JAP, a novel nanostructured biomaterial was constructed by capping Se nanoparticles with JAP using sodium selenite, via a redox reaction with ascorbic acid, and referred to as "JAP-SeNPs". Transmission electron microscopy revealed that the average diameter of JAP-SeNPs is ~ 50 nm, and the C:Se mass ratio in JAP-SeNPs was found to be 15.4:1 by energy-dispersive X-ray spectroscopy. The well-dispersed JAP-SeNPs exhibited a significant in vitro antiproliferative effect on mouse forestomach carcinoma cells at a concentration of 400 µg/mL when incubated for 48 h, with an inhibition rate of 41.5%. Moreover, 38.9% of later apoptotic cells were observed. These results reveal that a combination of Se and JAP can effectively enhance the antitumor activity of polysaccharides obtained from Jerusalem artichoke tubers.


Assuntos
Antineoplásicos/farmacologia , Carcinoma/tratamento farmacológico , Helianthus/química , Inulina/química , Nanopartículas/química , Tubérculos/química , Selênio/química , Animais , Antineoplásicos/química , Linhagem Celular , Camundongos , Neoplasias Gástricas
11.
Mol Pharm ; 18(6): 2233-2241, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34010002

RESUMO

Eliciting a robust immune response at mucosal sites is critical in preventing the entry of mucosal pathogens such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This task is challenging to achieve without the inclusion of a strong and safe mucosal adjuvant. Previously, inulin acetate (InAc), a plant-based polymer, is shown to activate toll-like receptor-4 (TLR4) and elicit a robust systemic immune response as a vaccine adjuvant. This study investigates the potential of nanoparticles prepared with InAc (InAc-NPs) as an intranasal vaccine delivery system to generate both mucosal and systemic immune responses. InAc-NPs (∼250 nm in diameter) activated wild-type (WT) macrophages but failed to activate macrophages from TLR4 knockout mice or WT macrophages when pretreated with a TLR4 antagonist (lipopolysaccharide-RS (LPS-RS)), which indicates the selective nature of a InAc-based nanodelivery system as a TLR4 agonist. Intranasal immunization using antigen-loaded InAc-NPs generated ∼65-fold and 19-fold higher serum IgG1 and IgG2a titers against the antigen, respectively, as compared to PLGA-NPs as a delivery system. InAc-NPs have also stimulated the secretion of sIgA at various mucosal sites, including nasal-associated lymphoid tissues (NALTs), lungs, and intestine, and produced a strong memory response indicative of both humoral and cellular immune activation. Overall, by stimulating both systemic and mucosal immunity, InAc-NPs laid a basis for a potential intranasal delivery system for mucosal vaccination.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Portadores de Fármacos/farmacologia , Inulina/farmacologia , Adjuvantes Imunológicos/química , Administração Intranasal , Animais , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Células Cultivadas , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunidade nas Mucosas/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Imunogenicidade da Vacina , Inulina/química , Inulina/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Nanopartículas/química , Cultura Primária de Células , SARS-CoV-2/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/genética
12.
Molecules ; 26(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808586

RESUMO

Here, a novel strategy of formulating efficient polymeric carriers based on the already described INU-IMI-DETA for gene material whose structural, functional, and biological properties can be modulated and improved was successfully investigated. In particular, two novel derivatives of INU-IMI-DETA graft copolymer were synthesized by chemical functionalisation with epidermal growth factor (EGF) or polyethylenglycol (PEG), named INU-IMI-DETA-EGF and INU-IMI-DETA-PEG, respectively, in order to improve the performance of already described "inulin complex nanoaggregates" (ICONs). The latter were thus prepared by appropriately mixing the two copolymers, by varying each component from 0 to 100 wt% on the total mixture, named EP-ICONs. It was seen that the ability of the INU-IMI-DETA-EGF/INU-IMI-DETA-PEG polymeric mixture to complex siGL3 increases with the increase in the EGF-based component in the EP-ICONs and, for each sample, with the increase in the copolymer:siRNA weight ratio (R). On the other hand, the susceptibility of loaded siRNA towards RNase decreases with the increase in the pegylated component in the polymeric mixture. At all R values, the average size and the zeta potential values are suitable for escaping from the RES system and suitable for prolonged intravenous circulation. By means of biological characterisation, it was shown that MCF-7 cells are able to internalize mainly the siRNA-loaded into EGF-decorated complexes, with a significant difference from ICONs, confirming its targeting function. The targeting effect of EGF on EP-ICONs was further demonstrated by a competitive cell uptake study, i.e., after cell pre-treatment with EGF. Finally, it was shown that the complexes containing both EGF and PEG are capable of promoting the internalisation and therefore the transfection of siSUR, a siRNA acting against surviving mRNA, and to increase the sensitivity to an anticancer agent, such as doxorubicin.


Assuntos
Portadores de Fármacos , Inulina , Nanoestruturas , Neoplasias/dietoterapia , RNA Interferente Pequeno , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Inulina/química , Inulina/farmacocinética , Inulina/farmacologia , Células MCF-7 , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacocinética , RNA Interferente Pequeno/farmacologia
13.
Ultrason Sonochem ; 74: 105568, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33915483

RESUMO

Ultrasound has been applied in food processing for various purpose, showing potential to advance the physical and chemical modification of natural compounds. In order to explore the effect of ultrasonic pretreatment on the complexation of inulin and tea polyphenols (TPP), different frequencies (25, 40, 80 kHz) and output power (40, 80, 120 W) were carried out. According to the comparison in particle size distribution and phenolic content of different inulin-TPP complexes, it was indicated that high-intensity ultrasonic (HIU) treatment (25 kHz, 40 W, 10 min) could accelerate the interaction of polysaccharides and polyphenols. Moreover, a series of spectral analysis including UV-Vis, FT-IR and NMR jointly evidenced the formation of hydrogen bond between saccharides and phenols. However, the primary structure of inulin and the polysaccharide skeleton were not altered by the combination. Referring to field emission scanning electron microscopy (FESEM), the morphology of ultrasound treated-complex presented a slight agglomeration in the form of bent sheets, compared to non-treated sample. The inulin-TPP complex also revealed better stability based on thermogravimetric analysis (TGA). Thus, it can be speculated from the identifications that proper ultrasonic treatment is promising to promote the complexation of some food components during processing.


Assuntos
Inulina/química , Polifenóis/química , Polissacarídeos/química , Chá/química , Ondas Ultrassônicas , Manipulação de Alimentos
14.
J Sci Food Agric ; 101(6): 2491-2499, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33063324

RESUMO

BACKGROUND: Codonopsis pilosula and C. tangshen are both plants widely used in traditional Chinese medicine. Polysaccharides, which are their primary active components, are thought to be important in their extensive use. In this study, two neutral polysaccharide fractions of C. pilosula (CPPN) and C. tangshen (CTPN) were obtained by fractionation on a DEAE-Sepharose column and characterized. RESULTS: It was confirmed that the neutral polymers CPPN and CTPN were ß-(2,1)-linked inulin-type fructans with non-reducing terminal glucose, and degree of polymerization (DP) of 19.6 and 25.2, respectively. The antioxidant and prebiotic activities in vitro were assayed based on IPEC-J2 cell lines and five strains of Lactobacillus. Results indicated that the effects of CPPN and CTPN were increased antioxidant defense in intestinal epithelial cells through enhanced cell viability, improved expression of total antioxidant capacity, glutathione peroxidase, superoxide dismutase and catalase, and reduced levels of malondialdehyde and lactic dehydrogenase. The prebiotic activity of CPPN and CTPN was demonstrated by the promoting effect on Lactobacillus proliferation in vitro. The different biological activities obtained between the two fractions are probably due to the different DP and thus molecular weights of CPPN and CTPN. CONCLUSION: The inulin fractions from C. pilosula and C. tangshen were natural sources of potential intestinal antioxidants as well as prebiotics, which will be valuable in further studies and new applications of inulin-containing health products. © 2020 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Codonopsis/química , Medicamentos de Ervas Chinesas/química , Frutanos/química , Inulina/química , Prebióticos/análise , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Codonopsis/classificação , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Frutanos/isolamento & purificação , Frutanos/farmacologia , Humanos , Inulina/isolamento & purificação , Inulina/farmacologia , Lactobacillus/efeitos dos fármacos , Lactobacillus/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Polimerização
15.
Molecules ; 25(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255296

RESUMO

Betalains are powerful antioxidants contained in beets. These are divided into betacyanins (red-violet) and betaxanthins (yellow-orange), and they can be used as natural colorants in the food industry. The effects of freeze-drying pure beet juice (B) and the encapsulation of beet juice with a dextrose equivalent (DE) 10 maltodextrin (M) and agave inulin (I) as carrier agents were evaluated. The powders showed significant differences (p < 0.05) in all the variables analyzed: water absorption index (WAI), water solubility index (WSI), glass transition temperature (Tg), total betalains (TB), betacyanins (BC), betaxanthins (BX), total polyphenols (TP), antioxidant activity (AA, via 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) (ABTS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH)) and total protein concentration (TPC). The highest values of antioxidant activity were found in the non-encapsulated beet powder, followed by the powder encapsulated with maltodextrin and, to a lesser extent, the powder encapsulated with inulin. The glass transition temperature was 61.63 °C for M and 27.59 °C for I. However, for B it was less than 18.34 °C, which makes handling difficult. Encapsulation of beet extract with maltodextrin and inulin by lyophilization turned out to be an efficient method to increase solubility and diminish hygroscopicity.


Assuntos
Beta vulgaris/química , Inulina/química , Extratos Vegetais/química , Raízes de Plantas/química , Polissacarídeos/química , Adsorção , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Fenômenos Químicos , Composição de Medicamentos , Transição de Fase , Pigmentos Biológicos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Polifenóis/química , Pós/química , Solubilidade , Água
16.
Carbohydr Polym ; 247: 116730, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829852

RESUMO

Herein, we introduce a novel amphiphilic bioconjugate (INU-F68-SA), synthesized by functionalization of pluronic F68 with a polysaccharide inulin (INU) and a lipid stearic acid (SA). The synthesis of INU-F68-SA was confirmed by FTIR and 1H-NMR analysis. INU-F68-SA can self-assemble into nanomicelles and therefore, its application in delivering of hydrophobic resveratrol (RSV) was investigated. The RSV-loaded INU-F68-SA nanomicelles (RSNM) had about 172 nm size, spherical shape, 0.237 polydispersity index, and -18 mV zeta potential. More importantly, the RSNM showed high drug entrapment efficiency, controlled drug release and protection of drug during storage. The RSNM significantly enhanced the cytotoxicity of RSV against colorectal cancer cells by inducing apoptosis and changing mitochondrial membrane potential. Further, in-vivo pharmacokinetic experiment indicated an improvement in pharmacokinetics of RSV after administering as RSNM. Thus, the use of self-assembled nanomicelles of amphiphilic INU-F68-SA bioconjugate could be a better alternative to overcome the poor in-vitro and in-vivo performance of RSV.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Inulina/química , Micelas , Nanopartículas/administração & dosagem , Poloxâmero/química , Resveratrol/farmacologia , Ácidos Esteáricos/química , Antioxidantes/farmacologia , Neoplasias Colorretais/patologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Potencial da Membrana Mitocondrial , Nanopartículas/química , Células Tumorais Cultivadas
17.
Carbohydr Polym ; 246: 116589, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747248

RESUMO

Inulin (IN), a fructan-type plant polysaccharide, is widely found in nature. The major plant sources of IN include chicory, Jerusalem artichoke, dahlia etc. Studies have found that IN possessed a wide array of biological activities, e.g. as a prebiotic to improve the intestinal microbe environment, regulating blood sugar, regulating blood lipids, antioxidant, anticancer, immune regulation and so on. Currently, IN is widely used in the food and pharmaceutical industries. IN can be used as thickener, fat replacer, sweetener and water retaining agent in the food industry. IN also can be applied in the pharmaceutics as stabilizer, drug carrier, and auxiliary therapeutic agent for certain diseases such as constipation and diabetes. This paper reviews the physiological functions of IN and its applications in the field of pharmaceutics, analyzes its present research status and future research direction. This review will serve as a one-in-all resource for the researchers who are interested to work on IN.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Hipoglicemiantes/farmacologia , Fatores Imunológicos/farmacologia , Inulina/farmacologia , Laxantes/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Glicemia/metabolismo , Cichorium intybus/química , Dahlia/química , Portadores de Fármacos/química , Excipientes/química , Excipientes/isolamento & purificação , Helianthus/química , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/metabolismo , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/metabolismo , Inulina/química , Inulina/isolamento & purificação , Inulina/metabolismo , Laxantes/química , Laxantes/isolamento & purificação , Laxantes/metabolismo , Lipídeos/sangue , Prebióticos/administração & dosagem , Edulcorantes/química , Edulcorantes/isolamento & purificação
18.
Curr Drug Deliv ; 17(8): 651-674, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32459607

RESUMO

Natural polysaccharides, as well as biopolymers, are now days widely developed for targeting colon cancer using various drug delivery systems. Currently, healing conformations are being explored that can efficiently play a multipurpose role. Owing to the capability of extravagance colonic diseases with the least adverse effects, biopolymers for site specific colon delivery have developed an increased curiosity over the past decades. Inulin (INU) was explored for its probable application as an entrapment material concerning its degradation by enzymes in the colonic microflora and its drug release behavior in a sustained and controlled manner. INU is a polysaccharide and it consists of 2 to 1 linkage having an extensive array of beneficial uses such as a carrier for delivery of therapeutic agents as an indicative/investigative utensil or as a dietary fiber with added well-being aids. In the main, limited research, as well as information, is available on the delivery of therapeutic agents using inulin specifically for colon cancer because of its capability to subsist in the stomach's acidic medium. This exceptional steadiness and robustness properties are exploited in numerous patterns to target drugs securely for the management of colonic cancer, where they effectively act and kills colonic tumor cells easily. In this review article, recent efforts and inulin-based nano-technological approaches for colon cancer targeting are presented and discussed.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Portadores de Fármacos/química , Microbioma Gastrointestinal/fisiologia , Inulina/química , Administração Oral , Colo/enzimologia , Colo/microbiologia , Colo/patologia , Neoplasias do Colo/epidemiologia , Neoplasias do Colo/patologia , Fibras na Dieta , Carga Global da Doença , Humanos , Mucosa Intestinal/enzimologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Pró-Fármacos/administração & dosagem , Fatores de Risco , Programa de SEER/estatística & dados numéricos
19.
Molecules ; 25(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326580

RESUMO

The objective of this study was to examine the effect of inulin and maltodextrin applied during vacuum drying of Saskatoon berry fruit, juice, and pomace on the retention of bioactive compounds and antioxidant capacity (radical scavenging capacity (ABTS), ferric reducing antioxidant potential (FRAP)) of powders obtained. Ultra-high performance liquid chromatography (UPLC-PDA-ESI-MS/MS) was used to identify major groups of polyphenolic compounds, such as: flavan-3-ols (35% of all polyphenols for fruit powder, 33% for juice powder, and 39% for pomace powders of all polyphenols), anthocyanins (26% for fruit powder, 5% for juice powder, and 34% for pomace), phenolic acids (33% for fruit powder, 55% for juice powder, and 20% for pomace powder), and flavanols (6% for fruit powder, 6% for juice powder, and 7% for pomace powder). In general, the content of polyphenols was more dependent on the content than on the type of carrier used for drying, regardless of the matrix tested. The average sum of polyphenols and the antioxidant activity (for ABTS and FRAP assay) of the powders with 30% of carrier addition were 5054.2 mg/100 g dry matter (d.m.) as well as 5.3 and 3.6 mmol Trolox/100 g d.m. in the ABTS and FRAP tests, respectively. The increase in carrier concentration by 20% caused a decrease of 1.5-fold in the content of polyphenols and a 1.6-fold and 1.5-fold in the antioxidant potential, regardless of the matrix tested. The principal component analysis (PCA) analysis indicated that the freeze-drying process led to the lowest degradation of the identified compounds, regardless of the matrix tested, with the exception of juice and pomace powders dried by vacuum drying at 60 °C. In this case, the release of (-)-epicatechin was observed, causing an increase in the flavanol contents. Thus, this work demonstrated the effect of processing and matrix composition on the preservation of antioxidant bioactives in Saskatoon berry powders. Properly designed high-quality Saskatoon berry powders with the mentioned carriers may be used as nutraceutical additives to fortify food products and to improve their functional properties.


Assuntos
Antioxidantes/química , Inulina/química , Extratos Vegetais/química , Polissacarídeos/química , Pós , Antocianinas/análise , Antocianinas/química , Antioxidantes/farmacologia , Ingredientes de Alimentos/análise , Extratos Vegetais/análise , Polifenóis/química
20.
J Agric Food Chem ; 68(3): 779-787, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31894986

RESUMO

The chain length of fructan determines its different physiological effects. This study is to explore the effects of low-performance inulin [LPI, degree of polymerization (DP) ≤ 9] and high-performance inulin (HPI, DP ≥ 23) on obesity-associated liver injury of high-fat diet (HFD) feeding mice and its underlying mechanism. Eight weeks of supplementation of C57BL/6J mice with HPI, relative to LPI (p < 0.05), caused the more efficient improvement against the HFD-induced liver insulin resistance through activating IRS1/PI3K/Akt pathway and reduced protein expressions of inflammatory factors nuclear factor-kappaB (NF-κB) and interleukin-6 (IL-6) in the liver. HPI exhibited the more positive effects on liver steatosis by inhibiting acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and sterol regulatory element binding protein 1 (SREBP1) in comparison with LPI (p < 0.05). HPI also increased acetic acid, propionic acid, and butyric acid levels in the colon of HFD-fed mice (p < 0.05). Compared to LPI, HPI feeding of HFD-fed mice led to the more effective decrease in the Firmicutes abundance from 72.1% to 34.5%, but a more significant increase in the Bacteroidetes population from 19.8 to 57.1% at the phyla level, and increased the abundance of Barnesiella, Bacteroides, and Parabacteroides at the genus level (p < 0.05). Depending on DP, HPI exerts the more positive regulation on liver injury and gut microbiota dysfunction than LPI.


Assuntos
Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Inulina/administração & dosagem , Inulina/química , Fígado/lesões , Obesidade/tratamento farmacológico , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais/análise , Disbiose/genética , Disbiose/metabolismo , Disbiose/microbiologia , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , NF-kappa B/genética , NF-kappa B/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade/microbiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA