Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.020
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4060, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744819

RESUMO

Endocytosis requires a coordinated framework of molecular interactions that ultimately lead to the fission of nascent endocytic structures. How cytosolic proteins such as dynamin concentrate at discrete sites that are sparsely distributed across the plasma membrane remains poorly understood. Two dynamin-1 major splice variants differ by the length of their C-terminal proline-rich region (short-tail and long-tail). Using sptPALM in PC12 cells, neurons and MEF cells, we demonstrate that short-tail dynamin-1 isoforms ab and bb display an activity-dependent recruitment to the membrane, promptly followed by their concentration into nanoclusters. These nanoclusters are sensitive to both Calcineurin and dynamin GTPase inhibitors, and are larger, denser, and more numerous than that of long-tail isoform aa. Spatiotemporal modelling confirms that dynamin-1 isoforms perform distinct search patterns and undergo dimensional reduction to generate endocytic nanoclusters, with short-tail isoforms more robustly exploiting lateral trapping in the generation of nanoclusters compared to the long-tail isoform.


Assuntos
Dinamina I , Endocitose , Isoformas de Proteínas , Animais , Dinamina I/metabolismo , Dinamina I/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Células PC12 , Ratos , Neurônios/metabolismo , Camundongos , Membrana Celular/metabolismo , Calcineurina/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(21): e2318591121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739802

RESUMO

The transcription factor p73, a member of the p53 tumor-suppressor family, regulates cell death and also supports tumorigenesis, although the mechanistic basis for the dichotomous functions is poorly understood. We report here the identification of an alternate transactivation domain (TAD) located at the extreme carboxyl (C) terminus of TAp73ß, a commonly expressed p73 isoform. Mutational disruption of this TAD significantly reduced TAp73ß's transactivation activity, to a level observed when the amino (N)-TAD that is similar to p53's TAD, is mutated. Mutation of both TADs almost completely abolished TAp73ß's transactivation activity. Expression profiling highlighted a unique set of targets involved in extracellular matrix-receptor interaction and focal adhesion regulated by the C-TAD, resulting in FAK phosphorylation, distinct from the N-TAD targets that are common to p53 and are involved in growth inhibition. Interestingly, the C-TAD targets are also regulated by the oncogenic, amino-terminal-deficient DNp73ß isoform. Consistently, mutation of C-TAD reduces cellular migration and proliferation. Mechanistically, selective binding of TAp73ß to DNAJA1 is required for the transactivation of C-TAD target genes, and silencing DNAJA1 expression abrogated all C-TAD-mediated effects. Taken together, our results provide a mechanistic basis for the dichotomous functions of TAp73 in the regulation of cellular growth through its distinct TADs.


Assuntos
Proliferação de Células , Domínios Proteicos , Ativação Transcricional , Proteína Tumoral p73 , Proteína Tumoral p73/metabolismo , Proteína Tumoral p73/genética , Humanos , Movimento Celular/genética , Mutação , Linhagem Celular Tumoral , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Fosforilação , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética
3.
Int J Biol Macromol ; 266(Pt 2): 131371, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580013

RESUMO

Bacterial caseinolytic protease-chaperone complexes participate in the elimination of misfolded and aggregated protein substrates. The spirochete Leptospira interrogans possess a set of Clp-chaperones (ClpX, ClpA, and ClpC), which may associate functionally with two different isoforms of LinClpP (ClpP1 and ClpP2). The L. interrogans ClpC (LinClpC) belongs to class-I chaperone with two active ATPase domains separated by a middle domain. Using the size exclusion chromatography, ANS dye binding, and dynamic light scattering analysis, the LinClpC is suggested to undergo nucleotide-induced oligomerization. LinClpC associates with either pure LinClpP1 or LinClpP2 isoforms non-preferentially and with equal affinity. Regardless, pure LinClpP isoforms cannot constitute an active protease complex with LinClpC. Interestingly, the heterocomplex LinClpP1P2 in association with LinClpC forms a functional proteolytic machinery and degrade ß-casein or FITC-casein in an energy-independent manner. Adding either ATP or ATPγS further fosters the LinClpCP1P2 complex protease activity by nurturing the functional oligomerization of LinClpC. The antibiotic, acyldepsipeptides (ADEP1) display a higher activatory role on LinClpP1P2 protease activity than LinClpC. Altogether, this work illustrates an in-depth study of hetero-tetradecamer LinClpP1P2 association with its cognate ATPase and unveils a new insight into the structural reorganization of LinClpP1P2 in the presence of chaperone, LinClpC to gain protease activity.


Assuntos
Proteínas de Bactérias , Proteínas de Choque Térmico , Leptospira , Multimerização Proteica , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Endopeptidase Clp/química , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Leptospira/metabolismo , Leptospira/enzimologia , Leptospira interrogans/enzimologia , Leptospira interrogans/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Ligação Proteica , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , Proteólise
4.
Appl Immunohistochem Mol Morphol ; 32(5): 249-253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38602289

RESUMO

The pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) family has been found to have both tumor-suppressor and oncogenic properties across various types and locations of cancer. Given that PHLPP has not been previously studied in oral squamous cell carcinoma (SCC), we conducted an assessment of the expression of both its isoforms in oral SCC tissues and cell lines and compared these findings to their corresponding normal counterparts. In addition, we assessed the relationship between PHLPP and clinicopathological factors and patient survival. Quantitative real-time polymerase chain reaction was used to detect the mRNA levels of PHLPP1 and PHLPP2 in cancerous and normal cell lines in addition to 124 oral SCC and noncancerous adjacent epithelia (N = 62, each). Correlations between their expression rate and clinicopathological parameters were further evaluated in 57 patients. Data were statistically analyzed with t test and paired t test, analysis of variance, Mann-Whitney U , and Cox Regression tests ( P < 0.05). We found significantly lower levels of both PHLPP isoforms in oral SCC tissues compared with noncancerous epithelia ( P < 0.001, for both). However, in the cell lines, this difference was significant only for PHLPP1 ( P = 0.027). The correlation between the two isoforms was significant only in cancerous tissues ( P < 0.001). None of the clinicopathologic factors showed significant associations with either of the isoforms and there was no correlation with survival. We showed for the first time that PHLPP1 and PHLPP2 act as tumor suppressors in oral SCC at the mRNA level. The regulation of their mRNA appears to be different between normal and cancerous tissues.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Proteínas Nucleares , Fosfoproteínas Fosfatases , Humanos , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Feminino , Masculino , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Idoso , Regulação Neoplásica da Expressão Gênica , Adulto , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Isoformas de Proteínas/metabolismo
5.
Mol Biol Rep ; 51(1): 544, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642153

RESUMO

BACKGROUND: Breast cancer is a highly heterogeneous solid tumor, posing challenges in developing targeted therapies effective for all mammary carcinoma subtypes. WT1 emerges as a promising target for breast cancer therapy due to its potential oncogenic role in various cancer types. Previous works have yielded inconsistent results. Therefore, further studies are needed to clarify the behavior of this complex gene in breast cancer. METHODS AND RESULTS: In this study, we examined WT1 expression in both Formalin Fixed Paraffin Embedded breast tumors (n = 41) and healthy adjacent tissues (n = 41) samples from newly diagnosed cases of ductal invasive breast cancer. The fold change in gene expression between the tumor and healthy tissue was determined by calculating 2-∆∆Ct. Disease-free survival analysis was computed using the Kaplan-Meier method. To identify the expression levels of different WT1 isoforms, we explored the ISOexpresso database. Relative quantification of the WT1 gene revealed an overexpression of WT1 in most cases. The percentage of patients surviving free of disease at 8 years of follow-up was lower in the group overexpressing WT1 compared to the group with down-regulated WT1. CONCLUSIONS: Interestingly, this overexpression was observed in all molecular subtypes of invasive breast cancer, underscoring the significance of WT1 as a potential target in all these subtypes. The observed WT1 down-expression in a few cases of invasive breast cancer, associated with better survival outcomes, may correspond to the down-regulation of a particular WT1-KTS (-) isoform: the WT1 A isoform (EX5-/KTS-). The co-expression of this WT1 oncogenic isoform with a regulated WT1- tumor suppressor isoform, such as the major WT1 F isoform (EX5-/KTS +), could also explain such survival outcomes. Due to its capacity to adopt dual roles, it becomes imperative to conduct individual molecular expression profiling of the WT1 gene. Such an approach holds great promise in the development of personalized treatment strategies for breast cancer.


Assuntos
Neoplasias da Mama , Proteínas WT1 , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Genes Supressores de Tumor , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(15): e2320456121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568974

RESUMO

Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high ß-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils. Fully atomistic replica exchange molecular dynamics (MD) simulations were used to compute the free energy landscapes of the conformational ensemble of the peptide monomers. These identified an aggregation-prohibiting ß-hairpin structure and an aggregation-competent U-fold unique to 4R tauopathy fibrils. Guided by MD simulations, we identified that the N-terminal-flanking residues to PHF6, which slightly vary between 4R and 3R isoforms, modulate seeding. Strikingly, when a single amino acid switch at position 305 replaced the serine of 4R tau with a lysine from the corresponding position in the first repeat of 3R tau, the seeding induced by the 19-residue peptide was markedly reduced. Conversely, a 4R tau mimic with three repeats, prepared by replacing those amino acids in the first repeat with those amino acids uniquely present in the second repeat, recovered aggregation when exposed to the 19-residue peptide. These peptide fibrils function as partial prions to recruit naive 4R tau-ten times the length of the peptide-and serve as a critical template for 4R tauopathy propagation. These results hint at opportunities for tau isoform-specific therapeutic interventions.


Assuntos
Príons , Tauopatias , Humanos , Proteínas tau/metabolismo , Tauopatias/metabolismo , Isoformas de Proteínas/metabolismo , Príons/metabolismo , Peptídeos , Aminoácidos
7.
Traffic ; 25(4): e12933, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600522

RESUMO

Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein-protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.


Assuntos
Autofagia , Metabolismo Energético , Humanos , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Isoformas de Proteínas/metabolismo
8.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38557723

RESUMO

CD4+ T cells are vital for host defense and immune regulation. However, the fundamental role of CD4 itself remains enigmatic. We report seven patients aged 5-61 years from five families of four ancestries with autosomal recessive CD4 deficiency and a range of infections, including recalcitrant warts and Whipple's disease. All patients are homozygous for rare deleterious CD4 variants impacting expression of the canonical CD4 isoform. A shorter expressed isoform that interacts with LCK, but not HLA class II, is affected by only one variant. All patients lack CD4+ T cells and have increased numbers of TCRαß+CD4-CD8- T cells, which phenotypically and transcriptionally resemble conventional Th cells. Finally, patient CD4-CD8- αß T cells exhibit intact responses to HLA class II-restricted antigens and promote B cell differentiation in vitro. Thus, compensatory development of Th cells enables patients with inherited CD4 deficiency to acquire effective cellular and humoral immunity against an unexpectedly large range of pathogens. Nevertheless, CD4 is indispensable for protective immunity against at least human papillomaviruses and Trophyrema whipplei.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T Auxiliares-Indutores , Humanos , Linfócitos T CD8-Positivos , Ativação Linfocitária , Antígenos HLA , Isoformas de Proteínas/metabolismo
9.
Elife ; 122024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652113

RESUMO

Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4, but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here, we identify the domains of LRMP essential for this regulation, show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating, and demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we identified the initial 227 residues of LRMP and the N-terminus of HCN4 as necessary for LRMP to associate with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. Finally, we demonstrated that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of five residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating, most likely via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.


Assuntos
AMP Cíclico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Proteínas de Membrana , Proteínas Musculares , Receptores Citoplasmáticos e Nucleares , Transdução de Sinais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , AMP Cíclico/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Animais , Ligação Proteica , Células HEK293 , Canais de Potássio/metabolismo , Canais de Potássio/genética , Canais de Potássio/química , Técnicas de Patch-Clamp , Transferência Ressonante de Energia de Fluorescência , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
10.
Cells ; 13(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667330

RESUMO

BACKGROUND: Gaucher disease (GD) is caused by glucocerebrosidase (GCase) enzyme deficiency, leading to glycosylceramide (Gb-1) and glucosylsphingosine (Lyso-Gb-1) accumulation. The pathological hallmark for GD is an accumulation of large macrophages called Gaucher cells (GCs) in the liver, spleen, and bone marrow, which are associated with chronic organ enlargement, bone manifestations, and inflammation. Tartrate-resistant acid phosphatase type 5 (TRAP5 protein, ACP5 gene) has long been a nonspecific biomarker of macrophage/GCs activation; however, the discovery of two isoforms of TRAP5 has expanded its significance. The discovery of TRAP5's two isoforms revealed that it is more than just a biomarker of macrophage activity. While TRAP5a is highly expressed in macrophages, TRAP5b is secreted by osteoclasts. Recently, we have shown that the elevation of TRAP5b in plasma is associated with osteoporosis in GD. However, the role of TRAP isoforms in GD and how the accumulation of Gb-1 and Lyso-Gb-1 affects TRAP expression is unknown. METHODS: 39 patients with GD were categorized into cohorts based on bone mineral density (BMD). TRAP5a and TRAP5b plasma levels were quantified by ELISA. ACP5 mRNA was estimated using RT-PCR. RESULTS: An increase in TRAP5b was associated with reduced BMD and correlated with Lyso-Gb-1 and immune activator chemokine ligand 18 (CCL18). In contrast, the elevation of TRAP5a correlated with chitotriosidase activity in GD. Lyso-Gb-1 and plasma seemed to influence the expression of ACP5 in macrophages. CONCLUSIONS: As an early indicator of BMD alteration, measurement of circulating TRAP5b is a valuable tool for assessing osteopenia-osteoporosis in GD, while TRAP5a serves as a biomarker of macrophage activation in GD. Understanding the distinct expression pattern of TRAP5 isoforms offers valuable insight into both bone disease and the broader implications for immune system activation in GD.


Assuntos
Doença de Gaucher , Isoformas de Proteínas , Fosfatase Ácida Resistente a Tartarato , Doença de Gaucher/metabolismo , Doença de Gaucher/genética , Humanos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Densidade Óssea , Macrófagos/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Isoenzimas/metabolismo , Isoenzimas/genética
11.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674115

RESUMO

The widespread occurrence of breast cancer and its propensity to develop drug resistance highlight the need for a comprehensive understanding of the molecular mechanisms involved. This study investigates the intricate pathways associated with secondary resistance to taxol in triple-negative breast cancer (TNBC) cells, with a particular focus on the changes observed in the cytoplasmic actin isoforms. By studying a taxol-resistant TNBC cell line, we revealed a shift between actin isoforms towards γ-actin predominance, accompanied by increased motility and invasive properties. This was associated with altered tubulin isotype expression and reorganisation of the microtubule system. In addition, we have shown that taxol-resistant TNBC cells underwent epithelial-to-mesenchymal transition (EMT), as evidenced by Twist1-mediated downregulation of E-cadherin expression and increased nuclear translocation of ß-catenin. The RNA profiling analysis revealed that taxol-resistant cells exhibited significantly increased positive regulation of cell migration, hormone response, cell-substrate adhesion, and actin filament-based processes compared with naïve TNBC cells. Notably, taxol-resistant cells exhibited a reduced proliferation rate, which was associated with an increased invasiveness in vitro and in vivo, revealing a complex interplay between proliferative and metastatic potential. This study suggests that prolonged exposure to taxol and acquisition of taxol resistance may lead to pro-metastatic changes in the TNBC cell line.


Assuntos
Actinas , Movimento Celular , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Paclitaxel , Isoformas de Proteínas , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Paclitaxel/farmacologia , Humanos , Feminino , Linhagem Celular Tumoral , Actinas/metabolismo , Isoformas de Proteínas/metabolismo , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Animais , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Progressão da Doença
12.
Pestic Biochem Physiol ; 200: 105840, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582602

RESUMO

CAPA neuropeptides regulate the diuresis/ antidiuresis process in insects by activating specific cognate receptor, CAPAr. In this study, we characterized the CAPAr gene (BtabCAPAr) in the whitefly, Bemisia tabaci Asia II 1. The two alternatively spliced isoforms of BtabCAPAr gene, BtabCAPAr-1 and BtabCAPAr-2, having six and five exons, respectively, were identified. The BtabCAPAr gene expression was highest in adult whitefly as compared to gene expression in egg, nymphal and pupal stages. Among the three putative CAPA peptides, CAPA-PVK1 and CAPA-PVK2 strongly activated the BtabCAPAr-1 with very low EC50 values of 0.067 nM and 0.053 nM, respectively, in heterologous calcium mobilization assays. None of the peptide activated the alternatively spliced isoform BtabCAPAr-2 that has lost the transmembrane segments 3 and 4. Significant levels of mortality were observed when whiteflies were fed with CAPA-PVK1 at 1.0 µM (50.0%), CAPA-PVK2 at 100.0 nM (43.8%) and CAPA-tryptoPK 1.0 µM (40.0%) at the 96 h after the treatment. This study provides valuable information to design biostable peptides to develop a class of insecticides.


Assuntos
Hemípteros , Neuropeptídeos , Animais , Peptídeos/metabolismo , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transdução de Sinais , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Hemípteros/genética , Hemípteros/metabolismo
13.
Cell Rep ; 43(4): 114048, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38614086

RESUMO

Resistance to MAPK inhibitors (MAPKi), the main cause of relapse in BRAF-mutant melanoma, is associated with the production of alternative BRAF mRNA isoforms (altBRAFs) in up to 30% of patients receiving BRAF inhibitor monotherapy. These altBRAFs have been described as being generated by alternative pre-mRNA splicing, and splicing modulation has been proposed as a therapeutic strategy to overcome resistance. In contrast, we report that altBRAFs are generated through genomic deletions. Using different in vitro models of altBRAF-mediated melanoma resistance, we demonstrate the production of altBRAFs exclusively from the BRAF V600E allele, correlating with corresponding genomic deletions. Genomic deletions are also detected in tumor samples from melanoma and breast cancer patients expressing altBRAFs. Along with the identification of altBRAFs in BRAF wild-type and in MAPKi-naive melanoma samples, our results represent a major shift in our understanding of mechanisms leading to the generation of BRAF transcripts variants associated with resistance in melanoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Melanoma , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Melanoma/genética , Melanoma/tratamento farmacológico , Melanoma/patologia , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Processamento Alternativo/genética , Feminino , Deleção de Genes
14.
Exp Cell Res ; 438(1): 114026, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604522

RESUMO

The emergence of AR-V7, a truncated isoform of AR upon androgen deprivation therapy treatment, leads to the development of castration resistant prostate cancer (CRPC). Understanding mechanisms that regulate AR-V7 expression is critical for developing newer therapeutic strategies. In this study, we have investigated the regulation of AR-V7 during cell cycle and identified a distinct pattern of periodic fluctuation, peaking during G2/M phase. This fluctuation correlates with the expression of Cdc-2 like kinase 1 (CLK1) and phosphorylated serine/arginine-rich splicing factor 1 (p-SRSF1) during these phases, pointing towards their role in AR-V7 generation. Functional assays reveal that CLK1 knockdown prolongs the S phase, leading to altered cell cycle distribution and increased accumulation of AR-V7 and pSRSF1 in G1/S phase. Conversely, CLK1 overexpression rescues AR-V7 and p-SRSF1 levels in the G2/M phase, consistent with observed cell cycle alterations upon AR-V7 knockdown and overexpression in CRPC cells. Furthermore, overexpression of kinase-deficient CLK1 mutant leads to diminished AR-V7 levels during G2/M, underlining the essential contribution of CLK1's kinase activity in modulating AR-V7 expression. Collectively, our findings, for the first time, show periodic regulation of AR-V7 expression, its effect on cell cycle progression and the critical role of CLK1-pSRSF1 axis in modulating AR-V7 expression throughout the cell cycle.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Proteínas Tirosina Quinases , Receptores Androgênicos , Fatores de Processamento de Serina-Arginina , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fase G2/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fosforilação , Proliferação de Células/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética
15.
J Virol ; 98(4): e0153823, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38501924

RESUMO

Prior to nuclear export, the hepatitis B virus (HBV) pregenomic RNA may be spliced by the host cell spliceosome to form shorter RNA sequences known as splice variants. Due to deletions in the open reading frames, splice variants may encode novel fusion proteins. Although not essential for HBV replication, the role of splice variants and their novel fusion proteins largely remains unknown. Some splice variants and their encoded novel fusion proteins have been shown to impair or promote wild-type HBV replication in vitro, and although splice variants Sp3 and Sp9 are two of the most common splice variants identified to date, their in vitro replication phenotype and their impact on wild-type HBV replication are unclear. Here, we utilize greater than genome-length Sp3 and Sp9 constructs to investigate their replication phenotype in vitro, and their impact on wild-type HBV replication. We show that Sp3 and Sp9 were incapable of autonomous replication, which was rescued by providing the polymerase and core proteins in trans. Furthermore, we showed that Sp3 had no impact on wild-type HBV replication, whereas Sp9 strongly reduced wild-type HBV replication in co-transfection experiments. Knocking out Sp9 novel precore-surface and core-surface fusion protein partially restored replication, suggesting that these proteins contributed to suppression of wild-type HBV replication, providing further insights into factors regulating HBV replication in vitro. IMPORTANCE: The role of hepatitis B virus (HBV) splice variants in HBV replication and pathogenesis currently remains largely unknown. However, HBV splice variants have been associated with the development of hepatocellular carcinoma, suggesting a role in HBV pathogenesis. Several in vitro co-transfection studies have shown that different splice variants have varying impacts on wild-type HBV replication, perhaps contributing to viral persistence. Furthermore, all splice variants are predicted to produce novel fusion proteins. Sp1 hepatitis B splice protein contributes to liver disease progression and apoptosis; however, the function of other HBV splice variant novel fusion proteins remains largely unknown. We show that Sp9 markedly impairs HBV replication in a cell culture co-transfection model, mediated by expression of Sp9 novel fusion proteins. In contrast, Sp3 had no effect on wild-type HBV replication. Together, these studies provide further insights into viral factors contributing to regulation of HBV replication.


Assuntos
Hepatite B , Neoplasias Hepáticas , Isoformas de Proteínas , Proteínas Virais , Replicação Viral , Humanos , DNA Viral/genética , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Fenótipo , Isoformas de Proteínas/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Carcinoma Hepatocelular/virologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38458419

RESUMO

Insect Malpighian tubules contribute to Ca2+ homeostasis via Ca2+ storage in intracellular compartments, Ca2+ secretion into the tubule lumen, and Ca2+ reabsorption into the hemolymph. A plasma membrane Ca2+-ATPase (PMCA) is hypothesized to be a Ca2+-transporter involved in renal Ca2+ transport of insects, however few studies have investigated its immunochemical expression in Malpighian tubules. Here we characterized the abundance and localization of PMCA-like immunoreactivity in Malpighian tubules of adult female mosquitoes Aedes aegypti using an antibody against Drosophila melanogaster PMCA. Western blotting revealed expression of a relatively abundant 109 kDa isoform and a relatively sparse 115 kDa isoform. Feeding mosquitoes 10% sucrose with 50 mM CaCl2 for 7 days did not affect PMCA immunoreactivity. However, at 24, 48, and 96 h post-blood feeding (PBF), the relative abundance of the 109 kDa isoform decreased while that of the 115 kDa isoform increased. Immunolabeling of Malpighian tubules revealed PMCA-like immunoreactivity in both principal and stellate cells; principal cell labeling was intracellular, whereas stellate cell labeling was along the basal membrane. Blood feeding enhanced immunolabeling of PMCA in stellate cells but weakened that in principal cells. Moreover, a unique apicolateral pattern of PMCA-like immunolabeling occurred in principal cells of the proximal segment at 24 h PBF, suggesting potential trafficking to septate junctions. Our results suggest PMCA isoforms are differentially expressed and localized in mosquito Malpighian tubules where they contribute to redistributing tubule Ca2+ during blood meal processing.


Assuntos
Aedes , Feminino , Animais , Aedes/metabolismo , Adenosina Trifosfatases/metabolismo , Túbulos de Malpighi/metabolismo , Cálcio da Dieta/metabolismo , Cálcio da Dieta/farmacologia , Drosophila melanogaster , Membrana Celular , Isoformas de Proteínas/metabolismo
17.
Sci Rep ; 14(1): 7304, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538801

RESUMO

TGFß has roles in inflammation, wound healing, epithelial to mesenchymal transition (EMT), and cancer stem cell states, and acts as a tumor suppressor gene for squamous cell carcinoma (SCC). SCCs are also characterized by high levels of ΔNp63, which induces epithelial cell phenotypes and maintains squamous stem cells. Previous studies indicate a complex interplay between ΔNp63 and TGFß signaling, with contradictory effects reported. We investigated the effects of TGFß on p63 isoform proteins and mRNAs in non-malignant squamous and SCC cells, and the role of either canonical or non-canonical TGFß signaling pathways. TGFß selectively increased ΔNp63 protein levels in non-malignant keratinocytes in association with SMAD3 activation and was prevented by TGFß receptor inhibition, indicating activation of canonical TGFß pathway signaling. TP63 isoform mRNAs showed discordance from protein levels, with an initial increase in both TAP63 and ΔNP63 mRNAs followed by a decrease at later times. These data demonstrate complex and heterogeneous effects of TGFß in squamous cells that depend on the extent of canonical TGFß pathway aberrations. The interplay between TGFß and p63 is likely to influence the magnitude of EMT states in SCC, with clinical implications for tumor progression and response to therapy.


Assuntos
Carcinoma de Células Escamosas , Transição Epitelial-Mesenquimal , Humanos , Transição Epitelial-Mesenquimal/genética , Fator de Crescimento Transformador beta , Células Epiteliais/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
18.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542320

RESUMO

In this study, we designed two series of novel anthraquinone-based benzenesulfonamide derivatives and their analogues as potential carbonic anhydrase inhibitors (CAIs) and evaluated their inhibitory activities against off-target human carbonic anhydrase II (hCA II) isoform and tumor-associated human carbonic anhydrase IX (hCA IX) isoform. Most of these compounds exhibited good inhibitory activities against hCA II and IX. The compounds that exhibited the best hCA inhibition were further studied against the MDA-MB-231, MCF-7, and HepG2 cell lines under hypoxic and normoxic conditions. Additionally, the compounds exhibiting the best antitumor activity were subjected to apoptosis and mitochondrial membrane potential assays, which revealed a significant increase in the percentage of apoptotic cells and a notable decrease in cell viability. Molecular docking studies were performed to demonstrate the presence of numerous hydrogen bonds and hydrophobic interactions between the compounds and the active site of hCA. Absorption, distribution, metabolism, excretion (ADME) predictions showed that all of the compounds had good pharmacokinetic and physicochemical properties.


Assuntos
Benzenossulfonamidas , Inibidores da Anidrase Carbônica , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Anidrase Carbônica/química , Simulação de Acoplamento Molecular , Sulfonamidas/química , Anidrase Carbônica IX/metabolismo , Isoformas de Proteínas/metabolismo , Antraquinonas/farmacologia
19.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542339

RESUMO

Myosin, a superfamily of motor proteins, obtain the energy they require for movement from ATP hydrolysis to perform various functions by binding to actin filaments. Extensive studies have clarified the diverse functions performed by the different isoforms of myosin. However, the unavailability of resolved structures has made it difficult to understand the way in which their mechanochemical cycle and structural diversity give rise to distinct functional properties. With this study, we seek to further our understanding of the structural organization of the myosin 7A motor domain by modeling the tertiary structure of myosin 7A based on its primary sequence. Multiple sequence alignment and a comparison of the models of different myosin isoforms and myosin 7A not only enabled us to identify highly conserved nucleotide binding sites but also to predict actin binding sites. In addition, the actomyosin-7A complex was predicted from the protein-protein interaction model, from which the core interface sites of actin and the myosin 7A motor domain were defined. Finally, sequence alignment and the comparison of models were used to suggest the possibility of a pliant region existing between the converter domain and lever arm of myosin 7A. The results of this study provide insights into the structure of myosin 7A that could serve as a framework for higher resolution studies in future.


Assuntos
Actinas , Miosinas , Actinas/metabolismo , Alinhamento de Sequência , Estrutura Terciária de Proteína , Miosinas/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Trifosfato de Adenosina/metabolismo
20.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38548335

RESUMO

Neuroprotection after injury or in neurodegenerative disease remains a major goal for basic and translational neuroscience. Retinal ganglion cells (RGCs), the projection neurons of the eye, degenerate in optic neuropathies after axon injury, and there are no clinical therapies to prevent their loss or restore their connectivity to targets in the brain. Here we demonstrate a profound neuroprotective effect of the exogenous expression of various Ca2+/calmodulin-dependent protein kinase II (CaMKII) isoforms in mice. A dramatic increase in RGC survival following the optic nerve trauma was elicited by the expression of constitutively active variants of multiple CaMKII isoforms in RGCs using adeno-associated viral (AAV) vectors across a 100-fold range of AAV dosing in vivo. Despite this neuroprotection, however, short-distance RGC axon sprouting was suppressed by CaMKII, and long-distance axon regeneration elicited by several pro-axon growth treatments was likewise inhibited even as CaMKII further enhanced RGC survival. Notably, in a dose-escalation study, AAV-expressed CaMKII was more potent for axon growth suppression than the promotion of survival. That diffuse overexpression of constitutively active CaMKII strongly promotes RGC survival after axon injury may be clinically valuable for neuroprotection per se. However, the associated strong suppression of the optic nerve axon regeneration demonstrates the need for understanding the intracellular domain- and target-specific CaMKII activities to the development of CaMKII signaling pathway-directed strategies for the treatment of optic neuropathies.


Assuntos
Doenças Neurodegenerativas , Doenças do Nervo Óptico , Traumatismos do Nervo Óptico , Camundongos , Animais , Células Ganglionares da Retina/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Axônios/metabolismo , Doenças Neurodegenerativas/metabolismo , Regeneração Nervosa/fisiologia , Doenças do Nervo Óptico/metabolismo , Isoformas de Proteínas/metabolismo , Sobrevivência Celular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA