Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 439
Filtrar
1.
Food Chem ; 461: 140808, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151342

RESUMO

This study compared the nutritional components, isoflavones, and antioxidant activities by solid-sate fermentation of Apios americana Medikus (AAM) with seven different fungi. The total fatty acid contents increased from 120.5 mg/100 g (unfermented AAM, UFAAM) to 242.0 to 3167.5 mg/100 g (fermented AAM, FAAM) with all fungi. In particular, the values of total fatty acids were highest (26.3-fold increase) in the FAAM with Monascus purpureus. The amount of total free amino acids increased from 591.69 mg/100 g (UFAAM) to 664.38 to 1603.07 mg/100 g after fermentation except for Monascus pilosus and Lentinula edodes. The total mineral contents increased evidently after fermentation with M. purpureus, F. velutipes, and Tricholoma matsutake (347.36 â†’ 588.29, 576.59, and 453.32 mg/100 g, respectively). The UFAAM predominated isoflavone glycosides, whereas glycoside forms were converted into aglycone forms after fermentation by fungi. The bioconversion rates of glycoside to aglycone were excellent in the FAAM with M. pilosus, M. purpureus, F. velutipes, and T. matsutake (0.01 â†’ 0.69, 0.50, 0.27, and 0.31 mg/g, respectively). Furthermore, the total phenolic contents, total flavonoid contents, and antioxidant activities by the abovementioned FAAM were high except for L.edodes. This FAAM can be used as a potential food and pharmaceutical materials.


Assuntos
Antioxidantes , Fermentação , Fungos , Antioxidantes/metabolismo , Antioxidantes/química , Fungos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Metabolismo Secundário , Isoflavonas/metabolismo , Isoflavonas/análise , Isoflavonas/química , Monascus/metabolismo , Monascus/química , Monascus/crescimento & desenvolvimento , Aminoácidos/metabolismo , Aminoácidos/análise
2.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999025

RESUMO

Enzymatic fructosylation has emerged as a strategy to enhance the hydrophilicity of polyphenols by introducing sugar moieties, leading to the development of phenolic glycosides, which exhibit improved solubility, stability, and biological activities compared to their non-glycosylated forms. This study provides a detailed analysis of the interactions between five phenolic fructosides (4MFPh, MFF, DFPh, MFPh, and MFPu) and twelve proteins (11ß-HS1, CRP, DPPIV, IRS, PPAR-γ, GK, AMPK, IR, GFAT, IL-1ß, IL-6, and TNF-α) associated with the pathogenesis of T2DM. The strongest interactions were observed for phlorizin fructosides (DFPh) with IR (-16.8 kcal/mol) and GFAT (-16.9 kcal/mol). MFPh with 11ß-HS1 (-13.99 kcal/mol) and GFAT (-12.55 kcal/mol). 4MFPh with GFAT (-11.79 kcal/mol) and IR (-12.11 kcal/mol). MFF with AMPK (-9.10 kcal/mol) and PPAR- γ (-9.71 kcal/mol), followed by puerarin and ferulic acid monofructosides. The fructoside group showed lower free energy binding values than the controls, metformin and sitagliptin. Hydrogen bonding (HB) was identified as the primary interaction mechanism, with specific polar amino acids such as serin, glutamine, glutamic acid, threonine, aspartic acid, and lysine identified as key contributors. ADMET results indicated favorable absorption and distribution characteristics of the fructosides. These findings provide valuable information for further exploration of phenolic fructosides as potential therapeutic agents for T2DM.


Assuntos
Hipoglicemiantes , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Fenóis/química , Fenóis/farmacologia , Humanos , Simulação de Acoplamento Molecular , Isoflavonas/química , Isoflavonas/metabolismo , Isoflavonas/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Florizina/química , Florizina/farmacologia , Frutose/química , Frutose/metabolismo , Glicosilação , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo
3.
Plant Sci ; 347: 112197, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39019089

RESUMO

Isoflavone, which are mainly found in soybeans, are a secondary metabolite with a variety of physiological functions. In recent years, increasing the isoflavone content of soybeans has received widespread attention. Although ethephon treatment significantly increased isoflavone content in soybean sprouts, it also had a certain inhibitory effect on the growth of sprouts. Melatonin (MT), as a new type of plant hormone, not only alleviated the damage caused by abiotic stress to plants, but also promoted the synthesis of secondary metabolites. In this study, we aimed to elucidate the mechanism of exogenous MT in regulating the growth and development, and the metabolism of isoflavone in soybean sprouts under ethephon treatment. The results indicated that MT alleviated the adverse effects of ethephon treatment on soybean sprouts by increasing the activities of superoxide dismutase, peroxidase, catalase, and the expression of their corresponding genes, as well as decreased the content of malondialdehyde and hydrogen peroxide. In addition, MT further increased the isoflavone content by up-regulating the expression level of isoflavone synthesis genes and increased the activities of phenylalanine ammonia-lyase and cinnamic acid 4-hydroxylase under ethephon treatment. This study provided technical support and reference value for the production of high-quality soybean sprouts to a certain extent.


Assuntos
Antioxidantes , Etilenos , Glycine max , Isoflavonas , Melatonina , Reguladores de Crescimento de Plantas , Glycine max/metabolismo , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/genética , Melatonina/metabolismo , Isoflavonas/metabolismo , Isoflavonas/biossíntese , Etilenos/metabolismo , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plântula/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Compostos Organofosforados/farmacologia , Compostos Organofosforados/metabolismo
4.
Food Chem ; 460(Pt 1): 140517, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39043074

RESUMO

Soybeans' isoflavone content increases with germination; nevertheless, their bioaccessibility in the gastrointestinal system is limited. This study evaluated the influence of germination time (1, 3, 5, and 7 days) and in vitro gastrointestinal conditions on the isoflavone profile of soybean sprouts. The total isoflavones (4.07 mg/g) and the malonyl genistin (1.37 mg/g) had the highest contents on day 5 in the gastric phase. The highest isoflavone bioaccessibility was observed in daidzein, genistein, and glycitin. An increase in antioxidant capacity was found during germination (day 7 > day 5 > day 3); however, the same trend was not observed during in vitro digestion. In summary, the results indicate that soybean sprouts germinated for 5 days may be more beneficial for consumption since they have the highest and most readily absorbed levels of isoflavones. These data suggest that soybean sprouts may be a functional food that provides bioavailable antioxidants.


Assuntos
Antioxidantes , Digestão , Trato Gastrointestinal , Germinação , Glycine max , Isoflavonas , Isoflavonas/metabolismo , Isoflavonas/análise , Isoflavonas/química , Glycine max/metabolismo , Glycine max/química , Glycine max/crescimento & desenvolvimento , Antioxidantes/metabolismo , Antioxidantes/química , Antioxidantes/análise , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/crescimento & desenvolvimento , Humanos , Modelos Biológicos , Disponibilidade Biológica , Sementes/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Fatores de Tempo
5.
Biomed Chromatogr ; 38(8): e5921, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38886007

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the disruption of synaptic communication among millions of neurons. Recent research has highlighted the potential therapeutic effectiveness of natural polyphenolic compounds in addressing AD. Soybeans are abundant in polyphenols, and their polyphenolic composition undergoes significant alteration through fermentation by Eurotium cristatum. Through comprehensive database searches, we identified active components within fermented soybean polyphenols and genes associated with AD. Subsequently, we utilized Venn diagrams to analyze the overlap between AD-related genes and these components. Furthermore, we visualized the network between intersecting targets and proteins using Cytoscape software. The anti-AD effects of soybeans were further explored through comprehensive analysis, including protein-protein interaction analysis, pathway enrichment analysis, and molecular docking studies. Our investigation unveiled 6-hydroxydaidzein as a major component of fermented soybean polyphenols, shedding light on its potential therapeutic significance in combating AD. The intersection between target proteins of fermented soybeans and disease-related targets in AD comprised 34 genes. Protein-protein interaction analysis highlighted key potential targets, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glycogen synthase kinase 3 beta (GSK3B), amyloid precursor protein (APP), cyclin-dependent kinase 5 (CDK5), and beta-site APP cleaving enzyme 1 (BACE1). Molecular docking results demonstrated a robust binding effect between major components from fermented soybeans and the aforesaid key targets implicated in AD treatment. These findings suggest that fermented soybeans demonstrate a degree of efficacy and present promising prospects in the prevention of AD.


Assuntos
Doença de Alzheimer , Fermentação , Glycine max , Simulação de Acoplamento Molecular , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Glycine max/química , Humanos , Farmacologia em Rede , Mapas de Interação de Proteínas/efeitos dos fármacos , Polifenóis/farmacologia , Polifenóis/química , Isoflavonas/farmacologia , Isoflavonas/química , Isoflavonas/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química
6.
J Cell Mol Med ; 28(9): e18358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693868

RESUMO

Gastric cancer is considered a class 1 carcinogen that is closely linked to infection with Helicobacter pylori (H. pylori), which affects over 1 million people each year. However, the major challenge to fight against H. pylori and its associated gastric cancer due to drug resistance. This research gap had led our research team to investigate a potential drug candidate targeting the Helicobacter pylori-carcinogenic TNF-alpha-inducing protein. In this study, a total of 45 daidzein derivatives were investigated and the best 10 molecules were comprehensively investigated using in silico approaches for drug development, namely pass prediction, quantum calculations, molecular docking, molecular dynamics simulations, Lipinski rule evaluation, and prediction of pharmacokinetics. The molecular docking study was performed to evaluate the binding affinity between the target protein and the ligands. In addition, the stability of ligand-protein complexes was investigated by molecular dynamics simulations. Various parameters were analysed, including root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), hydrogen bond analysis, principal component analysis (PCA) and dynamic cross-correlation matrix (DCCM). The results has confirmed that the ligand-protein complex CID: 129661094 (07) and 129664277 (08) formed stable interactions with the target protein. It was also found that CID: 129661094 (07) has greater hydrogen bond occupancy and stability, while the ligand-protein complex CID 129664277 (08) has greater conformational flexibility. Principal component analysis revealed that the ligand-protein complex CID: 129661094 (07) is more compact and stable. Hydrogen bond analysis revealed favourable interactions with the reported amino acid residues. Overall, this study suggests that daidzein derivatives in particular show promise as potential inhibitors of H. pylori.


Assuntos
Helicobacter pylori , Isoflavonas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/metabolismo , Isoflavonas/farmacologia , Isoflavonas/química , Isoflavonas/metabolismo , Humanos , Ligação de Hidrogênio , Ligantes , Ligação Proteica , Análise de Componente Principal , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/tratamento farmacológico , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/antagonistas & inibidores , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/tratamento farmacológico
7.
Microbiol Spectr ; 12(5): e0241823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591917

RESUMO

The tenacious biofilms formed by Streptococcus mutans are resistant to conventional antibiotics and current treatments. There is a growing need for novel therapeutics that selectively inhibit S. mutans biofilms while preserving the normal oral microenvironment. Previous studies have shown that increased levels of cyclic di-AMP, an important secondary messenger synthesized by diadenylate cyclase (DAC), favored biofilm formation in S. mutans. Thus, targeting S. mutans DAC is a novel strategy to inhibit S. mutans biofilms. We screened a small NCI library of natural products using a fluorescence detection assay. (+)-Brazilin, a tetracyclic homoisoflavanoid found in the heartwood of Caesalpinia sappan, was identified as one of the 11 "hits," with the greatest reduction (>99%) in fluorescence at 100 µM. The smDAC inhibitory profiles of the 11 "hits" established by a quantitative high-performance liquid chromatography assay revealed that (+)-brazilin had the most enzymatic inhibitory activity (87% at 100 µM) and was further studied to determine its half maximal inhibitory concentration (IC50 = 25.1 ± 0.98 µM). (+)-Brazilin non-competitively inhibits smDAC's enzymatic activity (Ki = 140.0 ± 27.13 µM), as determined by a steady-state Michaelis-Menten kinetics assay. In addition, (+)-brazilin's binding profile with smDAC (Kd = 11.87 µM) was illustrated by a tyrosine intrinsic fluorescence quenching assay. Furthermore, at low micromolar concentrations, (+)-brazilin selectively inhibited the biofilm of S. mutans (IC50 = 21.0 ± 0.60 µM) and other oral bacteria. S. mutans biofilms were inhibited by a factor of 105 in colony-forming units when treated with 50 µM (+)-brazilin. In addition, a significant dose-dependent reduction in extracellular DNA and glucan levels was evident by fluorescence microscopy imaging of S. mutans biofilms exposed to different concentrations of (+)-brazilin. Furthermore, colonization of S. mutans on a representative model of enamel using suspended hydroxyapatite discs showed a >90% reduction with 50 µM (+)-brazilin. In summary, we have identified a drug-like natural product inhibitor of S. mutans biofilm that not only binds to smDAC but can also inhibit the function of smDAC. (+)-Brazilin could be a good candidate for further development as a potent therapeutic for the prevention and treatment of dental caries.IMPORTANCEThis study represents a significant advancement in our understanding of potential therapeutic options for combating cariogenic biofilms produced by Streptococcus mutans. The research delves into the use of (+)-brazilin, a natural product, as a potent inhibitor of Streptococcus mutans' diadenylate cyclase (smDAC), an enzyme crucial in the formation of biofilms. The study establishes (+)-brazilin as a non-competitive inhibitor of smDAC while providing initial insights into its binding mechanism. What makes this finding even more promising is that (+)-brazilin does not limit its inhibitory effects to S. mutans alone. Instead, it demonstrates efficacy in hindering biofilms in other oral bacteria as well. The broader spectrum of anti-biofilm activity suggests that (+)-brazilin could potentially serve as a versatile tool in a natural product-based treatment for combating a range of conditions caused by resilient biofilms.


Assuntos
Antibacterianos , Biofilmes , Isoflavonas , Streptococcus mutans , Biofilmes/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/enzimologia , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Isoflavonas/química , Antibacterianos/farmacologia , Antibacterianos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Testes de Sensibilidade Microbiana , Fósforo-Oxigênio Liases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos
8.
PLoS One ; 19(3): e0288946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536793

RESUMO

Equol is produced from daidzein by the action of gut bacteria on soy isoflavones. However, not all people can produce equol, and metabolism differs even among the producers. We aimed to examine the equol producer status in both men and women, and investigate the relationships among the serum and urinary isoflavones as well as to other biomedical parameters. In this study, we measured the equol and daidzein concentrations from the blood and urine of 292 men and 174 women aged between 22 and 88 years by liquid chromatography-tandem mass spectrometry (LC‒MS/MS). We then analysed the cut-off value for equol producers in both sexes, the relationship of serum and urinary equol concentrations, and other parameters, such as sex, age, endocrine function, glucose metabolism, lipid metabolism, and renal function with regards to equol-producing ability, among the different age groups. Equol producers were defined as those whose log ratio of urinary equol and daidzein concentration or log (equol/daidzein) was -1.42 or higher. Among 466 participants, 195 were equol producers (42%). The proportion of equol producers was larger in women. The cut-off value for equol producers was consistent in both sexes. Positive relationships were noted between serum and urinary equol levels in equol producers of both sexes; however, such a relationship was not detected in nonproducers. Lipid and uric acid abnormalities were more common with non equol producers in both men and women. Prostate specific antigen (PSA) levels in men were significantly lower in equol producers, especially in those in their 40 s. This study suggests a relationship between equol-producing ability and reduced risk of prostate disease as well as positive effects of equol on blood lipids and uric acid levels. However, lack of dietary information and disperse age groups were major drawbacks in generalizing the results of this study.


Assuntos
Equol , Isoflavonas , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Equol/metabolismo , Japão , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Ácido Úrico , Isoflavonas/metabolismo
9.
Food Funct ; 15(5): 2645-2654, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38362621

RESUMO

Daidzein, an isoflavone found abundantly in legumes, may benefit from bypassing upper gut absorption to reach the colon where it can be metabolized into the potent estrogen equol by the gut microbiome. To achieve this, we developed mucin coated protein-tannin multilayer microcarriers. Highly porous functionalized calcium carbonate (FCC) microparticles efficiently absorbed daidzein from a dimethyl sulfoxide solution, with a loading capacity of 21.6 ± 1.8 wt% as measured by ultra-high pressure liquid chromatography - mass spectrometry (UPLC-MS). Daidzein-containing FCC microparticles were then coated with a bovine serum albumin (BSA)-tannin n-layer film terminated with mucin ((BSA-TA)n-mucin) by layer-by-layer deposition from corresponding aqueous solutions followed by FCC decomposition with HCl. Raman spectroscopy confirmed mucin-tannin complexation involving both hydrophobic interactions and hydrogen bonding. The resulting multilayer microcarriers contained 54 wt% of nanocrystalline daidzein as confirmed by X-ray diffraction and UPLC-MS. Preliminary screening of several types of mucin coatings using an in vitro INFOGEST digestion model demonstrated that mucin type III from porcine stomach provided the highest protection against upper intestinal digestion. (BSA-TA)8-mucin and (BSA-TA)4-mucin microcarriers retained 71 ± 16.4% and 68 ± 4.6% of daidzein, respectively, at the end of the small intestinal phase. Mucin-free (BSA-TA)8 retained a lower daidzein amount of 46%. Daidzein release and further conversion into equol were observed during in vitro colonic studies with fecal microbiota from a healthy non-equol-producing donor and Slackia equolifaciens. The developed approach has potential for encapsulating other hydrophobic nutraceuticals or therapeutics, enhancing their bioaccessibility in the colon.


Assuntos
Equol , Isoflavonas , Cromatografia Líquida , Mucinas , Taninos , Espectrometria de Massas em Tandem , Isoflavonas/metabolismo , Polifenóis
10.
Mol Plant Microbe Interact ; 37(4): 416-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38171485

RESUMO

Soybean cyst nematode (Heterodera glycines, soybean cyst nematode [SCN]) disease adversely affects the yield of soybean and leads to billions of dollars in losses every year. To control the disease, it is necessary to study the resistance genes of the plant and their mechanisms. Isoflavonoids are secondary metabolites of the phenylalanine pathway, and they are synthesized in soybean. They are essential in plant response to biotic and abiotic stresses. In this study, we reported that phenylalanine ammonia-lyase (PAL) genes GmPALs involved in isoflavonoid biosynthesis, can positively regulate soybean resistance to SCN. Our previous study demonstrated that the expression of GmPAL genes in the resistant cultivar Huipizhi (HPZ) heidou are strongly induced by SCN. PAL is the rate-limiting enzyme that catalyzes the first step of phenylpropanoid metabolism, and it responds to biotic or abiotic stresses. Here, we demonstrate that the resistance of soybeans against SCN is suppressed by PAL inhibitor l-α-(aminooxy)-ß-phenylpropionic acid (L-AOPP) treatment. Overexpression of eight GmPAL genes caused diapause of nematodes in transgenic roots. In a petiole-feeding bioassay, we identified that two isoflavones, daidzein and genistein, could enhance resistance against SCN and suppress nematode development. This study thus reveals GmPAL-mediated resistance against SCN, information that has good application potential. The role of isoflavones in soybean resistance provides new information for the control of SCN. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Glycine max , Isoflavonas , Fenilalanina Amônia-Liase , Doenças das Plantas , Tylenchoidea , Glycine max/genética , Glycine max/parasitologia , Tylenchoidea/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Animais , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Resistência à Doença/genética , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
11.
PLoS One ; 18(12): e0295185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38048315

RESUMO

Lignan polyphenols derived from plants are metabolized by bacteria in the gut to mammalian lignans, such as enterolactone (ENL) and enterodiol (END). Mammalian lignan intake has been reported to be associated with obesity and low blood glucose levels. However, the factors that are responsible for individual differences in the metabolic capacity for ENL and END are not well understood. In the present study, the effects of enterotypes of isoflavone metabolism, equol producers (EQP) and O-desmethylangolensin producers (O-DMAP), on lignan metabolism were examined. EQP was defined by urinary daidzein (DAI) and equol concentrations as log(equol/DAI) ≥ -1.42. O-DMAP was defined by urinary DAI and O-DMA concentrations as O-DMA/DAI > 0.018. Isoflavone and lignan concentrations in urine samples from 440 Japanese women were measured by gas chromatography-mass spectrometry. Metabolic enterotypes were determined from the urinary equol and O-DMA concentrations. Urinary END and ENL concentrations were compared in four groups, combinations of EQP (+/-) and O-DMAP (+/-). The urinary lignan concentration was significantly higher in the O-DMAP/EQP group (ENL: P<0.001, END: P<0.001), and this association remained significant after adjusting for several background variables (END: ß = 0.138, P = 0.00607 for EQP and ß = 0.147, P = 0.00328 for O-DMAP; ENL: ß = 0.312, P<0.001 for EQP and ß = 0.210, P<0.001 for O-DMAP). The ENL/END ratio was also highest in the O-DMAP/EQP group, indicating that equol and O-DMA metabolizing gut bacteria may be involved in lignan metabolism. In conclusion, urinary lignan concentrations were significantly higher in groups containing either EQP or O-DMAP than in the non-EQP/non-O-DMAP group. The variables and participants in this study were limited, which the possibility of confounding by other variables cannot be ruled out. However, there are no established determinants of lignan metabolism to date. Further research is needed to determine what factors should be considered, and to examine in different settings to confirm the external validity.


Assuntos
Isoflavonas , Lignanas , Animais , Humanos , Feminino , Equol , Estudos Transversais , Disponibilidade Biológica , Polifenóis , Isoflavonas/metabolismo , Bactérias/metabolismo , Mamíferos/metabolismo
12.
Biol Pharm Bull ; 46(11): 1517-1526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914355

RESUMO

Isoflavones and their derivatives possess neuroprotective activities against neurological disorders. Recently, the active compound SPA1413 (dehydroequol) derived from S-equol, an isoflavone-derived metabolite produced by human intestinal bacteria, was identified as a potent anti-amyloidogenic and neuroinflammatory candidate against Alzheimer's disease. However, its detailed modes of action, associated signaling pathways, and comparison with potential isoflavone derivatives have not yet been studied. Hence, the current study aimed to identify signaling pathways associated with SPA1413 using lipopolysaccharides (LPS)-stimulated BV2 cells as the experimental model via biological assays, Western blotting, and quantitative (q)RT-PCR. The results indicate that the SPA1413 anti-neuroinflammatory effect arises due to suppression of the nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and mitogen-activated protein kinase (MAPK) signaling networks, including those of p38 and c-Jun N-terminal kinase (JNK). Interestingly, SPA1413 inhibited IL-11 through the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway. In addition, SPA1413 inhibited neuronal cell death by reducing LPS-activated microglia in neuronal N2a cells. Our findings suggest that SPA1413 may act as a strong anti-neuroinflammatory candidate by suppressing the MAPK and JAK/STAT signaling pathways.


Assuntos
Isoflavonas , Proteínas Quinases Ativadas por Mitógeno , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Lipopolissacarídeos/farmacologia , Janus Quinases/metabolismo , Janus Quinases/farmacologia , NF-kappa B/metabolismo , Transdução de Sinais , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Isoflavonas/metabolismo , Óxido Nítrico/metabolismo , Microglia
13.
Biosensors (Basel) ; 13(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504149

RESUMO

The global consumption of vegan foods is experiencing an expressive upward trend, underscoring the critical need for quality control measures based on nutritional and functional considerations. This study aimed to evaluate the functional quality of caviar and salmon analog food inks based on pulses combined with nano ingredients and produced in our laboratory (LNANO). The primary objective of this work was to determine the total antioxidant compounds contained in these samples using a voltammetric technique with a glassy carbon electrode. The samples underwent ethanolic extraction (70%) with 1 h of stirring. The voltammograms were acquired in a phosphate buffer electrolyte, pH 3.0 with Ag/AgCl (KCl 3 mol L-1) as the reference electrode and platinum wire as the auxiliary electrode. The voltammograms revealed prominent anodic current peaks at 0.76-0.78 V, which are attributed to isoflavones. Isoflavones, known secondary metabolites with substantial antioxidant potential commonly found in pulses, were identified. The total isoflavone concentrations obtained ranged from 31.5 to 64.3 mg Eq genistein 100 g-1. The results not only validated the efficacy of the electrochemical sensor for quantifying total antioxidant compounds in the samples but also demonstrated that the concentration of total isoflavones in caviar and salmon analogs fell within the expected limits.


Assuntos
Antioxidantes , Isoflavonas , Animais , Genisteína/análise , Genisteína/metabolismo , Isoflavonas/análise , Isoflavonas/metabolismo , Alimentos Marinhos/análise
14.
Phytochemistry ; 214: 113789, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482264

RESUMO

In botanical extracts, highly abundant constituents can mask or dilute the effects of other, and often, more relevant biologically active compounds. To facilitate the rational chemical and biological assessment of these natural products with wide usage in human health, we introduced the DESIGNER approach of Depleting and Enriching Selective Ingredients to Generate Normalized Extract Resources. The present study applied this concept to clinical Red Clover Extract (RCE) and combined phytochemical and biological methodology to help rationalize the utility of RCE supplements for symptom management in postmenopausal women. Previous work has demonstrated that RCE reduces estrogen detoxification pathways in breast cancer cells (MCF-7) and, thus, may serve to negatively affect estrogen metabolism-induced chemical carcinogenesis. Clinical RCE contains ca. 30% of biochanin A and formononetin, which potentially mask activities of less abundant compounds. These two isoflavonoids are aryl hydrocarbon receptor (AhR) agonists that activate P450 1A1, responsible for estrogen detoxification, and P450 1B1, producing genotoxic estrogen metabolites in female breast cells. Clinical RCE also contains the potent phytoestrogen, genistein, that downregulates P450 1A1, thereby reducing estrogen detoxification. To identify less abundant bioactive constituents, countercurrent separation (CCS) of a clinical RCE yielded selective lipophilic to hydrophilic metabolites in six enriched DESIGNER fractions (DFs 01-06). Unlike solid-phase chromatography, CCS prevented any potential loss of minor constituents or residual complexity (RC) and enabled the polarity-based enrichment of certain constituents. Systematic analysis of estrogen detoxification pathways (ERα-degradation, AhR activation, CYP1A1/CYP1B1 induction and activity) of the DFs uncovered masked bioactivity of minor/less abundant constituents including irilone. These data will allow the optimization of RCE with respect to estrogen detoxification properties. The DFs revealed distinct biological activities between less abundant bioactives. The present results can inspire future carefully designed extracts with phytochemical profiles that are optimized to increase in estrogen detoxification pathways and, thereby, promote resilience in women with high-risk for breast cancer. The DESIGNER approach helps to establish links between complex chemical makeup, botanical safety and possible efficacy parameters, yields candidate DFs for (pre)clinical studies, and reveals the contribution of minor phytoconstituents to the overall safety and bioactivity of botanicals, such as resilience promoting activities relevant to women's health.


Assuntos
Neoplasias da Mama , Isoflavonas , Trifolium , Feminino , Humanos , Trifolium/química , Trifolium/metabolismo , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Estrogênios , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neoplasias da Mama/tratamento farmacológico
15.
J Microbiol Biotechnol ; 33(11): 1475-1483, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37482800

RESUMO

This study aimed to evaluate the cholesterol-lowering and antioxidant activities of soymilk fermented with probiotic Lactobacillaceae strains and to investigate the production of related bioactive compounds. Lactiplantibacillus plantarum KML06 (KML06) was selected for the fermentation of soymilk because it has the highest antioxidant, cholesterol-lowering, and ß-glucosidase activities among the 10 Lactobacillaceae strains isolated from kimchi. The genomic information of strain KML06 was analyzed. Moreover, soymilk fermented with KML06 was evaluated for growth kinetics, metabolism, and functional characteristics during the fermentation period. The number of viable cells, which was similar to the results of radical scavenging activities and cholesterol assimilation, as well as the amount of soy isoflavone aglycones, daidzein, and genistein, was the highest at 12 h of fermentation. These results indicate that soymilk fermented with KML06 can prevent oxidative stress and cholesterol-related problems through the production of soy isoflavone aglycones.


Assuntos
Isoflavonas , Leite de Soja , Antioxidantes/metabolismo , Fermentação , beta-Glucosidase/metabolismo , Microbiologia de Alimentos , Isoflavonas/metabolismo , Lactobacillus/metabolismo , Leite de Soja/metabolismo
16.
BMC Res Notes ; 16(1): 120, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365655

RESUMO

OBJECTIVE: This work aimed to examine the leishmanicidal, cellular mechanisms and cytotoxicity effects of formononetin (FMN), a natural isoflavone, against Leishmania tropica. We used the MTT assay to determine the leishmanicidal effects of FMN against promastigotes and its cytotoxicity effects on J774-A1 macrophage cells. The Griess reaction assay and quantitative real-time PCR were used to determine the nitric oxide (NO) and the mRNA expression levels of IFN-γ and iNOS in infected J774-A1 macrophage cells. RESULTS: FMN significantly (P < 0.001) decreased the viability and number of promastigotes and amastigotes forms. The 50% inhibitory concentrations value for FMN and glucantime was 9.3 and 14.3 µM for promastigote and amastigote, respectively. We found that the macrophages exposed with FMN especially at concentrations of 1/2 IC50 and IC50 significantly activated the NO release and the mRNA expression levels of IFN-γ, iNOS. The findings of the current research showed the favorable antileishmanial effects formononetin, a natural isoflavone, against various stages of L. tropica through inhibition of infectivity rate of macrophage cells and triggering the NO production and cellular immunity. However, supplementary works are essential to evaluate the ability and safety of FMN in animal model before use in the clinical phase.


Assuntos
Antiprotozoários , Isoflavonas , Leishmania tropica , Animais , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Macrófagos , Antiprotozoários/farmacologia , RNA Mensageiro/metabolismo
17.
J Agric Food Chem ; 71(26): 9994-10003, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37343237

RESUMO

A total of 718 metabolites were identified in leaves and seeds of the soybean (Glycine max (L.) Merr., Fabaceae) fast neutron (FN) mutant 2012CM7F040p05ar154bMN15, which was previously shown to have 21 genes deleted and higher protein content in seeds as compared to wild-type. Among the identified metabolites, 164 were found only in seeds, 89 only in leaves, and 465 in both leaves and seeds. Metabolites that exhibited higher abundance in the mutant leaf than in the wild type include the flavonoids afromosin, biochanin A, dihydrodaidzein, and apigenin. Mutant leaves also exhibited a higher accumulation of glycitein-glucoside, dihydrokaempferol, and pipecolate. The seed-only metabolites that were found in higher abundance in the mutant compared to the wild type included 3-hydroxybenzoate, 3-aminoisobutyrate, coenzyme A, N-acetyl-ß-alanine, and 1-methylhistidine. Among several amino acids, the cysteine content increased in the mutant leaf and seed when compared to the wild type. We anticipate that the deletion of acetyl-CoA synthase created a negative feedback effect on carbon dynamics, resulting in increased amounts of cysteine and isoflavone-associated metabolites. Metabolic profiling provided new insight into the cascading effect of gene deletions that helps breeders to produce value-added nutritional seed traits.


Assuntos
Glycine max , Isoflavonas , Glycine max/química , Nêutrons Rápidos , Cisteína/metabolismo , Isoflavonas/metabolismo , Fenótipo , Sementes/química
18.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176033

RESUMO

Autophagic dysfunction is one of the main mechanisms of cadmium (Cd)-induced neurotoxicity. Puerarin (Pue) is a natural antioxidant extracted from the medicinal and edible homologous plant Pueraria lobata. Studies have shown that Pue has neuroprotective effects in a variety of brain injuries, including Cd-induced neuronal injury. However, the role of Pue in the regulation of autophagy to alleviate Cd-induced injury in rat cerebral cortical neurons remains unclear. This study aimed to elucidate the protective mechanism of Pue in alleviating Cd-induced injury in rat cerebral cortical neurons by targeting autophagy. Our results showed that Pue alleviated Cd-induced injury in rat cerebral cortical neurons in vitro and in vivo. Pue activates autophagy and alleviates Cd-induced autophagic blockade in rat cerebral cortical neurons. Further studies have shown that Pue alleviates the Cd-induced inhibition of autophagosome-lysosome fusion, as well as the inhibition of lysosomal degradation. The specific mechanism is related to Pue alleviating the inhibition of Cd on the expression levels of the key proteins Rab7, VPS41, and SNAP29, which regulate autophagosome-lysosome fusion, as well as the lysosome-related proteins LAMP2, CTSB, and CTSD. In summary, these results indicate that Pue alleviates Cd-induced autophagic dysfunction in rat cerebral cortical neurons by alleviating autophagosome-lysosome fusion dysfunction and lysosomal degradation dysfunction, thereby alleviating Cd-induced neuronal injury.


Assuntos
Cádmio , Isoflavonas , Ratos , Animais , Cádmio/metabolismo , Autofagia , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Neurônios/metabolismo , Lisossomos/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo
19.
Biosci Biotechnol Biochem ; 87(7): 747-757, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37024261

RESUMO

Soy isoflavones have been shown to have anti-inflammatory properties; however, the anti-inflammatory effects of isoflavone metabolites produced during soybean germination remain unclear. We found that the daidzein and genistein derivatives, 8-prenyl daidzein (8-PD) and 8-prenyl genistein (8-PG), demonstrated a more potent effect than daidzein and genistein on repressing inflammatory responses in macrophages. Although IkB protein levels were unaltered, 8-PD and 8-PG repressed nuclear factor kappa B (NF-κB) activation, which was associated with reduced ERK1/2, JNK, and p38 MAPK activation and suppressed mitogen- and stress-activated kinase 1 phosphorylation. Inflammatory responses induced by the medium containing hypertrophic adipocyte secretions were successfully suppressed by 8-PD and 8-PG treatment. In the ex vivo study, 8-PD and 8-PG significantly inhibited proinflammatory C-C motif chemokine ligand 2 (CCL2) secretion from the adipose tissues of mice fed a long-term high-fat diet. The data suggest that 8-PD and 8-PG could regulate macrophage activation under obesity conditions.


Assuntos
Genisteína , Isoflavonas , Camundongos , Animais , Genisteína/farmacologia , Genisteína/metabolismo , Glycine max/metabolismo , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia
20.
Molecules ; 28(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37110750

RESUMO

In this study, the physicochemical properties (pH, acidity, salinity, and soluble protein), bacterial diversities, isoflavone contents, and antioxidant activities of doenjang (fermented soy paste), household doenjang (HDJ), and commercial doenjang (CDJ), were assessed and compared. The values of pH 5.14-5.94 and acidity 1.36-3.03%, indicated a similar level in all doenjang. The salinity was high in CDJ at 12.8-14.6%, and the protein contents (25.69-37.54 mg/g) were generally high in HDJ. Forty-three species were identified from the HDJ and CDJ. The main species were verified to be Bacillus amyloliquefaciens (B. amyloliquefaciens), B. amyloliquefaciens subsp. plantarum, Bacillus licheniformis, Bacillus sp. and Bacillus subtilis. Comparing the ratios of isoflavone types, the HDJ has an aglycone ratio of >80%, and 3HDJ indicates a ratio of isoflavone to aglycone of 100%. In the CDJ, except 4CDJ, glycosides account for a high proportion of more than 50%. The results of antioxidant activities and DNA protection effects were variedly confirmed regardless of HDJs and CDJs. Through these results, it is judged that HDJs have a variety of bacterial species compared to CDJs, and these are biologically active and converted from glycoside to aglycone. Bacterial distribution and isoflavone contents could be used as basic data.


Assuntos
Bacillus , Isoflavonas , Alimentos de Soja , Antioxidantes/metabolismo , Isoflavonas/metabolismo , Alimentos de Soja/microbiologia , Bacillus/metabolismo , Bacillus subtilis/metabolismo , Fermentação , Glycine max/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA