Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 631
Filtrar
1.
Clin Biochem ; 96: 56-62, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34252447

RESUMO

OBJECTIVES: Camostat mesilate is a drug that is being repurposed for new applications such as that against COVID-19 and prostate cancer. This induces a need for the development of an analytical method for the quantification of camostat and its metabolites in plasma samples. Camostat is, however, very unstable in whole blood and plasma due to its two ester bonds. The molecule is readily hydrolysed by esterases to 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA) and further to 4-guanidinobenzoic acid (GBA). For reliable quantification of camostat, a technique is required that can instantly inhibit esterases when blood samples are collected. DESIGN AND METHODS: An ultra-high-performance liquid chromatography-tandem mass spectrometry method (UHPLC-ESI-MS/MS) using stable isotopically labelled analogues as internal standards was developed and validated. Different esterase inhibitors were tested for their ability to stop the hydrolysis of camostat ester bonds. RESULTS: Both diisopropylfluorophosphate (DFP) and paraoxon were discovered as efficient inhibitors of camostat metabolism at 10 mM concentrations. No significant changes in camostat and GBPA concentrations were observed in fluoride-citrate-DFP/paraoxon-preserved plasma after 24 h of storage at room temperature or 4 months of storage at -20 °C and -80 °C. The lower limits of quantification were 0.1 ng/mL for camostat and GBPA and 0.2 ng/mL for GBA. The mean true extraction recoveries were greater than 90%. The relative intra-laboratory reproducibility standard deviations were at a maximum of 8% at concentrations of 1-800 ng/mL. The trueness expressed as the relative bias of the test results was within ±3% at concentrations of 1-800 ng/mL. CONCLUSIONS: A methodology was developed that preserves camostat and GBPA in plasma samples and provides accurate and sensitive quantification of camostat, GBPA and GBA by UHPLC-MS/MS.


Assuntos
Coleta de Amostras Sanguíneas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Ésteres/sangue , Guanidinas/sangue , Espectrometria de Massas em Tandem/métodos , COVID-19/sangue , Inibidores Enzimáticos/farmacologia , Esterases/antagonistas & inibidores , Esterases/metabolismo , Ésteres/metabolismo , Ésteres/farmacologia , Guanidinas/farmacologia , Humanos , Hidrólise/efeitos dos fármacos , Isoflurofato/química , Isoflurofato/farmacologia , Paraoxon/sangue , Paraoxon/química , Paraoxon/farmacologia , Reprodutibilidade dos Testes , SARS-CoV-2/isolamento & purificação , Tratamento Farmacológico da COVID-19
2.
Neuropharmacology ; 191: 108571, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33878303

RESUMO

Status epilepticus (SE) is a medical emergency with continuous seizure activity that causes profound neuronal damage, morbidity, or death. SE incidents can arise spontaneously but mostly are elicited by seizurogenic triggers. Chemoconvulsants such as the muscarinic agonist pilocarpine and, organophosphates (OP) such as the pesticide diisopropylfluorophosphate (DFP) and, the nerve agent soman, can induce SE. Pilocarpine, DFP, and soman share a common feature of cholinergic crisis that transitions into a state of refractory SE, but their comparative profiles remain unclear. Here, we evaluated the comparative convulsant profile of pilocarpine, DFP, and soman to produce refractory SE and brain damage in rats. Behavioral and electrographic seizures were monitored for 24 h after exposure, and the extent of brain injury was determined by histological markers of neuronal injury and degeneration. Seizures were elicited rather slowly after pilocarpine as compared to DFP or soman, which caused rapid onset of spiking that swiftly developed into persistent SE. Time-course of SE activity after DFP was comparable to that after soman, a potent nerve agent. Diazepam controlled pilocarpine-induced SE, but it was ineffective in reducing OP-induced SE. All three agents produced modestly different degrees of neuronal injury and neurodegeneration in the brain. These results reveal distinct convulsant and neuronal injury patterns following exposure to cholinergic agonists, OP pesticides, and nerve agents. A battery of SE models, especially SE induced by cholinergic agents and other etiologies including epilepsy and brain tumors, is essential to identify novel anticonvulsant therapies for the management of refractory SE.


Assuntos
Isoflurofato/farmacologia , Pilocarpina/farmacologia , Soman/farmacologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia , Animais , Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Diazepam/farmacologia , Hipocampo/patologia , Masculino , Neurônios/efeitos dos fármacos , Organofosfatos , Ratos , Ratos Sprague-Dawley
3.
Life Sci ; 228: 98-111, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31051153

RESUMO

AIMS: Protective efficacy of N­acetylcysteine (NAC) was assessed against sub-acute diisopropyl phosphorofluoridate (DFP) poisoning in mice. MAIN METHODS: Mice were allocated into nine groups of six each: vehicle control; DFP (0.125 LD50 ≈ 0.483 mg/kg bwt, s.c.); DFP + Atropine (ATR, 10 mg/kg bwt, i.p., 0 min); DFP + Pralidoxime (2-PAM, 30 mg/kg bwt, i.m., 0 min); DFP + NAC (150 mg/kg bwt, i.p., -60 min); DFP + ATR + NAC; DFP + 2-PAM + NAC; DFP + ATR + 2-PAM; and DFP + ATR + 2-PAM + NAC. Animals received various treatments for 21 d daily. Plasma butyrylcholinesterase (BChE) was measured after 7, 14 and 21 d of exposure. Brain acetylcholinesterase (AChE) and reduced glutathione (GSH), malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), and superoxide dismutase (SOD) were measured (brain, liver and kidney) after 21 d of exposure. Histopathology, immunohistochemistry, and Western blot for inducible nitric oxide synthase (iNOS) and c-fos were also performed. KEY FINDINGS: DFP significantly reduced BChE and AChE levels. Diminished GSH, CAT, SOD (brain and liver), GPx, GR, and elevated MDA (Brain) levels were also observed. DFP caused notable histopathology (brain, liver and kidney) and over expression of iNOS, and c-fos proteins (brain). NAC enhanced the protective efficacy of ATR and 2-PAM in most parameters, without any appreciable protection in iNOS and c-fos expression. SIGNIFICANCE: NAC as an adjunct with ATR and 2-PAM, exhibited marked beneficial effects against sub-acute DFP poisoning, indicating its possible implications in the management of OP poisoning.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , Isoflurofato/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Acetilcolinesterase/análise , Animais , Encéfalo/patologia , Butirilcolinesterase/sangue , Catalase/análise , Glutationa/análise , Glutationa Peroxidase/análise , Glutationa Redutase/análise , Rim/patologia , Fígado/patologia , Masculino , Malondialdeído/análise , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/análise
4.
Invest New Drugs ; 37(1): 76-86, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29667134

RESUMO

Purpose DFP-10917 is a novel deoxycytidine analog with a unique mechanism of action. Brief exposure to high concentrations of DFP-10917 inhibits DNA polymerase resulting in S-phase arrest, while prolonged exposure to DFP-10917 at low concentration causes DNA fragmentation, G2/M-phase arrest, and apoptosis. DFP-10917 demonstrated activity in tumor xenografts resistant to other deoxycytidine analogs. Experimental design Two phase I studies assessed the safety, pharmacokinetic, pharmacodynamic and preliminary efficacy of DFP-10917. Patients with refractory solid tumors received DFP-10917 continuous infusion 14-day on/7-day off and 7-day on/7-day off. Enrollment required age > 18 years, ECOG Performance Status 0-2 and adequate organ function. Results 29 patients were dosed in both studies. In 14-day infusion, dose-limiting toxicities (DLT) consisting of febrile neutropenia and thrombocytopenia occurred at 4.0 mg/m2/day. At 3.0 mg/m2/day, 3 patients experienced neutropenia in cycle 2. The dose of 2.0 mg/m2/day was well tolerated in 6 patients. In 7-day infusion, grade 4 neutropenia was DLT at 4.0 mg/m2/day. The maximum tolerated dose was 3 mg/m2/day. Other toxicities included nausea, vomiting, diarrhea, neutropenia, and alopecia. Eight patients had stable disease for >12 weeks. Paired comet assays performed for 7 patients showed an increase in DNA strand breaks at day 8. Pharmacokinetic data showed dose-proportionality for steady-state concentration and AUC of DFP-10917 and its primary metabolite. Conclusion Continuous infusion of DFP-10917 is feasible and well tolerated with myelosuppression as main DLT. The recommended doses are 2.0 mg/m2/day and 3.0 mg/m2/day on the 14-day and 7-day continuous infusion schedules, respectively. Preliminary activity was suggested. Pharmacodynamic data demonstrate biological activity at the tested doses.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Desoxicitidina/análogos & derivados , Isoflurofato/química , Neoplasias/tratamento farmacológico , Adulto , Idoso , Antineoplásicos/administração & dosagem , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacocinética , Desoxicitidina/farmacologia , Esquema de Medicação , Feminino , Seguimentos , Humanos , Infusões Intravenosas , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/patologia , Prognóstico , Distribuição Tecidual
5.
Neurotox Res ; 35(1): 150-159, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30088187

RESUMO

Organophosphorus (OPs) compounds have been widely used in agriculture, industry, and household, and the neurotoxicity induced by them is still a cause of concern. The main toxic mechanism of OPs is the inhibition of acetylcholinesterase (AChE); however, the delayed neuropathy induced by OPs (OPIDN) is mediated by other mechanisms such as the irreversible inhibition of 70% of NTE activity (neuropathy target esterase) that leads to axonal degeneration. Liraglutide is a long-lasting GLP-1 analog clinically used as antidiabetic. Its neurotrophic and neuroprotective effects have been demonstrated in vitro and in experimental models of neurodegenerative diseases. As in OPIDN, axonal degeneration also plays a role in neurodegenerative diseases. Therefore, this study investigated the protective potential of liraglutide against the neurotoxicity of OPs by using mipafox as a neuropathic agent (at a concentration able to inhibit and age 70% of NTE activity) and a neuronal model with SH-SY5Y neuroblastoma cells, which express both esterases. Liraglutide protected cells against the neurotoxicity of mipafox by increasing neuritogenesis, the uptake of glucose, the levels of cytoskeleton proteins, and synaptic-plasticity modulators, besides decreasing the pro-inflammatory cytokine interleukin 1ß and caspase-3 activity. This is the first study to suggest that liraglutide might induce beneficial effects against the delayed, non-cholinergic neurotoxicity of OPs.


Assuntos
Isoflurofato/análogos & derivados , Liraglutida/farmacologia , Fármacos Neuroprotetores/farmacologia , Praguicidas/toxicidade , Linhagem Celular Tumoral , Glucose/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Interleucina-1beta/metabolismo , Isoflurofato/toxicidade , Crescimento Neuronal/efeitos dos fármacos , Crescimento Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Síndromes Neurotóxicas/tratamento farmacológico
6.
Toxicology ; 406-407: 123-128, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30118792

RESUMO

The molecular targets of best known neurotoxic effects associated to acute exposure to organophosphorus compounds (OPs) are serine esterases located in the nervous system, although there are other less known neurotoxic adverse effects associated with chronic exposure to OPs whose toxicity targets are still not identified. In this work we studied sensitivity to the non-neuropathic OP paraoxon and to the neuropathic OP mipafox of phenyl valerate esterases (PVases) in intact and lysed human neuroblastoma SH-SY5Y cells. The main objective was to discriminate different unknown pools of esterases that might be potential targets of chronic effects from those esterases already known and recognized as targets to these acute neurotoxicity effects. Two components of PVases of different sensitivities were discriminated for paraoxon in both intact and lysed cells; while the two components inhibitable by mipafox were found only for intact cells. A completely resistant component to paraoxon of around 30% was found in both intact and lysed cells; while a component of slightly lower amplitude (around 20%) completely resistant to mipafox was also found for both preparations (intact and lysed cells). The comparison of the results between the intact cells and the lysed cells suggests that the plasma membrane could act as a barrier that reduced the bioavailability of mipafox to PVases. This would imply that the discrimination of the different esterases should be made in lysed cells. However, those studies which aim to determine the physiological role of these esterases should be necessarily conducted in intact cultured cells.


Assuntos
Isoflurofato/análogos & derivados , Neuroblastoma/metabolismo , Compostos Organofosforados/metabolismo , Paraoxon/metabolismo , Valeratos/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Hidrólise/efeitos dos fármacos , Isoflurofato/metabolismo , Isoflurofato/toxicidade , Compostos Organofosforados/toxicidade , Paraoxon/toxicidade , Valeratos/toxicidade
7.
Int J Oncol ; 52(3): 851-860, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29344636

RESUMO

2'-C-cyano-2'-deoxy-1-ß-D-arabino-pentofranocyl-cytosine (DFP-10917, CNDAC) is a 2'-deoxycytidine analog with antitumor activity against various tumor cells. However, a clinically available therapeutic regimen for this compound needs to be established and its functional mechanisms in relation to the dosing schedule need to be clarified. In this study, we evaluated the antitumor activity and toxicity of DFP-10917 by varying the dose and administration schedule in human solid tumor and leukemia xenografts in vivo. Compared to a 1-day infusion with a high-dose of DFP-10917 (30 mg/kg/day), a prolonged 14-day infusion with a low-dose (4.5 mg/kg/day) exerted superior tumor growth inhibitory effects without decreasing the body weights of mice in our human tumor xenograft model. In addition, we found that a 14-day infusion of low-dose DFP-10917 markedly prolonged the lifespan of nude mice bearing both acute leukemia and ovarian cancer cell-derived tumors. On the other hand, gemcitabine (GEM) and cytosine arabinoside (Ara-C), which are similar deoxycytidine analogs and are widely used clinically as standard regimens, exerted less potent antitumor effects than DFP-10917 on these tumors. To elucidate the possible functional mechanisms of the prolonged infusion of DFP-10197 compared with that of GEM or Ara-C, the rate of DNA damage in CCRF-CEM and HeLa cells treated with DFP-10917, Ara-C and GEM was detected using a comet assay. DFP-10917, at a range of 0.05 to 1 µM, induced a clear tailed-DNA pattern in both the CCRF-CEM and HeLa cells; Ara-C and GEM did not have any effect. It was thus suggested that a low concentration and long-term exposure to DFP-10917 aggressively introduced the fragmentation of DNA molecules, namely the so-called double-strand breaks in tumor cells, leading to potent cytotoxicity. Moreover, treatment with DFP-10917 at a low-dose with a long-term exposure specifically increased the population of cells in the G2/M phase, while GEM reduced this cell population, suggesting a unique function (G2/M arrest) of DFP-10917. On the whole, our findings indicate that the prolonged infusion of low-dose DFP-10917 mainly displays a novel functional mechanism as a DNA-damaging drug and may thus prove to be useful in the treatment of cancer patients who are resistant to other cytosine nucleosides, or in patients in which these other nucleosides have been shown to be ineffective.


Assuntos
Antineoplásicos/farmacologia , Citarabina/análogos & derivados , DNA de Neoplasias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Citarabina/farmacologia , Citarabina/uso terapêutico , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Infusões Intravenosas , Isoflurofato , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Neoplasias/genética , Neoplasias/mortalidade , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
8.
J Toxicol Environ Health A ; 80(19-21): 1086-1097, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28862523

RESUMO

Some organophosphorus compounds (OP), including the pesticide mipafox, produce late onset distal axonal degeneration, known as organophosphorus-induced delayed neuropathy (OPIDN). The underlying mechanism involves irreversible inhibition of neuropathy target esterase (NTE) activity, elevated intracellular calcium levels, increased activity of calcium-activated proteases and impaired neuritogenesis. Voltage-gated calcium channels (VGCC) appear to play a role in several neurologic disorders, including OPIDN. Therefore, this study aimed to examine and compare the neuroprotective effects of T-type (amiloride) and L-type (nimodipine) VGCC blockers induced by the inhibitory actions of mipafox on neurite outgrowth and axonal proteins of retinoic-acid-stimulated SH-SY5Y human neuroblastoma cells, a neuronal model widely employed to determine the neurotoxicity attributed to OP. Both nimodipine and amiloride significantly blocked augmentation of intracellular calcium levels and activity of calpains, as well as decreased neurite length, number of differentiated cells, and lowered concentrations of growth-associated protein 43 (GAP-43) and synapsin induced by mipafox. Only nimodipine inhibited reduction of synaptophysin levels produced by mipafox. These findings demonstrate a role for calcium and VGCC in the impairment of neuronal plasticity mediated by mipafox. Data also demonstrated the neuroprotective potential of T-type and L-type VGCC blockers to inhibit OP-mediated actions, which may be beneficial to counteract cases of pesticide poisoning.


Assuntos
Amilorida/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Inseticidas/toxicidade , Isoflurofato/análogos & derivados , Neuritos/efeitos dos fármacos , Nimodipina/farmacologia , Axônios/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Isoflurofato/toxicidade
9.
Toxicol In Vitro ; 39: 84-92, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27939611

RESUMO

Some organophosphorus compounds (OPs) induce a neurodegenerative disorder known as organophosphate-induced delayed neuropathy (OPIDN), which is related to irreversible inhibition of neuropathy target esterase (NTE) and impairment of neurite outgrowth. The present study addresses the effects of trichlorfon, mipafox (neuropathic model) and paraoxon (non-neuropathic model) on neurite outgrowth and neuroplasticity-related proteins in retinoic-acid-stimulated SH-SY5Y cells, a cellular model widely used to study the neurotoxicity of OPs. Mipafox (20µM) decreased cellular differentiation and the expression of neurofilament 200 (NF-200), growth associated- (GAP-43) and synaptic proteins (synapsin I and synaptophysin); whereas paraoxon (300µM) induced no effect on cellular differentiation, but significant decrease of NF-200, GAP-43, synapsin I and synaptophysin as compared to controls. However, the effects of paraoxon on these proteins were significantly lower than the effects of mipafox. In conclusion, axonal cytoskeletal proteins, as well as axonal plasticity-related proteins are more effectively affected by neuropathic (mipafox) than by non-neuropathic (paraoxon) OPs, suggesting that they might play a role in the mechanism of OPIDN. At high concentration (1mM), trichlorfon induced effects similar to those of the neuropathic OP, mipafox (20µM), but also caused high inhibition of AChE. Therefore, these effects are unlikely to occur in humans at non-lethal doses of trichlorfon.


Assuntos
Axônios/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , Inseticidas/toxicidade , Isoflurofato/análogos & derivados , Paraoxon/toxicidade , Triclorfon/toxicidade , Acetilcolinesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Linhagem Celular Tumoral , Citoesqueleto/efeitos dos fármacos , Proteína GAP-43/metabolismo , Humanos , Isoflurofato/toxicidade , L-Lactato Desidrogenase/metabolismo , Plasticidade Neuronal , Sinapsinas/metabolismo
10.
Biochem Pharmacol ; 116: 153-61, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27422753

RESUMO

Ketoconazole (KC), an antifungal agent, rarely causes severe liver injury when orally administered. It has been reported that KC is mainly hydrolyzed to N-deacetyl ketoconazole (DAK), followed by the N-hydroxylation of DAK by flavin-containing monooxygenase (FMO). Although the metabolism of KC has been considered to be associated with hepatotoxicity, the responsible enzyme(s) remain unknown. The purpose of this study was to identify the responsible enzyme(s) for KC hydrolysis in humans and to clarify their relevance to KC-induced toxicity. Kinetic analysis and inhibition studies using human liver microsomes (HLM) and recombinant enzymes revealed that human arylacetamide deacetylase (AADAC) is responsible for KC hydrolysis to form DAK, and confirmed that FMO3 is the enzyme responsible for DAK N-hydroxylation. In HLM, the clearance of KC hydrolysis occurred to the same extent as DAK N-hydroxylation, which indicates that both processes are not rate-limiting pathways. Cytotoxicity of KC and DAK was evaluated using HepaRG cells and human primary hepatocytes. Treatment of HepaRG cells with DAK for 24h showed cytotoxicity in a dose-dependent manner, whereas treatment with KC did not show due to the low expression of AADAC. Overexpression of AADAC in HepaRG cells with an adenovirus expression system elicited the cytotoxicity of KC. Cytotoxicity of KC in human primary hepatocytes was attenuated by diisopropylfluorophosphate, an AADAC inhibitor. In conclusion, the present study demonstrated that human AADAC hydrolyzes KC to trigger hepatocellular toxicity.


Assuntos
Antifúngicos/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Inibidores do Citocromo P-450 CYP3A/metabolismo , Hepatócitos/metabolismo , Cetoconazol/metabolismo , Microssomos Hepáticos/enzimologia , Ativação Metabólica/efeitos dos fármacos , Antifúngicos/efeitos adversos , Biocatálise/efeitos dos fármacos , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/genética , Linhagem Celular Tumoral , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Inibidores do Citocromo P-450 CYP3A/efeitos adversos , Inibidores Enzimáticos/farmacologia , Feminino , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Hidrólise/efeitos dos fármacos , Hidroxilação/efeitos dos fármacos , Isoflurofato/farmacologia , Cetoconazol/efeitos adversos , Cetoconazol/análogos & derivados , Cetoconazol/toxicidade , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Oxigenases/antagonistas & inibidores , Oxigenases/genética , Oxigenases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
11.
Biol Trace Elem Res ; 174(1): 142-149, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27059757

RESUMO

The study investigated the combined effect of 1,2-dimethyl-3-hydroxypyrid-4-one (DFP) and taurine on aluminum (Al) toxicity in cortex and blood of rats. The control group received 1 ml/kg/day saline solution for 8 weeks. Other animals were exposed to Al at a dose of 281.40 mg/kg/day orally for 4 weeks. Then, they were administered with 1 ml/kg/day saline solution, 400 mg/(kg·day) taurine, 13.82 mg/(kg·day) DFP, 27.44 mg/(kg·day) DFP, 400 mg/(kg·day) taurine +13.82 mg/(kg·day) DFP, and 400 mg/(kg·day) taurine +27.44 mg/(kg·day) DFP for 4 weeks. The changes in markers of oxidative stress, activities of antioxidant enzymes, and triphosphatase (ATPase) in the cortex and blood were determined. Administration of Al led to significant increase in the malondialdehyde (MDA) level and decrease in the activities of antioxidant enzymes, Na+K+-ATPase, Mg2+-ATPase, and Ca2+-ATPase in the cortex and blood, compared with the control group. DFP was observed to reverse alteration of these parameters except for Ca2+-ATPase activity. Treatment with taurine caused significant increase of GSH-Px activity and decrease of the MDA level in the cortex and serum and rise of Na+K+-ATPase in the blood. Effects of DFP combined with taurine were investigated and found to provide a more significant benefit than either drug alone. Combined intake of taurine and DFP could achieve an optimum effect of therapy for Al exposure.


Assuntos
Alumínio/toxicidade , Antioxidantes/metabolismo , Córtex Cerebral/metabolismo , Isoflurofato/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Taurina/farmacologia , Animais , Córtex Cerebral/patologia , Masculino , Ratos , Ratos Wistar
12.
J Neuroinflammation ; 12: 64, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25880399

RESUMO

BACKGROUND: Neuregulin-1 (NRG-1) has been shown to act as a neuroprotectant in animal models of nerve agent intoxication and other acute brain injuries. We recently demonstrated that NRG-1 blocked delayed neuronal death in rats intoxicated with the organophosphate (OP) neurotoxin diisopropylflurophosphate (DFP). It has been proposed that inflammatory mediators are involved in the pathogenesis of OP neurotoxin-mediated brain damage. METHODS: We examined the influence of NRG-1 on inflammatory responses in the rat brain following DFP intoxication. Microglial activation was determined by immunohistchemistry using anti-CD11b and anti-ED1 antibodies. Gene expression profiling was performed with brain tissues using Affymetrix gene arrays and analyzed using the Ingenuity Pathway Analysis software. Cytokine mRNA levels following DFP and NRG-1 treatment was validated by real-time reverse transcription polymerase chain reaction (RT-PCR). RESULTS: DFP administration resulted in microglial activation in multiple brain regions, and this response was suppressed by treatment with NRG-1. Using microarray gene expression profiling, we observed that DFP increased mRNA levels of approximately 1,300 genes in the hippocampus 24 h after administration. NRG-1 treatment suppressed by 50% or more a small fraction of DFP-induced genes, which were primarily associated with inflammatory responses. Real-time RT-PCR confirmed that the mRNAs for pro-inflammatory cytokines interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) were significantly increased following DFP exposure and that NRG-1 significantly attenuated this transcriptional response. In contrast, tumor necrosis factor α (TNFα) transcript levels were unchanged in both DFP and DFP + NRG-1 treated brains relative to controls. CONCLUSION: Neuroprotection by NRG-1 against OP neurotoxicity is associated with the suppression of pro-inflammatory responses in brain microglia. These findings provide new insight regarding the molecular mechanisms involved in the neuroprotective role of NRG-1 in acute brain injuries.


Assuntos
Inibidores da Colinesterase/toxicidade , Inibidores da Colinesterase/uso terapêutico , Encefalite/induzido quimicamente , Isoflurofato/toxicidade , Neuregulina-1/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Encéfalo/patologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intra-Arteriais , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro , Ratos , Ratos Sprague-Dawley
13.
J Neurochem ; 133(5): 708-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25753028

RESUMO

Gulf War Illness (GWI) is a multi-symptom disorder with features characteristic of persistent sickness behavior. Among conditions encountered in the Gulf War (GW) theater were physiological stressors (e.g., heat/cold/physical activity/sleep deprivation), prophylactic treatment with the reversible AChE inhibitor, pyridostigmine bromide (PB), the insect repellent, N,N-diethyl-meta-toluamide (DEET), and potentially the nerve agent, sarin. Prior exposure to the anti-inflammatory glucocorticoid, corticosterone (CORT), at levels associated with high physiological stress, can paradoxically prime the CNS to produce a robust proinflammatory response to neurotoxicants and systemic inflammation; such neuroinflammatory effects can be associated with sickness behavior. Here, we examined whether CORT primed the CNS to mount neuroinflammatory responses to GW exposures as a potential model of GWI. Male C57BL/6 mice were treated with chronic (14 days) PB/ DEET, subchronic (7-14 days) CORT, and acute exposure (day 15) to diisopropyl fluorophosphate (DFP), a sarin surrogate and irreversible AChE inhibitor. DFP alone caused marked brain-wide neuroinflammation assessed by qPCR of tumor necrosis factor-α, IL6, chemokine (C-C motif) ligand 2, IL-1ß, leukemia inhibitory factor, and oncostatin M. Pre-treatment with high physiological levels of CORT greatly augmented (up to 300-fold) the neuroinflammatory responses to DFP. Anti-inflammatory pre-treatment with minocycline suppressed many proinflammatory responses to CORT+DFP. Our findings are suggestive of a possible critical, yet unrecognized interaction between the stressor/environment of the GW theater and agent exposure(s) unique to this war. Such exposures may in fact prime the CNS to amplify future neuroinflammatory responses to pathogens, injury, or toxicity. Such occurrences could potentially result in the prolonged episodes of sickness behavior observed in GWI. Gulf War (GW) veterans were exposed to stressors, prophylactic medicines and, potentially, nerve agents in theater. Subsequent development of GW Illness, a persistent multi-symptom disorder with features characteristic of sickness behavior, may be caused by priming of the CNS resulting in exaggerated neuroinflammatory responses to pathogens/insults. Nerve agent, diisopropyl fluorophosphate (DFP), produced a neuroinflammatory response that was exacerbated by pre-treatment with levels of corticosterone simulating heightened stressor conditions. While prophylactic treatments reduced DFP-induced neuroinflammation, this effect was negated when those treatments were combined with corticosterone.


Assuntos
Anti-Inflamatórios/farmacologia , Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Corticosterona/farmacologia , Encefalite/induzido quimicamente , Isoflurofato/toxicidade , Síndrome do Golfo Pérsico/patologia , Animais , Anti-Inflamatórios/uso terapêutico , Corticosterona/antagonistas & inibidores , DEET/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Repelentes de Insetos/toxicidade , Isoflurofato/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Minociclina/uso terapêutico
14.
Int J Mol Sci ; 15(1): 905-26, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24413757

RESUMO

Historically, only few chemicals have been identified as neurodevelopmental toxicants, however, concern remains, and has recently increased, based upon the association between chemical exposures and increased developmental disorders. Diminution in motor speed and latency has been reported in preschool children from agricultural communities. Organophosphorus compounds (OPs) are pesticides due to their acute insecticidal effects mediated by the inhibition of acetylcholinesterase, although other esterases as neuropathy target esterase (NTE) can also be inhibited. Other neurological and neurodevelopmental toxic effects with unknown targets have been reported after chronic exposure to OPs in vivo. We studied the initial stages of retinoic acid acid-triggered differentiation of pluripotent cells towards neural progenitors derived from human embryonal carcinoma stem cells to determine if neuropathic OP, mipafox, and non-neuropathic OP, paraoxon, are able to alter differentiation of neural precursor cells in vitro. Exposure to 1 µM paraoxon (non-cytotoxic concentrations) altered the expression of different genes involved in signaling pathways related to chromatin assembly and nucleosome integrity. Conversely, exposure to 5 µM mipafox, a known inhibitor of NTE activity, showed no significant changes on gene expression. We conclude that 1 µM paraoxon could affect the initial stage of in vitro neurodifferentiation possibly due to a teratogenic effect, while the absence of transcriptional alterations by mipafox exposure did not allow us to conclude a possible effect on neurodifferentiation pathways at the tested concentration.


Assuntos
Células-Tronco de Carcinoma Embrionário/efeitos dos fármacos , Inseticidas/toxicidade , Isoflurofato/análogos & derivados , Neurônios/efeitos dos fármacos , Paraoxon/toxicidade , Montagem e Desmontagem da Cromatina , Células-Tronco de Carcinoma Embrionário/citologia , Células-Tronco de Carcinoma Embrionário/metabolismo , Genoma Humano/efeitos dos fármacos , Histonas/genética , Histonas/metabolismo , Humanos , Isoflurofato/toxicidade , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Fenótipo , Tretinoína/farmacologia
15.
Folia Biol (Praha) ; 59(1): 32-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23537526

RESUMO

Diisopropylfluorophosphate exerts its toxic effect by irreversibly inhibiting acetylcholinesterase. This results in over-stimulation of central and peripheral cholinergic activity. The aim of the present study was to evaluate the possible preventive effects of acute treatment with reversible acetylcholinesterase inhibitor galantamine against the signs of cholinergic toxic syndrome provoked by diisopropylfluorophosphate, such as hypothermia, muscular fasciculations, oral dyskinesia and decreased locomotor performance in a rat model of intoxication. The effects of these two anticholinesterases on acetylcholinesterase activity and on the expression of mRNA of the immediate early response gene c-fos in the brain were assessed by histochemical acetylcholinesterase staining and by in situ hybridization, respectively. Diisopropylfluorophosphate induced rapidly progressing hypothermia, muscular fasciculations, oral dyskinesia and decreased locomotor performance. The increased cholinergic cortical and hippocampal activity due to irreversible acetylcholinerase inhibition were indicated by the increased c-fos mRNA autoradiographic signal and by the inhibition of acetylcholinesterase staining, respectively. Galantamine by itself provoked transient and relatively weak inhibition of the acetylcholinesterase staining, while it did not induce increased c-fos mRNA expression or significant behavioural signs of cholinergic toxicity. Galantamine significantly reduced the rate of the onset, but not the maximal hypothermia induced by diisopropylfluorophosphate. Importantly, all the above-mentioned behavioural and neurochemical effects of diisopropylfluorophosphate were significantly reduced by galantamine. These results indicate that the acute pre-treatment with galantamine may have prophylactic effects against the intoxication by diisopropylfluorophosphate.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Galantamina/farmacologia , Isoflurofato/toxicidade , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/metabolismo , Animais , Temperatura Corporal/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Fasciculação/induzido quimicamente , Fasciculação/genética , Fasciculação/patologia , Fasciculação/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Transtornos dos Movimentos/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
16.
Chem Biol Interact ; 203(1): 191-5, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22982776

RESUMO

Human liver prolidase, a metal-dependent dipeptidase, is being tested as a potential catalytic bioscavenger against organophosphorus (OP) chemical warfare nerve agents. The purpose of this study was to determine whether persistent and high-levels of biologically active and intact recombinant human (rHu) prolidase could be introduced in vivo in mice using adenovirus (Ad). Here, we report that a single intravenous injection of Ad containing the prolidase gene with a 6× histidine-tag (Ad-prolidase) introduced high-levels of rHu prolidase in the circulation of mice which peaked on days 5-7 at 159 ± 129 U/mL. This level of prolidase is ~120 times greater than that of the enzyme level in mice injected with Ad-null virus. To determine if all of Ad-prolidase-produced rHu prolidase was exported into the circulation, enzyme activity was measured in a variety of tissues. Liver contained the highest levels of rHu prolidase on day 7 (5647 ± 454 U/g) compared to blood or any other tissue. Recombinant Hu prolidase hydrolyzed DFP, a simulant of OP nerve agents, in vitro. In vivo, prolidase overexpression extended the survival of 4 out of 6 mice by 4-8h against exposure to two 1× LD(50) doses of DFP. In contrast, overexpression of mouse butyrylcholinesterase (BChE), a proven stoichiometric bioscavenger of OP compounds, protected 5 out of 6 mice from DFP lethality and surviving mice showed no symptoms of DFP toxicity. In conclusion, the results suggest that gene delivery using Ad is capable of introducing persistent and high levels of human liver prolidase in vivo. The gene-delivered prolidase hydrolyzed DFP in vitro but provided only modest protection in vivo in mice, delaying the death of the animals by only 4-8h.


Assuntos
Dipeptidases/genética , Dipeptidases/metabolismo , Adenoviridae/genética , Animais , Antídotos/metabolismo , Antídotos/uso terapêutico , Substâncias para a Guerra Química/metabolismo , Substâncias para a Guerra Química/toxicidade , Dipeptidases/uso terapêutico , Feminino , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Isoflurofato/metabolismo , Isoflurofato/toxicidade , Fígado/enzimologia , Camundongos , Compostos Organofosforados/metabolismo , Compostos Organofosforados/toxicidade , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Distribuição Tecidual
17.
J Neurosci Methods ; 206(2): 195-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22426140

RESUMO

Experiments based on neuronal cell-transistor couplings were made from some groups during the last years. Pioneering work in this field was carried out by Fromherz and his group (Fromherz, 2003; Schmidtner and Fromherz, 2006). We were interested of the interaction of nerve cells to serine hydrolase inhibitor diisopropylfluorophosphate (DFP), monitored by using an aluminum-galliumnitride/galliumnitride (AlGaN/GaN) electrolyte gate field effect transistor (EGFET). The biocompatibility study of our sensor materials with nerve cells shows a proliferation rate of at least 95%. The inhibitors were added to the medium and the source-drain current of the EGFET was recorded as a function of time. The inhibitor was added to the NG108-15 nerve cells growing directly on the sensor surface, resulting in a fast decrease in the drain current, I(DS). Control measurements show that this response is associated with cationic fluxes pumped through ionic channels present in the cellular membrane. The sensor enables analysis of the ion channel activity without cell destruction and simultaneously allows visual observation due to the optical transparency of the sensor material.


Assuntos
Compostos de Alumínio , Técnicas Biossensoriais/métodos , Gálio , Neurônios/efeitos dos fármacos , Transistores Eletrônicos , Animais , Linhagem Celular , Eletrofisiologia/métodos , Isoflurofato/farmacologia , Camundongos , Ratos
18.
Molecules ; 16(10): 8535-51, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21989313

RESUMO

Organophosphorus (OP) compounds are a diverse chemical group that includes nerve agents and pesticides. They share a common chemical signature that facilitates their binding and adduction of acetylcholinesterase (AChE) within nerve synapses to induce cholinergic toxicity. However, this group diversity results in non-uniform binding and inactivation of other secondary protein targets, some of which may be adducted and protein activity influenced, even when only a relatively minor portion of tissue AChE is inhibited. The determination of individual OP protein binding targets has been hampered by the sensitivity of methods of detection and quantification of protein-pesticide adducts. We have overcome this limitation by the employment of a microchannel plate (MCP) autoradiographic detector to monitor a radiolabelled OP tracer compound. We preincubated rat thymus tissue in vitro with the OP pesticides, azamethiphos-oxon, chlorfenvinphos-oxon, chlorpyrifos-oxon, diazinon-oxon, and malaoxon, and then subsequently radiolabelled the free OP binding sites remaining with 3H-diisopropylfluorophosphate (3H-DFP). Proteins adducted by OP pesticides were detected as a reduction in 3H-DFP radiolabelling after protein separation by one dimensional polyacrylamide gel electrophoresis and quantitative digital autoradiography using the MCP imager. Thymus tissue proteins of molecular weights -28 kDa, 59 kDa, 66 kDa, and 82 kDa displayed responsiveness to adduction by this panel of pesticides. The 59 kDa protein target (previously putatively identified as carboxylesterase I) was only significantly adducted by chlorfenvinphos-oxon (p < 0.001), chlorpyrifos-oxon (p < 0.0001), and diazinon-oxon (p < 0.01), the 66 kDa protein target (previously identified as serum albumin) similarly only adducted by the same three pesticides (p < 0.0001), (p < 0.001), and (p < 0.01), and the 82 kDa protein target (previously identified as acyl peptide hydrolase) only adducted by chlorpyrifos-oxon (p < 0.0001) and diazinon-oxon (p < 0.001), when the average values of tissue AChE inhibition were 30%, 35%, and 32% respectively. The -28 kDa protein target was shown to be heterogeneous in nature and was resolved to reveal nineteen 3H-DFP radiolabelled protein spots by two dimensional polyacrylamide gel electrophoresis and MCP autoradiography. Some of these 3H-DFP proteins spots were responsive to adduction by preincubation with chlorfenvinphos-oxon. In addition, we exploited the useful spatial resolution of the MCP imager (-70 mm) to determine pesticide micolocalisation in vivo, after animal dosing and autoradiography of brain tissue sections. Collectively, MCP autoradiographic imaging provided a means to detect targets of OP pesticides, quantify their sensitivity of adduction relative to tissue AChE inhibition, and highlighted that these common pesticides exhibit specific binding character to protein targets, and therefore their toxicity will need to be evaluated on an individual compound basis. In addition, MCP autoradiography afforded a useful method of visualisation of the localisation of a small radiolabelled tracer within brain tissue.


Assuntos
Autorradiografia , Compostos Organofosforados/metabolismo , Praguicidas/metabolismo , Animais , Sítios de Ligação , Isoflurofato/metabolismo , Marcação por Isótopo , Camundongos , Camundongos Endogâmicos C57BL , Síndromes Neurotóxicas , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Praguicidas/análise , Praguicidas/química , Proteômica , Ratos , Timo/efeitos dos fármacos , Timo/metabolismo , Trítio
19.
Toxicol In Vitro ; 25(1): 301-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20888407

RESUMO

Although organophosphate (OP)-induced acetylcholinesterase (AChE) inhibition is the critical mechanism causing toxicities that follow exposure, other biochemical events, including oxidative stress, have been reported to contribute to OP toxicity. Fullerenes are carbon spheres with antioxidant activity. Thus, we hypothesized that fullerenes could counteract the effects of OP compounds and tested this hypothesis using two in vitro test systems, hen brain and human neuroblastoma SH-SY5Y cells. Cells were incubated with eight different derivatized fullerene compounds before challenge with paraoxon (0=control, 5×10(-8), 10(-7), 2×10(-7) or 5×10(-7) M) or diisopropylphosphorofluoridate (DFP, 0=control, 5×10(-6), 10(-5), 2×10(-5), and 5×10(-5) M) and measurement of AChE activities. Activities of brain and SH-SY5Y AChE with OP compounds alone ranged from 55-83% lower than non-treated controls after paraoxon and from 60-92% lower than non-treated controls after DFP. Most incubations containing 1 and 10 µM fullerene derivatives brought AChE activity closer to untreated controls, with improvements in AChE activity often >20%. Using dissipation of superoxide anion radicals as an indicator (xanthine oxidation as a positive control), all fullerene derivatives demonstrated significant antioxidant capability in neuroblastoma cells at 1 µM concentrations. No fullerene derivative at 1 µM significantly affected neuroblastoma cell viability, when determined using either Alamar Blue dye retention or a luminescent assay for ATP production. These studies suggest that derivatized fullerene nanomaterials have potential capability to ameliorate OP-induced AChE inhibition resulting in toxicities.


Assuntos
Acetilcolinesterase/metabolismo , Antioxidantes/farmacologia , Inibidores da Colinesterase , Reativadores da Colinesterase/farmacologia , Fulerenos/farmacologia , Organofosfatos/antagonistas & inibidores , Animais , Antioxidantes/química , Antioxidantes/toxicidade , Encéfalo/citologia , Encéfalo/enzimologia , Encéfalo/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Galinhas , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/química , Reativadores da Colinesterase/toxicidade , Embrião de Mamíferos , Fulerenos/química , Fulerenos/toxicidade , Humanos , Isoflurofato/antagonistas & inibidores , Isoflurofato/toxicidade , Camundongos , Neuroblastoma , Neurônios/enzimologia , Neurônios/metabolismo , Organofosfatos/toxicidade , Paraoxon/antagonistas & inibidores , Paraoxon/toxicidade , Superóxidos/metabolismo
20.
Nat Struct Mol Biol ; 17(7): 844-52, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20581825

RESUMO

HtrA proteases are tightly regulated proteolytic assemblies that are essential for maintaining protein homeostasis in extracytosolic compartments. Though HtrA proteases have been characterized in detail, their precise molecular mechanism for switching between different functional states is still unknown. To address this, we carried out biochemical and structural studies of DegP from Escherichia coli. We show that effector-peptide binding to the PDZ domain of DegP induces oligomer conversion from resting hexameric DegP6 into proteolytically active 12-mers and 24-mers (DegP12/24). Moreover, our data demonstrate that a specific protease loop (L3) functions as a conserved molecular switch of HtrA proteases. L3 senses the activation signal-that is, the repositioned PDZ domain of substrate-engaged DegP12/24 or the binding of allosteric effectors to regulatory HtrA proteases such as DegS-and transmits this information to the active site. Implications for protein quality control and regulation of oligomeric enzymes are discussed.


Assuntos
Escherichia coli/enzimologia , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas Periplásmicas/química , Proteínas Periplásmicas/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas de Choque Térmico/antagonistas & inibidores , Isoflurofato/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Domínios PDZ , Peptídeos/química , Peptídeos/metabolismo , Proteínas Periplásmicas/antagonistas & inibidores , Ligação Proteica , Multimerização Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA