Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Nat Biotechnol ; 42(4): 582-586, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37291427

RESUMO

Full-length RNA-sequencing methods using long-read technologies can capture complete transcript isoforms, but their throughput is limited. We introduce multiplexed arrays isoform sequencing (MAS-ISO-seq), a technique for programmably concatenating complementary DNAs (cDNAs) into molecules optimal for long-read sequencing, increasing the throughput >15-fold to nearly 40 million cDNA reads per run on the Sequel IIe sequencer. When applied to single-cell RNA sequencing of tumor-infiltrating T cells, MAS-ISO-seq demonstrated a 12- to 32-fold increase in the discovery of differentially spliced genes.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Isoformas de RNA , DNA Complementar/genética , Isoformas de RNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Isoformas de Proteínas/genética , Análise de Sequência de RNA/métodos , Transcriptoma , Perfilação da Expressão Gênica/métodos , RNA/genética
3.
RNA Biol ; 20(1): 908-925, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37906624

RESUMO

Alternative processing of nascent mRNAs is widespread in eukaryotic organisms and greatly impacts the output of gene expression. Specifically, alternative cleavage and polyadenylation (APA) is a co-transcriptional molecular process that switches the polyadenylation site (PAS) at which a nascent mRNA is cleaved, resulting in mRNA isoforms with different 3'UTR length and content. APA can potentially affect mRNA translation efficiency, localization, stability, and mRNA seeded protein-protein interactions. APA naturally occurs during development and cellular differentiation, with around 70% of human genes displaying APA in particular tissues and cell types. For example, neurons tend to express mRNAs with long 3'UTRs due to preferential processing at PASs more distal than other PASs used in other cell types. In addition, changes in APA mark a variety of pathological states, including many types of cancer, in which mRNAs are preferentially cleaved at more proximal PASs, causing expression of mRNA isoforms with short 3'UTRs. Although APA has been widely reported, both the function of APA in development and the mechanisms that regulate the choice of 3'end cut sites in normal and pathogenic conditions are still poorly understood. In this review, we summarize current understanding of how APA is regulated during development and cellular differentiation and how the resulting change in 3'UTR content affects multiple aspects of gene expression. With APA being a widespread phenomenon, the advent of cutting-edge scientific techniques and the pressing need for in-vivo studies, there has never been a better time to delve into the intricate mechanisms of alternative cleavage and polyadenylation.


Assuntos
Regulação da Expressão Gênica , Poliadenilação , Humanos , Regiões 3' não Traduzidas , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Diferenciação Celular/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Mol Cell ; 82(20): 3840-3855.e8, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270248

RESUMO

The use of alternative promoters, splicing, and cleavage and polyadenylation (APA) generates mRNA isoforms that expand the diversity and complexity of the transcriptome. Here, we uncovered thousands of previously undescribed 5' uncapped and polyadenylated transcripts (5' UPTs). We show that these transcripts resist exonucleases due to a highly structured RNA and N6-methyladenosine modification at their 5' termini. 5' UPTs appear downstream of APA sites within their host genes and are induced upon APA activation. Strong enrichment in polysomal RNA fractions indicates 5' UPT translational potential. Indeed, APA promotes downstream translation initiation, non-canonical protein output, and consistent changes to peptide presentation at the cell surface. Lastly, we demonstrate the biological importance of 5' UPTs using Bcl2, a prominent anti-apoptotic gene whose entire coding sequence is a 5' UPT generated from 5' UTR-embedded APA sites. Thus, APA is not only accountable for terminating transcripts, but also for generating downstream uncapped RNAs with translation potential and biological impact.


Assuntos
Poliadenilação , Isoformas de RNA , Isoformas de RNA/genética , Regiões 5' não Traduzidas , Regiões 3' não Traduzidas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Exonucleases/genética
5.
Hum Mol Genet ; 31(R1): R123-R136, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35960994

RESUMO

Aberrant splicing underlies many human diseases, including cancer, cardiovascular diseases and neurological disorders. Genome-wide mapping of splicing quantitative trait loci (sQTLs) has shown that genetic regulation of alternative splicing is widespread. However, identification of the corresponding isoform or protein products associated with disease-associated sQTLs is challenging with short-read RNA-seq, which cannot precisely characterize full-length transcript isoforms. Furthermore, contemporary sQTL interpretation often relies on reference transcript annotations, which are incomplete. Solutions to these issues may be found through integration of newly emerging long-read sequencing technologies. Long-read sequencing offers the capability to sequence full-length mRNA transcripts and, in some cases, to link sQTLs to transcript isoforms containing disease-relevant protein alterations. Here, we provide an overview of sQTL mapping approaches, the use of long-read sequencing to characterize sQTL effects on isoforms, the linkage of RNA isoforms to protein-level functions and comment on future directions in the field. Based on recent progress, long-read RNA sequencing promises to be part of the human disease genetics toolkit to discover and treat protein isoforms causing rare and complex diseases.


Assuntos
Genética Humana , Isoformas de RNA , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de RNA/genética , RNA Mensageiro/genética , Análise de Sequência de RNA
6.
RNA Biol ; 19(1): 279-289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188062

RESUMO

The Drosha cleavage of a pri-miRNA defines mature microRNA sequence. Drosha cleavage at alternative positions generates 5' isoforms (isomiRs) which have distinctive functions. To understand how pri-miRNA structures influence Drosha cleavage, we performed a systematic analysis of the maturation of endogenous pri-miRNAs and their variants both in vitro and in vivo. We show that in addition to previously known features, the overall structural flexibility of pri-miRNA impact Drosha cleavage fidelity. Internal loops and nearby G · U wobble pairs on the pri-miRNA stem induce the use of non-canonical cleavage sites by Drosha, resulting in 5' isomiR production. By analysing patient data deposited in the Cancer Genome Atlas, we provide evidence that alternative Drosha cleavage of pri-miRNAs is a tunable process that responds to the level of pri-miRNA-associated RNA-binding proteins. Together, our findings reveal that Drosha cleavage fidelity can be modulated by altering pri-miRNA structure, a potential mechanism underlying 5' isomiR biogenesis in tumours.[Figure: see text].


Assuntos
MicroRNAs/química , Conformação de Ácido Nucleico , Isoformas de RNA/química , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Clivagem do RNA , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Ribonuclease III/metabolismo , Relação Estrutura-Atividade
7.
RNA ; 28(2): 162-176, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728536

RESUMO

Nanopore sequencing devices read individual RNA strands directly. This facilitates identification of exon linkages and nucleotide modifications; however, using conventional direct RNA nanopore sequencing, the 5' and 3' ends of poly(A) RNA cannot be identified unambiguously. This is due in part to RNA degradation in vivo and in vitro that can obscure transcription start and end sites. In this study, we aimed to identify individual full-length human RNA isoforms among ∼4 million nanopore poly(A)-selected RNA reads. First, to identify RNA strands bearing 5' m7G caps, we exchanged the biological cap for a modified cap attached to a 45-nt oligomer. This oligomer adaptation method improved 5' end sequencing and ensured correct identification of the 5' m7G capped ends. Second, among these 5'-capped nanopore reads, we screened for features consistent with a 3' polyadenylation site. Combining these two steps, we identified 294,107 individual high-confidence full-length RNA scaffolds from human GM12878 cells, most of which (257,721) aligned to protein-coding genes. Of these, 4876 scaffolds indicated unannotated isoforms that were often internal to longer, previously identified RNA isoforms. Orthogonal data for m7G caps and open chromatin, such as CAGE and DNase-HS seq, confirmed the validity of these high-confidence RNA scaffolds.


Assuntos
Isoformas de RNA/química , RNA Mensageiro/química , Linhagem Celular Tumoral , Humanos , Sequenciamento por Nanoporos/métodos , Sinais de Poliadenilação na Ponta 3' do RNA , Isoformas de RNA/genética , RNA Mensageiro/genética , Transcriptoma
8.
Sci Rep ; 11(1): 24444, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34961772

RESUMO

Roles of HNRNPA1 are beginning to emerge in cancers; however, mechanisms causing deregulation of HNRNPA1 function remain elusive. Here, we describe an isoform switch between the 3'-UTR isoforms of HNRNPA1 in breast cancers. We show that the dominantly expressed isoform in mammary tissue has a short half-life. In breast cancers, this isoform is downregulated in favor of a stable isoform. The stable isoform is expressed more in breast cancers, and more HNRNPA1 protein is synthesized from this isoform. High HNRNPA1 protein levels correlate with poor survival in patients. In support of this, silencing of HNRNPA1 causes a reversal in neoplastic phenotypes, including proliferation, clonogenic potential, migration, and invasion. In addition, silencing of HNRNPA1 results in the downregulation of microRNAs that map to intragenic regions. Among these miRNAs, miR-21 is known for its transcriptional upregulation in breast and numerous other cancers. Altogether, the cancer-specific isoform switch we describe here for HNRNPA1 emphasizes the need to study gene expression at the isoform level in cancers to identify novel cases of oncogene activation.


Assuntos
Neoplasias da Mama/genética , Ribonucleoproteína Nuclear Heterogênea A1/genética , Isoformas de RNA/genética , RNA Mensageiro/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética
9.
Genome Biol ; 22(1): 331, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872615

RESUMO

We developed a single-cell approach to detect CRISPR-modified mRNA transcript structures. This method assesses how genetic variants at splicing sites and splicing factors contribute to alternative mRNA isoforms. We determine how alternative splicing is regulated by editing target exon-intron segments or splicing factors by CRISPR-Cas9 and their consequences on transcriptome profile. Our method combines long-read sequencing to characterize the transcript structure and short-read sequencing to match the single-cell gene expression profiles and gRNA sequence and therefore provides targeted genomic edits and transcript isoform structure detection at single-cell resolution.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sequenciamento por Nanoporos/métodos , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Éxons , Genômica , Células HEK293 , Humanos , Proteínas de Neoplasias , Isoformas de Proteínas/genética , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Splicing de RNA , RNA Guia de Cinetoplastídeos/metabolismo , Receptores de Quinase C Ativada , Transcriptoma
10.
Biochim Biophys Acta Gene Regul Mech ; 1864(10): 194746, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34419630

RESUMO

Lamin A/C proteins, major components of the nuclear lamina, are encoded by the LMNA gene. These proteins have multiple cellular functions, including DNA transcription and replication, chromatin organization, regulation of the cell cycle, and apoptosis. Mutations in LMNA are associated with a variety of diseases called laminopathies. LMNA has implications in cancer; however, its mechanisms of dysregulation in cancer cells are not yet fully understood. In this study, among the LMNA transcript variants, we focused on a transcriptional variant 6 (termed LMNA-V6), which contains unique 3 exons upstream of exon 1 of LMNA. The promoter region of LMNA-V6 formed multiple G-quadruplexes and increased its transcriptional activity. Moreover, LMNA-V6 negatively regulated other LMNA mRNA variants, lamin A and lamin C, via direct interaction with their promoter. Knockdown of LMNA-V6 decreased the proliferation of colon cancer cells, whereas overexpression of the unique 3 exons of LMNA-V6 increased cell growth. Furthermore, microarray gene expression profiling showed that alteration of LMNA-V6 levels influenced the expression of p53 in colon cancer cells. Taken together, the results suggest that LMNA-V6 may be a novel functional RNA whose expression is regulated through multiple G-quadruplexes in colon cancer cells.


Assuntos
Neoplasias do Colo/genética , Quadruplex G , Regulação Neoplásica da Expressão Gênica , Lamina Tipo A/genética , Regiões Promotoras Genéticas , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Colo/metabolismo , Humanos , Lamina Tipo A/metabolismo , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Splicing de RNA , Transcrição Gênica
11.
Nat Commun ; 12(1): 4872, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381052

RESUMO

The Netrin-1 receptor UNC5B is an axon guidance regulator that is also expressed in endothelial cells (ECs), where it finely controls developmental and tumor angiogenesis. In the absence of Netrin-1, UNC5B induces apoptosis that is blocked upon Netrin-1 binding. Here, we identify an UNC5B splicing isoform (called UNC5B-Δ8) expressed exclusively by ECs and generated through exon skipping by NOVA2, an alternative splicing factor regulating vascular development. We show that UNC5B-Δ8 is a constitutively pro-apoptotic splicing isoform insensitive to Netrin-1 and required for specific blood vessel development in an apoptosis-dependent manner. Like NOVA2, UNC5B-Δ8 is aberrantly expressed in colon cancer vasculature where its expression correlates with tumor angiogenesis and poor patient outcome. Collectively, our data identify a mechanism controlling UNC5B's necessary apoptotic function in ECs and suggest that the NOVA2/UNC5B circuit represents a post-transcriptional pathway regulating angiogenesis.


Assuntos
Apoptose , Vasos Sanguíneos/crescimento & desenvolvimento , Receptores de Netrina/metabolismo , Isoformas de RNA/metabolismo , Processamento Alternativo , Animais , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/metabolismo , Células Endoteliais , Humanos , Morfogênese , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Netrina/genética , Netrina-1/metabolismo , Antígeno Neuro-Oncológico Ventral , Isoformas de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Sobrevida , Peixe-Zebra
12.
Nat Commun ; 12(1): 4203, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244519

RESUMO

Alternative splicing generates differing RNA isoforms that govern phenotypic complexity of eukaryotes. Its malfunction underlies many diseases, including cancer and cardiovascular diseases. Comparative analysis of RNA isoforms at the genome-wide scale has been difficult. Here, we establish an experimental and computational pipeline that performs de novo transcript annotation and accurately quantifies transcript isoforms from cDNA sequences with a full-length isoform detection accuracy of 97.6%. We generate a searchable, quantitative human transcriptome annotation with 31,025 known and 5,740 novel transcript isoforms ( http://steinmetzlab.embl.de/iBrowser/ ). By analyzing the isoforms in the presence of RNA Binding Motif Protein 20 (RBM20) mutations associated with aggressive dilated cardiomyopathy (DCM), we identify 121 differentially expressed transcript isoforms in 107 cardiac genes. Our approach enables quantitative dissection of complex transcript architecture instead of mere identification of inclusion or exclusion of individual exons, as exemplified by the discovery of IMMT isoforms mis-spliced by RBM20 mutations. Thereby we achieve a path to direct differential expression testing independent of an existing annotation of transcript isoforms, providing more immediate biological interpretation and higher resolution transcriptome comparisons.


Assuntos
Processamento Alternativo , Cardiomiopatia Dilatada/genética , Miócitos Cardíacos/patologia , Proteínas de Ligação a RNA/genética , RNA-Seq/métodos , Sistemas CRISPR-Cas/genética , Cardiomiopatia Dilatada/patologia , Diferenciação Celular/genética , Linhagem Celular , Estudos de Viabilidade , Edição de Genes , Humanos , Células-Tronco Pluripotentes Induzidas , Proteínas Mitocondriais/genética , Anotação de Sequência Molecular , Proteínas Musculares/genética , Mutação , Isoformas de RNA/genética , RNA Guia de Cinetoplastídeos/genética
13.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33855356

RESUMO

MicroRNA (miRNA) is not a single sequence, but a series of multiple variants (also termed isomiRs) with sequence and expression heterogeneity. Whether and how these isoforms contribute to functional variation and complexity at the systems and network levels remain largely unknown. To explore this question systematically, we comprehensively analyzed the expression of small RNAs and their target sites to interrogate functional variations between novel isomiRs and their canonical miRNA sequences. Our analyses of the pan-cancer landscape of miRNA expression indicate that multiple isomiRs generated from the same miRNA locus often exhibit remarkable variation in their sequence, expression and function. We interrogated abundant and differentially expressed 5' isomiRs with novel seed sequences via seed shifting and identified many potential novel targets of these 5' isomiRs that would expand interaction capabilities between small RNAs and mRNAs, rewiring regulatory networks and increasing signaling circuit complexity. Further analyses revealed that some miRNA loci might generate diverse dominant isomiRs that often involved isomiRs with varied seeds and arm-switching, suggesting a selective advantage of multiple isomiRs in regulating gene expression. Finally, experimental validation indicated that isomiRs with shifted seed sequences could regulate novel target mRNAs and therefore contribute to regulatory network rewiring. Our analysis uncovers a widespread expansion of isomiR and mRNA interaction networks compared with those seen in canonical small RNA analysis; this expansion suggests global gene regulation network perturbations by alternative small RNA variants or isoforms. Taken together, the variations in isomiRs that occur during miRNA processing and maturation are likely to play a far more complex and plastic role in gene regulation than previously anticipated.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias/genética , Isoformas de RNA/genética , Análise por Conglomerados , Redes Reguladoras de Genes , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias/metabolismo , RNA Mensageiro/genética , Transdução de Sinais/genética , Análise de Sobrevida
14.
Hum Mol Genet ; 30(7): 552-563, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33693705

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is an inherited muscle disease caused by misexpression of the DUX4 gene in skeletal muscle. DUX4 is a transcription factor, which is normally expressed in the cleavage-stage embryo and regulates gene expression involved in early embryonic development. Recent studies revealed that DUX4 also activates the transcription of repetitive elements such as endogenous retroviruses (ERVs), mammalian apparent long terminal repeat (LTR)-retrotransposons and pericentromeric satellite repeats (Human Satellite II). DUX4-bound ERV sequences also create alternative promoters for genes or long non-coding RNAs, producing fusion transcripts. To further understand transcriptional regulation by DUX4, we performed nanopore long-read direct RNA sequencing (dRNA-seq) of human muscle cells induced by DUX4, because long reads show whole isoforms with greater confidence. We successfully detected differential expression of known DUX4-induced genes and discovered 61 differentially expressed repeat loci, which are near DUX4-ChIP peaks. We also identified 247 gene-ERV fusion transcripts, of which 216 were not reported previously. In addition, long-read dRNA-seq clearly shows that RNA splicing is a common event in DUX4-activated ERV transcripts. Long-read analysis showed non-LTR transposons including Alu elements are also transcribed from LTRs. Our findings revealed further complexity of DUX4-induced ERV transcripts. This catalogue of DUX4-activated repetitive elements may provide useful information to elucidate the pathology of FSHD. Also, our results indicate that nanopore dRNA-seq has complementary strengths to conventional short-read complementary DNA sequencing.


Assuntos
Proteínas de Homeodomínio/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Nanoporos , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de RNA/métodos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células Musculares/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Isoformas de Proteínas/genética , Isoformas de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA/estatística & dados numéricos
15.
Nat Commun ; 12(1): 520, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483506

RESUMO

The fusion oncogene RUNX1/RUNX1T1 encodes an aberrant transcription factor, which plays a key role in the initiation and maintenance of acute myeloid leukemia. Here we show that the RUNX1/RUNX1T1 oncogene is a regulator of alternative RNA splicing in leukemic cells. The comprehensive analysis of RUNX1/RUNX1T1-associated splicing events identifies two principal mechanisms that underlie the differential production of RNA isoforms: (i) RUNX1/RUNX1T1-mediated regulation of alternative transcription start site selection, and (ii) direct or indirect control of the expression of genes encoding splicing factors. The first mechanism leads to the expression of RNA isoforms with alternative structure of the 5'-UTR regions. The second mechanism generates alternative transcripts with new junctions between internal cassettes and constitutive exons. We also show that RUNX1/RUNX1T1-mediated differential splicing affects several functional groups of genes and produces proteins with unique conserved domain structures. In summary, this study reveals alternative splicing as an important component of transcriptome re-organization in leukemia by an aberrant transcriptional regulator.


Assuntos
Processamento Alternativo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Doença Aguda , Linhagem Celular Tumoral , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Leucemia Mieloide/patologia , Modelos Genéticos , Proteínas de Fusão Oncogênica/metabolismo , Interferência de RNA , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Sítio de Iniciação de Transcrição
16.
Cell Mol Life Sci ; 78(5): 2213-2230, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32914209

RESUMO

Many long non-coding RNAs (lncRNA) are highly dysregulated in cancer and are emerging as therapeutic targets. One example is NEAT1, which consists of two overlapping lncRNA isoforms, NEAT1_1 (3.7 kb) and NEAT1_2 (23 kb), that are functionally distinct. The longer NEAT1_2 is responsible for scaffolding gene-regulatory nuclear bodies termed paraspeckles, whereas NEAT1_1 is involved in paraspeckle-independent function. The NEAT1 isoform ratio is dependent on the efficient cleavage and polyadenylation of NEAT1_1 at the expense of NEAT1_2. Here, we developed a targeted antisense oligonucleotide (ASO) approach to sterically block NEAT1_1 polyadenylation processing, achieving upregulation of NEAT1_2 and abundant paraspeckles. We have applied these ASOs to cells of the heterogeneous infant cancer, neuroblastoma, as we found higher NEAT1_1:NEAT1_2 ratio and lack of paraspeckles in high-risk neuroblastoma cells. These ASOs decrease NEAT1_1 levels, increase NEAT1_2/paraspeckles and concomitantly reduce cell viability in high-risk neuroblastoma specifically. In contrast, overexpression of NEAT1_1 has the opposite effect, increasing cell proliferation. Transcriptomic analyses of high-risk neuroblastoma cells with altered NEAT1 ratios and increased paraspeckle abundance after ASO treatment showed an upregulation of differentiation pathways, as opposed to the usual aggressive neuroblastic phenotype. Thus, we have developed potential anti-cancer ASO drugs that can transiently increase growth-inhibiting NEAT1_2 RNA at the expense of growth-promoting NEAT1_1 RNA. These ASOs, unlike others that degrade lncRNAs, provide insights into the importance of altering lncRNA polyadenylation events to suppress tumorigenesis as a strategy to combat cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neuroblastoma/genética , Oligonucleotídeos Antissenso/genética , Poli A/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Estudos de Coortes , Perfilação da Expressão Gênica/métodos , Humanos , Estimativa de Kaplan-Meier , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Poli A/metabolismo , Isoformas de RNA/genética , Isoformas de RNA/metabolismo
17.
Oncogene ; 40(1): 112-126, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33082558

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominant tumor suppressor syndrome, characterized by tumor development in multiple organs, including renal angiomyolipoma. Biallelic loss of TSC1 or TSC2 is a known genetic driver of angiomyolipoma development, however, whether an altered transcriptional repertoire contributes to TSC-associated tumorigenesis is unknown. RNA-seq analyses showed that MITF A isoform (MITF-A) was consistently highly expressed in angiomyolipoma, immunohistochemistry showed microphthalmia-associated transcription factor nuclear localization, and Chromatin immuno-Precipitation Sequencing analysis showed that the MITF-A transcriptional start site was highly enriched with H3K27ac marks. Using the angiomyolipoma cell line 621-101, MITF knockout (MITF.KO) and MITF-A overexpressing (MITF.OE) cell lines were generated. MITF.KO cells showed markedly reduced growth and invasion in vitro, and were unable to form xenografted tumors. In contrast, MITF.OE cells grew faster in vitro and as xenografted tumors compared to control cells. RNA-Seq analysis showed that both ID2 and Cysteine-rich angiogenic inducer 61 (CYR61) expression levels were increased in the MITF.OE cells and reduced in the MITF.KO cells, and luciferase assays showed this was due to transcriptional effects. Importantly, CYR61 overexpression rescued MITF.KO cell growth in vitro and tumor growth in vivo. These findings suggest that MITF-A is a transcriptional oncogenic driver of angiomyolipoma tumor development, acting through regulation of CYR61.


Assuntos
Angiomiolipoma/patologia , Proteína Rica em Cisteína 61/genética , Proteína 2 Inibidora de Diferenciação/genética , Neoplasias Renais/patologia , Fator de Transcrição Associado à Microftalmia/genética , Regulação para Cima , Angiomiolipoma/genética , Angiomiolipoma/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Invasividade Neoplásica , Transplante de Neoplasias , Isoformas de RNA/genética , Análise de Sequência de RNA , Sítio de Iniciação de Transcrição
18.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33361423

RESUMO

Human adenovirus (HAdV) is used extensively as a vector for gene delivery for a variety of purposes, including gene therapy and vaccine development. Most adenoviral vectors used for these approaches have a deletion of early region 1 (E1), which is complemented by the cell line. Most commonly, these are 293 cells for HAdV serotype 2 or 5. The 293 cells have the left end of HAdV5 integrated into chromosome 19 and express the E1 genes and protein IX. We observed that viruses with the E1 region deleted often grow less well on 293 cells than E1 wild-type viruses. Therefore, we investigated whether this poor growth is caused by splicing differences between the E1A RNA provided by the cell line (in trans) and the E1A RNA provided by the infecting viral genome (in cis). We observed that E1A RNA that was expressed from the genomes of 293 cells was spliced differently during infection with an E1A-deleted dl312 virus than E1A RNA from the same cells infected with dl309 or wt300. Importantly, 293 cells were not able to fully complement the late E1A transcripts, specifically 11S, 10S, and 9S RNA, which express the E1A217R, E1A171R, and E1A55R isoforms, respectively. We observed that these splicing differences likely arise due to different subnuclear localizations of E1A RNA. E1A RNA expressed from the viral genome was localized to viral replication centers, while E1A RNA expressed from the cell's genome was not. This loss of the late E1A mRNAs and their associated proteins impacts viral growth, gene expression, and protein levels. Complementation of the late E1A mRNAs in 293 cells restored some of the growth defect observed with dl312 and resulted in higher virus growth.IMPORTANCE Human adenovirus has become an important tool for medicine and research, and 293 cells and various similar cell lines are used extensively for virus production in situations where high viral yields are important. Such complementing cell lines are used for the production of viral vectors and vaccines, which often have deletions and replacements in various viral genes. Deletions in essential genes, such as E1, are often complemented by the cell line that is used for virus propagation in trans Here, we show that even complete genetic complementation of a viral gene does not result in full protein complementation, a defect that compromises virus growth. This is particularly important when high viral yields are crucial, as in virus production for vaccine development or gene therapy.


Assuntos
Proteínas E1A de Adenovirus/genética , Adenovírus Humanos/genética , Splicing de RNA/genética , RNA Mensageiro/metabolismo , Proteínas E1A de Adenovirus/metabolismo , Adenovírus Humanos/crescimento & desenvolvimento , Regulação Viral da Expressão Gênica , Teste de Complementação Genética , Células HEK293 , Humanos , Mutação , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , RNA Mensageiro/genética , Compartimentos de Replicação Viral/metabolismo , Replicação Viral
19.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977489

RESUMO

Insulin-like growth factor 1 (IGF1) is a key regulator of tissue growth and development that is also implicated in the initiation and progression of various cancers. The human IGF1 gene contains six exons and five long introns, the transcription of which is controlled by two promoters (P1 and P2). Alternate promoter usage, as well as alternative splicing (AS) of IGF1, results in the expression of six various variants (isoforms) of mRNA, i.e., IA, IB, IC, IIA, IIB, and IIC. A mature 70-kDa IGF1 protein is coded only by exons 3 and 4, while exons 5 and 6 are alternatively spliced code for the three C-terminal E peptides: Ea (exon 6), Eb (exon 5), and Ec (fragments of exons 5 and 6). The most abundant of those transcripts is IGF1Ea, followed by IGF1Eb and IGF1Ec (also known as mechano-growth factor, MGF). The presence of different IGF1 transcripts suggests tissue-specific auto- and/or paracrine action, as well as separate regulation of both of these gene promoters. In physiology, the role of different IGF1 mRNA isoforms and pro-peptides is best recognized in skeletal muscle tissue. Their functions include the development and regeneration of muscles, as well as maintenance of proper muscle mass. In turn, in nervous tissue, a neuroprotective function of short peptides, produced as a result of IGF1 expression and characterized by significant blood-brain barrier penetrance, has been described and could be a potential therapeutic target. When it comes to the regulation of carcinogenesis, the potential biological role of different var iants of IGF1 mRNAs and pro-peptides is also intensively studied. This review highlights the role of IGF1 isoform expression (mRNAs, proteins) in physiology and different types of human tumors (e.g., breast cancer, cervical cancer, colorectal cancer, osteosarcoma, prostate and thyroid cancers), as well as mechanisms of IGF1 spliced variants involvement in tumor biology.


Assuntos
Processamento Alternativo , Fator de Crescimento Insulin-Like I , Proteínas de Neoplasias , Neoplasias , Isoformas de RNA/metabolismo , RNA Mensageiro , RNA Neoplásico , Animais , Humanos , Fator de Crescimento Insulin-Like I/biossíntese , Fator de Crescimento Insulin-Like I/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Isoformas de RNA/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética
20.
Mutat Res Rev Mutat Res ; 785: 108319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32800270

RESUMO

Cleft lip and palate (CL/P) is among the most common congenital malformations and affects 1 in 700 newborns. CL/P is caused by genetic and environmental factors (maternal smoking, alcohol or drug use and others). Many genes and loci were associated with cleft lip/palate but the amount of heterogeneity justifies identifying new causal genes and variants. AHRR (Aryl-Hydrocarbon Receptor Repressor) gene has recently been related to CL/P however, few functional studies analyze the genotypephenotype interaction of AHRR with CL/P. Several studies associate the molecular pathway of AHRR to CL/P which indicates this gene as a functional candidate in CL/P etiology. METHODS: Systematic Literature Review was performed using PUBMED database with the keywords cleft lip, cleft palate, orofacial cleft, AHRR and synonyms. SLR resulted in 37 included articles. RESULTS: AHRR is a positional and functional candidate gene for CL/P. In silico analysis detected interactions with other genes previously associated to CL/P like ARNT and CYP1A1. AHRR protein regulates cellular toxicity through TCDD mediated AHR pathway. Exposure to TCDD in animal embryos is AHR mediated and lead to cleft palate due to palate fusion failure and post fusion rupture. AHRR regulates cellular growth and differentiation, fundamental to lip and palatogenesis. AHRR decreases carcinogenesis and recently a higher tumor risk has been described in CL/P patients and families. AHRR is also a smoking biomarker due to changed methylation sites found in smokers DNA although folate intake may partially revert these methylation alterations. This corroborates the role of maternal smoking and lack of folate supplementation as risk factors for CL/P. CONCLUSION: This research identified the importance of AHRR in dioxin response and demonstrated an example of genetic and environmental interaction, indispensable in the development of many complex diseases.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fenda Labial/genética , Fissura Palatina/genética , Proteínas Repressoras/genética , Fumar/efeitos adversos , Motivos de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Metilação de DNA , Suplementos Nutricionais , Feminino , Ácido Fólico/metabolismo , Estudos de Associação Genética , Humanos , Recém-Nascido , Masculino , Modelos Moleculares , Domínios Proteicos , Isoformas de RNA/genética , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA