Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2023): 20232439, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772424

RESUMO

Genetic changes that enabled the evolution of eusociality have long captivated biologists. More recently, attention has focussed on the consequences of eusociality on genome evolution. Studies have reported higher molecular evolutionary rates in eusocial hymenopteran insects compared with their solitary relatives. To investigate the genomic consequences of eusociality in termites, we analysed nine genomes, including newly sequenced genomes from three non-eusocial cockroaches. Using a phylogenomic approach, we found that termite genomes have experienced lower rates of synonymous substitutions than those of cockroaches, possibly as a result of longer generation times. We identified higher rates of non-synonymous substitutions in termite genomes than in cockroach genomes, and identified pervasive relaxed selection in the former (24-31% of the genes analysed) compared with the latter (2-4%). We infer that this is due to reductions in effective population size, rather than gene-specific effects (e.g. indirect selection of caste-biased genes). We found no obvious signature of increased genetic load in termites, and postulate efficient purging of deleterious alleles at the colony level. Additionally, we identified genomic adaptations that may underpin caste differentiation, such as genes involved in post-translational modifications. Our results provide insights into the evolution of termites and the genomic consequences of eusociality more broadly.


Assuntos
Genoma de Inseto , Isópteros , Seleção Genética , Animais , Isópteros/genética , Filogenia , Evolução Molecular , Baratas/genética , Comportamento Social
2.
PeerJ ; 12: e16843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436016

RESUMO

The soldier caste is one of the most distinguished castes inside the termite colony. The mechanism of soldier caste differentiation has mainly been studied at the transcriptional level, but the function of microRNAs (miRNAs) in soldier caste differentiation is seldom studied. In this study, the workers of Coptotermes formosanus Shiraki were treated with methoprene, a juvenile hormone analog which can induce workers to transform into soldiers. The miRNomes of the methoprene-treated workers and the controls were sequenced. Then, the differentially expressed miRNAs (DEmiRs) were corrected with the differentially expressed genes DEGs to construct the DEmiR-DEG regulatory network. Afterwards, the DEmiR-regulated DEGs were subjected to GO enrichment and KEGG enrichment analysis. A total of 1,324 miRNAs were identified, among which 116 miRNAs were screened as DEmiRs between the methoprene-treated group and the control group. A total of 4,433 DEmiR-DEG pairs were obtained. No GO term was recognized as significant in the cellular component, molecular function, or biological process categories. The KEGG enrichment analysis of the DEmiR-regulated DEGs showed that the ribosome biogenesis in eukaryotes and circadian rhythm-fly pathways were enriched. This study demonstrates that DEmiRs and DEGs form a complex network regulating soldier caste differentiation in termites.


Assuntos
Isópteros , MicroRNAs , Animais , Isópteros/genética , Metoprene , Ritmo Circadiano , Grupos Controle , MicroRNAs/genética
3.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38491951

RESUMO

The mitogenome sequence data have been widely used in inferring the phylogeny of insects. In this study, we determined the complete mitogenome for Macrotermes sp. (Termitidae, Macrotermitinae) using next-generation sequencing. Macrotermes sp. possesses a typical insect mitogenome, displaying an identical gene order and gene content to other existing termite mitogenomes. We present the first prediction of the secondary structure of ribosomal RNA genes in termites. The rRNA secondary structures of Macrotermes sp. exhibit similarities to closely related insects and also feature distinctive characteristics in their helical structures. Together with 321 published mitogenomes of termites as ingroups and 8 cockroach mitogenomes as outgroups, we compiled the most comprehensive mitogenome sequence matrix for Termitoidae to date. Phylogenetic analyses were conducted using datasets employing different data coding strategies and various inference methods. Robust relationships were recovered at the family or subfamily level, demonstrating the utility of comprehensive mitogenome sampling in resolving termite phylogenies. The results supported the monophyly of Termitoidae, and consistent relationships within this group were observed across different analyses. Mastotermitidae was consistently recovered as the sister group to all other termite families. The families Hodotermitidae, Stolotermitidae, and Archotermopsidae formed the second diverging clade, followed by the Kalotermitidae. The Neoisoptera was consistently supported with strong node support, with Stylotermitidae being sister to the remaining families. Rhinotermitidae was found to be non-monophyletic, and Serritermitidae nested within the basal clades of Rhinotermitidae and was sister to Psammotermitinae. Overall, our phylogenetic results are largely consistent with earlier mitogenome studies.


Assuntos
Baratas , Genoma Mitocondrial , Isópteros , Humanos , Animais , Filogenia , Isópteros/genética , Baratas/genética , Insetos/genética
4.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952215

RESUMO

With recent evidence of hybridization events in the field, the phenotypic traits of F1 hybrid colonies of 2 destructive subterranean termite species, Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann) remain to be investigated. In this study, laboratory colonies of 2 conspecific pairings and 2 heterospecific pairings (hybrid F = ♀C. formosanus × ♂C. gestroi, hybrid G = ♀C. gestroi × ♂C. formosanus) were examined in Florida, USA, and in Taiwan. Colony nest architecture for both hybrids displayed disorganized carton materials compared to the defined trabecular carton of both parental species. Soldier head measurements were not a reliable approach for diagnostic purposes, as soldier morphometric traits widely overlapped across all mating combinations, except for hybrid F soldiers displaying abnormally long mandibles. Hybrid F soldiers' mandibles also remained parallel when at rest. However, 4 qualitative morphological differences in soldiers were determined for diagnostic purposes. First, the fontanelle in both hybrids is horizontally ellipsoid whereas subcircular in C. gestroi and trianguliform in C. formosanus. Second, sclerotized striations along the postmental sulcus are present in C. gestroi, absent in C. formosanus, and intermediate in both hybrid soldier types. Third, each lateral margin of the fontanelle is flanked by 2 setae in C. formosanus and both hybrids, while a single seta resides on each side of the fontanelle in C. gestroi. Finally, C. gestroi and hybrid soldiers' heads are characterized by a bulging vertex that is lacking in C. formosanus. Therefore, a combination of these 4 characteristics now allows for soldier identification of hybrid Coptotermes.


Assuntos
Baratas , Isópteros , Animais , Isópteros/genética , Hibridização Genética , Fenótipo , Florida
5.
J Econ Entomol ; 116(6): 2135-2145, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797286

RESUMO

Subterranean termites in the genus Reticulitermes Holmgren 1913 are among the most economically important wood-destroying pests in the western United States. Yet, there remains uncertainty regarding the taxonomy and biology of the species in this genus. The 2 species described as having distributions in this region are the western subterranean termite, Reticulitermes hesperus Banks, and the arid land subterranean termite, Reticulitermes tibialis Banks. Taxonomic studies utilizing cuticular hydrocarbon (CHC) profiles, agonistic behavior, flight phenology, and mitochondrial DNA (mtDNA) suggested that R. hesperus is a species complex comprised of 2 or more sympatric, yet reproductively isolated species. To further delineate these taxa, we examined multiple genes from samples of Reticulitermes collected in the western United States. Alates collected after recent spring and fall mating flights, as well as previously collected workers, were subjected to CHC phenotyping and DNA sequence analyses that targeted mitochondrial cytochrome oxidase subunit II (COII), mitochondrial 16S rRNA, and nuclear Internal Transcribed Spacer 1 and 2 (ITS1 and 2). Phylogenetic analyses conducted also included published sequences of other putative western Reticulitermes species. Results suggest that at least 5 species of Reticulitermes may be present in California and that Reticulitermes in Arizona consistently group into multiple clades, including samples previously identified as R. tibialis in a sister clade. These analyses further support the species status of qualitatively different CHC phenotypes and that alates swarming in spring vs. fall are reproductively isolated species.


Assuntos
Baratas , Isópteros , Animais , Filogenia , Isópteros/genética , RNA Ribossômico 16S/genética , Baratas/genética , Hidrocarbonetos , DNA Mitocondrial/genética , California
6.
J Econ Entomol ; 116(6): 2027-2034, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37804537

RESUMO

Reticulitermes speratus (Kolbe) is economically important pest in East Asia including Korea, Japan, and China where they infest wooden structures in urban areas. Previously, it has been reported that R. speratus consists of 5 subspecies, R. speratus kyushuensis Morimoto, R. speratus speratus Kolbe, R. speratus leptolabralis Morimoto, R. speratus okinawanus Morimoto, R. speratus yaeyamanus Morimoto, while only R. speratus kyushuensis was recorded in Korea in the past. However, it remains elusive if different subspecies of R. speratus other than R. speratus kyushuensis are present in Korea. In this study, we report the first record of R. speratus speratus from Korea, which was verified using soldier morphology and molecular characteristics obtained from a mitochondrial gene. R. speratus speratus Kolbe, 1885 (Blattodea: Rhinotermitidae) are found in several provinces, mainly southern regions in Korea, whereas R. speratus kyushuensis are distributed throughout the country. Our morphological comparison showed that R. speratus speratus can be distinguishable from R. speratus kyushuensis by the ratio of the posterior postmentum width to length. In the molecular comparison, R. speratus speratus revealed genetic differences of 3.06% (range 2.60-4.10%) from R. speratus kyushuensis using cytochrome oxidase subunit II gene sequences.


Assuntos
Baratas , Isópteros , Animais , Japão , China , República da Coreia , Isópteros/genética
7.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373456

RESUMO

Termites live in colonies, and their members belong to different castes that each have their specific role within the termite society. In well-established colonies of higher termites, the only food the founding female, the queen, receives is saliva from workers; such queens can live for many years and produce up to 10,000 eggs per day. In higher termites, worker saliva must thus constitute a complete diet and therein resembles royal jelly produced by the hypopharyngeal glands of honeybee workers that serves as food for their queens; indeed, it might as well be called termite royal jelly. However, whereas the composition of honeybee royal jelly is well established, that of worker termite saliva in higher termites remains largely unknown. In lower termites, cellulose-digesting enzymes constitute the major proteins in worker saliva, but these enzymes are absent in higher termites. Others identified a partial protein sequence of the major saliva protein of a higher termite and identified it as a homolog of a cockroach allergen. Publicly available genome and transcriptome sequences from termites make it possible to study this protein in more detail. The gene coding the termite ortholog was duplicated, and the new paralog was preferentially expressed in the salivary gland. The amino acid sequence of the original allergen lacks the essential amino acids methionine, cysteine and tryptophan, but the salivary paralog incorporated these amino acids, thus allowing it to become more nutritionally balanced. The gene is found in both lower and higher termites, but it is in the latter that the salivary paralog gene got reamplified, facilitating an even higher expression of the allergen. This protein is not expressed in soldiers, and, like the major royal jelly proteins in honeybees, it is expressed in young but not old workers.


Assuntos
Baratas , Isópteros , Feminino , Abelhas , Animais , Isópteros/genética , Sequência de Aminoácidos , Alérgenos/genética
8.
Exp Gerontol ; 178: 112228, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37271408

RESUMO

Studies have identified that mating induces a series of physiological changes in animals. In this period, males tending to invest more energy, immune peptides, and other substances to reduce the cost of living for females. This results in lower survival rates in later life than females. Meanwhile, both males and females shorten lifespans due to reproduction. However, the reasons why termites' queens and kings are both extremely long-lived and highly fecund are unclear. Therefore, this study aimed to examine the effects of mating on the expression of immune and DNA repair genes for lifespan extension in termite queens and kings. Here, we reported that mated queens show relatively higher expression of immune genes (phenoloxidase, denfensin, termicin, transferrin), antioxidant genes (CAT, SOD), detoxification genes (GST, CYP450) than virgin queens in the Reticulitermes chinensis. In addition, mated kings also highly expressed these genes, except for termicin, transferrin, GST, and CYP450. After mating, both queens and kings significantly upregulated the expression of DNA repair genes (MLH1, BRCA1, XRCC3, RAD54-like). Mismatch repair genes (MMR) MSH2, MSH4, MSH6 were considerably increased in mated queens, while MSH4, MSH5, MSH6 were upregulated in mated kings. Our results suggest that mating increases the expression of immune and DNA repair genes in the termite queens and kings, and thus possibly improving their survival during reproductive span due to the omnipresent pathogens.


Assuntos
Isópteros , Animais , Feminino , Masculino , Isópteros/genética , Isópteros/metabolismo , Reprodução/genética , Fertilidade , Reparo do DNA , Transferrinas/genética , Transferrinas/metabolismo
9.
PeerJ ; 11: e15259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37128206

RESUMO

Background: Insulin-like growth factor (IGF) and other insulin-like peptides (ilps) are important hormones regulating growth and development in animals. Whereas most animals have a single female and male adult phenotype, in some insect species the same genome may lead to different final forms. Perhaps the best known example is the honeybee where females can either develop into queens or workers. More extreme forms of such polyphenism occur in termites, where queens, kings, workers and soldiers coexist. Both juvenile hormone and insulin-like peptides are known to regulate growth and reproduction as well as polyphenism. In termites the role of juvenile hormone in reproduction and the induction of the soldier caste is well known, but the role of IGF and other ilps in these processes remains largely unknown. Here the various termite ilps are identified and hypotheses regarding their functions suggested. Methods: Genome assemblies and transcriptome short read archives (SRAs) were used to identify insulin-like peptides and neuropeptides in termites and to determine their expression in different species, tissues and castes. Results and Discussion: Termites have seven different ilps, i.e. gonadulin, IGF and an ortholog of Drosophila insulin-like peptide 7 (dilp7), which are commonly present in insects, and four smaller peptides, that have collectively been called short IGF-related peptides (sirps) and individually atirpin, birpin, cirpin and brovirpin. Gonadulin is lost from the higher termites which have however amplified the brovirpin gene, of which they often have two or three paralogs. Based on differential expression of these genes it seems likely that IGF is a growth hormone and atirpin an autocrine tissue factor that is released when a tissue faces metabolic stress. Birpin seems to be responsible for growth and in the absence of juvenile hormone this may lead to reproductive adults or, when juvenile hormone is present, to soldiers. Brovirpin is expressed both by the brain and the ovary and likely stimulates vitellogenesis, while the function of cirpin is less clear.


Assuntos
Isópteros , Neuropeptídeos , Somatomedinas , Feminino , Masculino , Animais , Abelhas , Isópteros/genética , Insulina/metabolismo , Somatomedinas/metabolismo , Insetos/metabolismo , Neuropeptídeos/metabolismo , Reprodução , Insulina Regular Humana/metabolismo , Hormônios Juvenis/metabolismo , Drosophila/metabolismo
10.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043525

RESUMO

Termites are dominant animals of tropical terrestrial ecosystems. Their success is due to their eusocial organization as well as their ability to digest dead plant tissues. While being extremely abundant, the termite diet is poor in crucial nutrients, such as fatty acids. Linoleic acid (LA) is a precursor for many vital biomolecules, and most animals depend on its dietary supply. Termites count among the exceptions known to produce LA de novo, presumably via the action of an unknown Δ12 fatty acyl desaturase (FAD) introducing the second double bond into monounsaturated oleic acid. Here, we search for the evolutionary origin of LA biosynthesis in termites. To this end, we compile the repertoire of FAD homologs from 57 species of termites and their closest relatives, the cockroaches, analyze FAD phylogeny, and identify a potential Δ12 FAD branch, which arose through duplication of a likely Δ9 FAD. We functionally characterize both paralogs and identify the Δ9 activity in the ancestral FAD-A1a and the Δ12 activity responsible for LA biosynthesis in FAD-A1b. Through the combination of homology modeling and site-directed mutagenesis, we pinpoint structural features possibly contributing to the distinct functions, regiospecificities, and substrate preferences of the two enzymes. We confirm the presence of both paralogs in all 36 studied species of the Blattoidea lineage (Blattidae, Lamproblattidae, Cryptocercidae, and termites) and conclude that we identified an evolutionary event important for the ecological success of termites, which took place in their cockroach ancestors roughly 160 My and remained conserved throughout termite diversification into 3,000 extant species.


Assuntos
Baratas , Isópteros , Animais , Ácido Linoleico , Isópteros/genética , Ecossistema , Filogenia , Ácidos Graxos
11.
Insect Mol Biol ; 32(2): 118-131, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366787

RESUMO

Termites (Insecta, Blattodea, Termitoidae) are a widespread and diverse group of eusocial insects known for their ability to digest wood matter. Herein, we report the draft genome of the subterranean termite Reticulitermes lucifugus, an economically important species and among the most studied taxa with respect to eusocial organization and mating system. The final assembly (~813 Mb) covered up to 88% of the estimated genome size and, in agreement with the Asexual Queen Succession Mating System, it was found completely homozygous. We predicted 16,349 highly supported gene models and 42% of repetitive DNA content. Transposable elements of R. lucifugus show similar evolutionary dynamics compared to that of other termites, with two main peaks of activity localized at 25% and 8% of Kimura divergence driven by DNA, LINE and SINE elements. Gene family turnover analyses identified multiple instances of gene duplication associated with R. lucifugus diversification, with significant lineage-specific gene family expansions related to development, perception and nutrient metabolism pathways. Finally, we analysed P450 and odourant receptor gene repertoires in detail, highlighting the large diversity and dynamical evolutionary history of these proteins in the R. lucifugus genome. This newly assembled genome will provide a valuable resource for further understanding the molecular basis of termites biology as well as for pest control.


Assuntos
Baratas , Isópteros , Animais , Isópteros/genética , Madeira , Evolução Biológica , Reprodução
12.
Arch Insect Biochem Physiol ; 112(1): e21974, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36205070

RESUMO

The complete mitochondrial genome of Cryptotermes domesticus (Haviland) was sequenced and annotated to study its characteristics and the phylogenetic relationship of C. domesticus to other termite species. The mitogenome of C. domesticus is a circular, close, and double-stranded molecule with a length of 15,655 bp. The sequenced mitogenome contains 37 typical genes, which are highly conserved in gene size, organization, and codon usage. Transfer RNA genes (tRNAs) also have typical secondary structures. All of the 13 protein-coding genes (PCGs) start with an ATN codon, except for nad4, which starts with GTG and terminates with the terminal codon TAA and TAG or the incomplete form T-- (cox2 and nad5). Most tRNAs have a typical cloverleaf structure, except for trnS1, in which this form is replaced by a simple loop and lacks the dihydrouridine (DHU) arm. The nucleotide diversity (Pi) and nonsynonymous (Ka)/synonymous (Ks) mutation rate ratios indicate that nad1, cox1, and cox3 are the most conserved genes, and that cox1 has the lowest rate of evolution. In addition, an 89 bp repeated sequence was found in the A + T-rich region. Phylogenetic analysis was performed using Bayesian inference (BI) and maximum likelihood (ML) methods based on 13 PCGs, and the monophyly of Kalotermitidae was supported.


Assuntos
Baratas , Genoma Mitocondrial , Isópteros , Animais , Filogenia , Isópteros/genética , Teorema de Bayes , RNA de Transferência/genética , Códon
13.
Genes (Basel) ; 13(11)2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36360186

RESUMO

(1) Unravelling the molecular basis underlying major evolutionary transitions can shed light on how complex phenotypes arise. The evolution of eusociality, a major evolutionary transition, has been demonstrated to be accompanied by enhanced gene regulation. Numerous pieces of evidence suggest the major impact of transposon insertion on gene regulation and its role in adaptive evolution. Transposons have been shown to be play a role in gene duplication involved in the eusocial transition in termites. However, evidence of the molecular basis underlying the eusocial transition in Blattodea remains scarce. Could transposons have facilitated the eusocial transition in termites through shifts of gene expression? (2) Using available cockroach and termite genomes and transcriptomes, we investigated if transposons insert more frequently in genes with differential expression in queens and workers and if those genes could be linked to specific functions essential for eusocial transition. (3) The insertion rate of transposons differs among differentially expressed genes and displays opposite trends between termites and cockroaches. The functions of termite transposon-rich queen- and worker-biased genes are related to reproduction and ageing and behaviour and gene expression, respectively. (4) Our study provides further evidence on the role of transposons in the evolution of eusociality, potentially through shifts in gene expression.


Assuntos
Baratas , Isópteros , Animais , Baratas/genética , Elementos de DNA Transponíveis/genética , Comportamento Social , Isópteros/genética , Expressão Gênica
14.
J Econ Entomol ; 115(4): 1251-1256, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35776433

RESUMO

New infestations of the Formosan subterranean termite, Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae), were discovered in southern California, namely in Rancho Santa Fe and La Mesa (San Diego County) and Highland Park (Los Angeles County) in 2021. We investigated whether these new infestations were related to the previous infestations in La Mesa (2018) and Canyon Lake, Riverside County (2020). We used two mitochondrial genes (COI and COII) and seven polymorphic microsatellite markers to infer the genetic relationship between southern California colonies and their breeding systems. The samples collected from seven localities belonged to five colonies (inter-colony distances ranged from ~160 m to 185 km, with an average of 97 km). Of these five colonies, two were simple families, and three were extended families. Structure analyses of microsatellite genotypes grouped the termite samples into three distinct genetic clusters, suggesting at least three independent introduction events in southern California.


Assuntos
Baratas , Isópteros , Animais , California , Genótipo , Isópteros/genética , Repetições de Microssatélites
15.
Sci Rep ; 12(1): 11947, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831400

RESUMO

Termite castes express specialized phenotypes for their own tasks and are a good example of insect polyphenism. To understand the comprehensive gene expression profiles during caste differentiation, RNA-seq analysis based on the genome data was performed during the worker, presoldier, and nymphoid molts in Reticulitermes speratus. In this species, artificial induction methods for each molt have already been established, and the time scale has been clarified. Three different periods (before the gut purge (GP), during the GP, and after the molt) were discriminated in each molt, and two body parts (head and other body regions) were separately sampled. The results revealed that many differentially expressed genes (head: 2884, body: 2579) were identified in each molt. Based on the independent real-time quantitative PCR analysis, we confirmed the different expression patterns of seven out of eight genes in the presoldier molt. Based on the GO and KEGG enrichment analyses, the expressions of genes related to juvenile hormone titer changes (e.g., JH acid methyltransferase), nutrition status (e.g., Acyl-CoA Delta desaturase), and cell proliferation (e.g., insulin receptor), were shown to specifically fluctuate in each molt. These differences may have a crucial impact on caste differentiation. These data are important resources for future termite sociogenomics.


Assuntos
Isópteros , Animais , Isópteros/genética , Isópteros/metabolismo , Hormônios Juvenis/metabolismo , Muda , Transcriptoma
16.
J Insect Sci ; 22(2)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35381082

RESUMO

Termites are social insects living in colonies composed of worker, soldier, and reproductive castes. Termite hindguts are inhabited by all three domains of life- Eukarya (protists), Bacteria, and Archaea. These gut microorganisms are horizontally and vertically transferred by nestmates and reproductives, respectively. Prior evidence suggests that every colony potentially has a different gut microbiome that was transferred vertically and horizontally over time. However, we do not know if different colonies reared in the laboratory on the same diet will ultimately demonstrate similar microbial composition and structure. Therefore, we looked at gut bacteria in Eastern subterranean termite (Reticulitermes flavipes) colonies that were reared in the laboratory with identical diets and rearing conditions. Based on16S rRNA gene sequencing, the observed features, and Shannon's diversity were significantly different between the colonies while differences in Pielou evenness and Faith phylogenetic diversity were not statistically significant. In addition, the microbial community structures were significantly different between colonies. Based on ANCOM (Analysis of Composition of Microbiomes), the taxa Elizabethkingia (Bacteroidetes: Flavobacteriales) and Chryseobacterium (Bacteroidetes: Flavobacteriales) were differentially abundant between the colonies. These results suggest that providing the exact same diet and rearing environment for >2 yr cannot result in identical gut microbiomes between termite colonies.


Assuntos
Baratas , Microbioma Gastrointestinal , Isópteros , Animais , Bactérias/genética , Isópteros/genética , Filogenia
17.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042774

RESUMO

Termites are model social organisms characterized by a polyphenic caste system. Subterranean termites (Rhinotermitidae) are ecologically and economically important species, including acting as destructive pests. Rhinotermitidae occupies an important evolutionary position within the clade representing a transitional taxon between the higher (Termitidae) and lower (other families) termites. Here, we report the genome, transcriptome, and methylome of the Japanese subterranean termite Reticulitermes speratus Our analyses highlight the significance of gene duplication in social evolution in this termite. Gene duplication associated with caste-biased gene expression was prevalent in the R. speratus genome. The duplicated genes comprised diverse categories related to social functions, including lipocalins (chemical communication), cellulases (wood digestion and social interaction), lysozymes (social immunity), geranylgeranyl diphosphate synthase (social defense), and a novel class of termite lineage-specific genes with unknown functions. Paralogous genes were often observed in tandem in the genome, but their expression patterns were highly variable, exhibiting caste biases. Some of the assayed duplicated genes were expressed in caste-specific organs, such as the accessory glands of the queen ovary and the frontal glands of soldier heads. We propose that gene duplication facilitates social evolution through regulatory diversification, leading to caste-biased expression and subfunctionalization and/or neofunctionalization conferring caste-specialized functions.


Assuntos
Genômica , Proteínas de Insetos/metabolismo , Isópteros/fisiologia , Evolução Social , Transcriptoma , Animais , Evolução Biológica , Celulases/metabolismo , Feminino , Duplicação Gênica , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Isópteros/genética
18.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36613850

RESUMO

Melanization mediated by the prophenoloxidase (PPO)-activating system is an important innate immunity to fight pathogens in insects. In this study, the in vitro time-dependent increase in the intensity of melanization and phenoloxidase (PO) activity from the hemolymph of Odontotermes formosanus (Shiraki) challenged by pathogenic bacteria was detected. PPO is one of the key genes in melanization pathway, whereas the molecular characteristics and functions of O. formosanus PPO are unclear. The OfPPO gene was cloned and characterized. The open reading frame of OfPPO is 2085 bp in length and encodes a 79.497 kDa protein with 694 amino acids. A BLASTx search and phylogenetic analyses revealed that OfPPO shares a high degree of homology to the Blattodea PPOs. Moreover, real-time fluorescent quantitative PCR analysis showed that OfPPO is ubiquitously expressed in all castes and tissues examined, with the highest expression in workers and variable expression patterns in tissues of different termite castes. Furthermore, the expression of OfPPO was significantly induced in O. formosanus infected by pathogenic bacteria. Intriguingly, in combination with silencing of OfPPO expression, pathogenic bacteria challenge caused greatly increased mortality of O. formosanus. These results suggest that OfPPO plays a role in defense against bacteria and highlight the novel termite control strategy combining pathogenic bacteria application with termite PPO silencing.


Assuntos
Infecções Bacterianas , Baratas , Isópteros , Animais , Baratas/metabolismo , Isópteros/genética , Isópteros/metabolismo , Filogenia , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo
19.
Philos Trans R Soc Lond B Biol Sci ; 376(1826): 20200115, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33866805

RESUMO

Eusocial insects can be defined as those that live in colonies and have distinct queens and workers. For most species, queens and workers arise from a common genome, and so caste-specific developmental trajectories must arise from epigenetic processes. In this review, we examine the epigenetic mechanisms that may be involved in the regulation of caste dimorphism. Early work on honeybees suggested that DNA methylation plays a causal role in the divergent development of queen and worker castes. This view has now been challenged by studies that did not find consistent associations between methylation and caste in honeybees and other species. Evidence for the involvement of methylation in modulating behaviour of adult workers is also inconsistent. Thus, the functional significance of DNA methylation in social insects remains equivocal. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'


Assuntos
Evolução Biológica , Metilação de DNA , Epigênese Genética , Insetos/fisiologia , Características de História de Vida , Animais , Formigas/genética , Formigas/fisiologia , Insetos/genética , Isópteros/genética , Isópteros/fisiologia , Comportamento Social
20.
J Econ Entomol ; 114(3): 1242-1248, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33822098

RESUMO

In the eastern United States, there are nine species of subterranean termites in three genera: Reticulitermes (six species), Coptotermes (two species), and Prorhinotermes (one species). These species serve as important ecological players by decomposing cellulose material, and some are important structural pests. Many of these species are difficult to discriminate morphologically and require examining the reproductive or soldier castes, which can be difficult to collect. While some genetic tools have been developed for species identification, they are often expensive and time-consuming. To help facilitate identification, we developed a more cost-effective and rapid genetic method to identify Reticulitermes species by screening 10 PCR primers that amplified inter-simple sequence repeats (ISSRs) in other termite species. From these, one primer was amplified in all five focal Reticulitermes species and contained conserved, species-specific fragments. We further screened this identification method on samples of each species covering a diversity of mitochondrial DNA haplotypes and localities. This identification method utilizing ISSRs can be used to quickly identify five species of Reticulitermes subterranean termites in the eastern United States in a matter of hours, providing a useful technique for pest management as well as future ecological research.


Assuntos
Baratas , Isópteros , Animais , DNA Mitocondrial , Isópteros/genética , Repetições de Microssatélites , Especificidade da Espécie , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA