Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
RNA Biol ; 20(1): 908-925, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37906624

RESUMO

Alternative processing of nascent mRNAs is widespread in eukaryotic organisms and greatly impacts the output of gene expression. Specifically, alternative cleavage and polyadenylation (APA) is a co-transcriptional molecular process that switches the polyadenylation site (PAS) at which a nascent mRNA is cleaved, resulting in mRNA isoforms with different 3'UTR length and content. APA can potentially affect mRNA translation efficiency, localization, stability, and mRNA seeded protein-protein interactions. APA naturally occurs during development and cellular differentiation, with around 70% of human genes displaying APA in particular tissues and cell types. For example, neurons tend to express mRNAs with long 3'UTRs due to preferential processing at PASs more distal than other PASs used in other cell types. In addition, changes in APA mark a variety of pathological states, including many types of cancer, in which mRNAs are preferentially cleaved at more proximal PASs, causing expression of mRNA isoforms with short 3'UTRs. Although APA has been widely reported, both the function of APA in development and the mechanisms that regulate the choice of 3'end cut sites in normal and pathogenic conditions are still poorly understood. In this review, we summarize current understanding of how APA is regulated during development and cellular differentiation and how the resulting change in 3'UTR content affects multiple aspects of gene expression. With APA being a widespread phenomenon, the advent of cutting-edge scientific techniques and the pressing need for in-vivo studies, there has never been a better time to delve into the intricate mechanisms of alternative cleavage and polyadenylation.


Assuntos
Regulação da Expressão Gênica , Poliadenilação , Humanos , Regiões 3' não Traduzidas , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Diferenciação Celular/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Cell Rep ; 41(4): 111542, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288718

RESUMO

Cell-type-specific gene regulatory programs are essential for cell differentiation and function. In animal neurons, the highly conserved ELAV/Hu family of proteins promotes alternative splicing and polyadenylation of mRNA precursors to create unique neuronal transcript isoforms. Here, we assess transcriptome profiles and neurogenesis success in Drosophila models engineered to express differing levels of ELAV activity in the course of development. We show that the ELAV-mediated establishment of a subset of neuronal mRNA isoforms at the onset of neuron differentiation constitutes a developmental bottleneck that cannot be overcome later by the nuclear activation of the paralog found in neurons (FNE). Loss of ELAV function outside of that critical time window results in neurological defects. We find that FNE, when activated early enough, can restore ELAV-dependent neuronal mRNA isoforms and fully rescue development. Our findings demonstrate the essential role of robust cellular strategies to maintain ELAV activity and intact neuronal signatures in neurogenesis and neuronal function.


Assuntos
Proteínas de Drosophila , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas ELAV/genética , Isoformas de RNA/metabolismo , Drosophila/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo
3.
RNA Biol ; 19(1): 279-289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188062

RESUMO

The Drosha cleavage of a pri-miRNA defines mature microRNA sequence. Drosha cleavage at alternative positions generates 5' isoforms (isomiRs) which have distinctive functions. To understand how pri-miRNA structures influence Drosha cleavage, we performed a systematic analysis of the maturation of endogenous pri-miRNAs and their variants both in vitro and in vivo. We show that in addition to previously known features, the overall structural flexibility of pri-miRNA impact Drosha cleavage fidelity. Internal loops and nearby G · U wobble pairs on the pri-miRNA stem induce the use of non-canonical cleavage sites by Drosha, resulting in 5' isomiR production. By analysing patient data deposited in the Cancer Genome Atlas, we provide evidence that alternative Drosha cleavage of pri-miRNAs is a tunable process that responds to the level of pri-miRNA-associated RNA-binding proteins. Together, our findings reveal that Drosha cleavage fidelity can be modulated by altering pri-miRNA structure, a potential mechanism underlying 5' isomiR biogenesis in tumours.[Figure: see text].


Assuntos
MicroRNAs/química , Conformação de Ácido Nucleico , Isoformas de RNA/química , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Clivagem do RNA , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Ribonuclease III/metabolismo , Relação Estrutura-Atividade
4.
Genome Biol ; 22(1): 331, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872615

RESUMO

We developed a single-cell approach to detect CRISPR-modified mRNA transcript structures. This method assesses how genetic variants at splicing sites and splicing factors contribute to alternative mRNA isoforms. We determine how alternative splicing is regulated by editing target exon-intron segments or splicing factors by CRISPR-Cas9 and their consequences on transcriptome profile. Our method combines long-read sequencing to characterize the transcript structure and short-read sequencing to match the single-cell gene expression profiles and gRNA sequence and therefore provides targeted genomic edits and transcript isoform structure detection at single-cell resolution.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sequenciamento por Nanoporos/métodos , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Éxons , Genômica , Células HEK293 , Humanos , Proteínas de Neoplasias , Isoformas de Proteínas/genética , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Splicing de RNA , RNA Guia de Cinetoplastídeos/metabolismo , Receptores de Quinase C Ativada , Transcriptoma
5.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34795060

RESUMO

Down syndrome (DS), trisomy of human chromosome 21 (HSA21), is characterized by lifelong cognitive impairments and the development of the neuropathological hallmarks of Alzheimer's disease (AD). The cellular and molecular modifications responsible for these effects are not understood. Here we performed single-nucleus RNA sequencing (snRNA-seq) employing both short- (Illumina) and long-read (Pacific Biosciences) sequencing technologies on a total of 29 DS and non-DS control prefrontal cortex samples. In DS, the ratio of inhibitory-to-excitatory neurons was significantly increased, which was not observed in previous reports examining sporadic AD. DS microglial transcriptomes displayed AD-related aging and activation signatures in advance of AD neuropathology, with increased microglial expression of C1q complement genes (associated with dendritic pruning) and the HSA21 transcription factor gene RUNX1 Long-read sequencing detected vast RNA isoform diversity within and among specific cell types, including numerous sequences that differed between DS and control brains. Notably, over 8,000 genes produced RNAs containing intra-exonic junctions, including amyloid precursor protein (APP) that had previously been associated with somatic gene recombination. These and related results illuminate large-scale cellular and transcriptomic alterations as features of the aging DS brain.


Assuntos
Envelhecimento/fisiologia , Síndrome de Down/metabolismo , Isoformas de RNA/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Cromossomos Humanos Par 21 , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Síndrome de Down/genética , Expressão Gênica , Humanos , Microglia , RNA/metabolismo , Análise de Sequência de RNA , Regulação para Cima
6.
Int. j. morphol ; 39(5): 1406-1411, oct. 2021. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1385479

RESUMO

SUMMARY: Both the masseter and medial pterygoid muscles elevate the mandible, raising the lower jaw by acting simultaneously on the lateral and medial surfaces of the mandibular ramus. Nevertheless, electromyographic studies indicate that these muscles, as well as the superficial and deep heads of the masseter, act in a different way during mastication. We have analyzed by real time quantitative polymerase chain reaction (RT-qPCR) the expression of myosin heavy chain (MHC) isoforms in the masseter and medial pterygoid muscles in humans in order to identify possible differences in the expression patterns that may be related to functional differences identified with electromyography. Our findings indicate that the expression pattern of MHC isoforms in the two muscles is characteristic of fast and powerful phasic muscles. We have also observed a high percentage of expression of the MHC-IIx isoform and the expression of the MHC-M isoform at the mRNA level in both muscles, an isoform that does not translate into protein in the masticatory muscles of humans. The high percentage of expression of the MHC-IIx isoform in humans can be related to a high contractile speed of the masseter and medial pterygoid in humans. On the other hand, the low percentage of expression of the MHC-M isoform at the mRNA level in both muscles can be related to the complex evolutionary process that has reduced the size and force of the masticatory muscles in humans.


RESUMEN: Los músculos masetero y pterigoideo medial elevan la mandíbula actuando de forma simultánea sobre las caras lateral y medial de su rama. Sin embargo, los estudios electromiográficos indican que estos dos músculos actúan de forma diferente durante la masticación, de la misma forma que lo hacen las porciones superficial y profunda del músculo masetero. En el presente estudio hemos analizado mediante PCR en tiempo real la expresión de las isoformas de la cadena pesada de la miosina o myosin heavy chain (MHC) en los músculos masetero y pterigoideo medial en humanos, con la finalidad de identificar diferencias en los patrones de expresión que se puedan relacionar con las diferencias funcionales identificadas con la electromiografía. Nuestros resultados indican que el patrón de expresión de las isoformas de la MHC en los dos músculos es la característica de los músculos rápidos y potentes. También hemos observado un elevado porcentaje de expresión de la isoforma MHC-IIx y la expresión a nivel de ARNm de la isoforma MHC-M en los dos músculos, una isoforma que no se detecta a nivel de proteína en los músculos masticadores humanos. El elevado porcentaje de expresión de la isoforma MHC-IIx que hemos observado se puede relacionar con una elevada velocidad de contracción de los músculos masetero y pterigoideo medial en los humanos. Por otro lado, el bajo porcentaje de expresión de la isoforma MHC-M a nivel de ARNm en ambos músculos se puede relacionar con los procesos evolutivos complejos que han reducido el tamaño y la fuerza de los músculos masticadores en los humanos.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Músculos Pterigoides/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Músculo Masseter/metabolismo , Cadáver , Cadeias Pesadas de Miosina/genética , Isoformas de RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
7.
Biochim Biophys Acta Gene Regul Mech ; 1864(10): 194746, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34419630

RESUMO

Lamin A/C proteins, major components of the nuclear lamina, are encoded by the LMNA gene. These proteins have multiple cellular functions, including DNA transcription and replication, chromatin organization, regulation of the cell cycle, and apoptosis. Mutations in LMNA are associated with a variety of diseases called laminopathies. LMNA has implications in cancer; however, its mechanisms of dysregulation in cancer cells are not yet fully understood. In this study, among the LMNA transcript variants, we focused on a transcriptional variant 6 (termed LMNA-V6), which contains unique 3 exons upstream of exon 1 of LMNA. The promoter region of LMNA-V6 formed multiple G-quadruplexes and increased its transcriptional activity. Moreover, LMNA-V6 negatively regulated other LMNA mRNA variants, lamin A and lamin C, via direct interaction with their promoter. Knockdown of LMNA-V6 decreased the proliferation of colon cancer cells, whereas overexpression of the unique 3 exons of LMNA-V6 increased cell growth. Furthermore, microarray gene expression profiling showed that alteration of LMNA-V6 levels influenced the expression of p53 in colon cancer cells. Taken together, the results suggest that LMNA-V6 may be a novel functional RNA whose expression is regulated through multiple G-quadruplexes in colon cancer cells.


Assuntos
Neoplasias do Colo/genética , Quadruplex G , Regulação Neoplásica da Expressão Gênica , Lamina Tipo A/genética , Regiões Promotoras Genéticas , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Colo/metabolismo , Humanos , Lamina Tipo A/metabolismo , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Splicing de RNA , Transcrição Gênica
8.
Nat Commun ; 12(1): 4872, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381052

RESUMO

The Netrin-1 receptor UNC5B is an axon guidance regulator that is also expressed in endothelial cells (ECs), where it finely controls developmental and tumor angiogenesis. In the absence of Netrin-1, UNC5B induces apoptosis that is blocked upon Netrin-1 binding. Here, we identify an UNC5B splicing isoform (called UNC5B-Δ8) expressed exclusively by ECs and generated through exon skipping by NOVA2, an alternative splicing factor regulating vascular development. We show that UNC5B-Δ8 is a constitutively pro-apoptotic splicing isoform insensitive to Netrin-1 and required for specific blood vessel development in an apoptosis-dependent manner. Like NOVA2, UNC5B-Δ8 is aberrantly expressed in colon cancer vasculature where its expression correlates with tumor angiogenesis and poor patient outcome. Collectively, our data identify a mechanism controlling UNC5B's necessary apoptotic function in ECs and suggest that the NOVA2/UNC5B circuit represents a post-transcriptional pathway regulating angiogenesis.


Assuntos
Apoptose , Vasos Sanguíneos/crescimento & desenvolvimento , Receptores de Netrina/metabolismo , Isoformas de RNA/metabolismo , Processamento Alternativo , Animais , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/metabolismo , Células Endoteliais , Humanos , Morfogênese , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Netrina/genética , Netrina-1/metabolismo , Antígeno Neuro-Oncológico Ventral , Isoformas de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Sobrevida , Peixe-Zebra
9.
Cancer Invest ; 39(6-7): 559-570, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043476

RESUMO

The study evaluated whether SPP1/osteopontin (OPN) splice variants are differentially expressed in nonmelanoma skin cancer compared to normal skin. The absolute number of mRNA molecules of OPN-a predominated in normal skin and nonmelanoma skin cancer compared to OPN-b, OPN-c, and OPN-5. However, mRNAs of OPN-a, OPN-b, and OPN-c were expressed in higher levels in cutaneous squamous cell carcinomas (cSCCs) and basal cell carcinomas relative to normal skin. Additionally, OPN-5 expression was higher than OPN-b and OPN-c, and OPN-c, in normal skin and nonmelanoma skin cancer, respectively. Furthermore, we identified four OPN-5 splice variants, which were cloned and analyzed for protein expression.


Assuntos
Processamento Alternativo , Carcinoma Basocelular/genética , Carcinoma de Células Escamosas/genética , Osteopontina/metabolismo , Neoplasias Cutâneas/genética , Idoso , Idoso de 80 Anos ou mais , Carcinoma Basocelular/metabolismo , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Clonagem Molecular , Feminino , Regulação Neoplásica da Expressão Gênica , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Osteopontina/genética , Isoformas de RNA/metabolismo , Neoplasias Cutâneas/metabolismo , Regulação para Cima
10.
Nat Commun ; 12(1): 520, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483506

RESUMO

The fusion oncogene RUNX1/RUNX1T1 encodes an aberrant transcription factor, which plays a key role in the initiation and maintenance of acute myeloid leukemia. Here we show that the RUNX1/RUNX1T1 oncogene is a regulator of alternative RNA splicing in leukemic cells. The comprehensive analysis of RUNX1/RUNX1T1-associated splicing events identifies two principal mechanisms that underlie the differential production of RNA isoforms: (i) RUNX1/RUNX1T1-mediated regulation of alternative transcription start site selection, and (ii) direct or indirect control of the expression of genes encoding splicing factors. The first mechanism leads to the expression of RNA isoforms with alternative structure of the 5'-UTR regions. The second mechanism generates alternative transcripts with new junctions between internal cassettes and constitutive exons. We also show that RUNX1/RUNX1T1-mediated differential splicing affects several functional groups of genes and produces proteins with unique conserved domain structures. In summary, this study reveals alternative splicing as an important component of transcriptome re-organization in leukemia by an aberrant transcriptional regulator.


Assuntos
Processamento Alternativo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Doença Aguda , Linhagem Celular Tumoral , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Leucemia Mieloide/patologia , Modelos Genéticos , Proteínas de Fusão Oncogênica/metabolismo , Interferência de RNA , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Sítio de Iniciação de Transcrição
11.
Cell Mol Life Sci ; 78(5): 2213-2230, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32914209

RESUMO

Many long non-coding RNAs (lncRNA) are highly dysregulated in cancer and are emerging as therapeutic targets. One example is NEAT1, which consists of two overlapping lncRNA isoforms, NEAT1_1 (3.7 kb) and NEAT1_2 (23 kb), that are functionally distinct. The longer NEAT1_2 is responsible for scaffolding gene-regulatory nuclear bodies termed paraspeckles, whereas NEAT1_1 is involved in paraspeckle-independent function. The NEAT1 isoform ratio is dependent on the efficient cleavage and polyadenylation of NEAT1_1 at the expense of NEAT1_2. Here, we developed a targeted antisense oligonucleotide (ASO) approach to sterically block NEAT1_1 polyadenylation processing, achieving upregulation of NEAT1_2 and abundant paraspeckles. We have applied these ASOs to cells of the heterogeneous infant cancer, neuroblastoma, as we found higher NEAT1_1:NEAT1_2 ratio and lack of paraspeckles in high-risk neuroblastoma cells. These ASOs decrease NEAT1_1 levels, increase NEAT1_2/paraspeckles and concomitantly reduce cell viability in high-risk neuroblastoma specifically. In contrast, overexpression of NEAT1_1 has the opposite effect, increasing cell proliferation. Transcriptomic analyses of high-risk neuroblastoma cells with altered NEAT1 ratios and increased paraspeckle abundance after ASO treatment showed an upregulation of differentiation pathways, as opposed to the usual aggressive neuroblastic phenotype. Thus, we have developed potential anti-cancer ASO drugs that can transiently increase growth-inhibiting NEAT1_2 RNA at the expense of growth-promoting NEAT1_1 RNA. These ASOs, unlike others that degrade lncRNAs, provide insights into the importance of altering lncRNA polyadenylation events to suppress tumorigenesis as a strategy to combat cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neuroblastoma/genética , Oligonucleotídeos Antissenso/genética , Poli A/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Estudos de Coortes , Perfilação da Expressão Gênica/métodos , Humanos , Estimativa de Kaplan-Meier , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Poli A/metabolismo , Isoformas de RNA/genética , Isoformas de RNA/metabolismo
12.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33361423

RESUMO

Human adenovirus (HAdV) is used extensively as a vector for gene delivery for a variety of purposes, including gene therapy and vaccine development. Most adenoviral vectors used for these approaches have a deletion of early region 1 (E1), which is complemented by the cell line. Most commonly, these are 293 cells for HAdV serotype 2 or 5. The 293 cells have the left end of HAdV5 integrated into chromosome 19 and express the E1 genes and protein IX. We observed that viruses with the E1 region deleted often grow less well on 293 cells than E1 wild-type viruses. Therefore, we investigated whether this poor growth is caused by splicing differences between the E1A RNA provided by the cell line (in trans) and the E1A RNA provided by the infecting viral genome (in cis). We observed that E1A RNA that was expressed from the genomes of 293 cells was spliced differently during infection with an E1A-deleted dl312 virus than E1A RNA from the same cells infected with dl309 or wt300. Importantly, 293 cells were not able to fully complement the late E1A transcripts, specifically 11S, 10S, and 9S RNA, which express the E1A217R, E1A171R, and E1A55R isoforms, respectively. We observed that these splicing differences likely arise due to different subnuclear localizations of E1A RNA. E1A RNA expressed from the viral genome was localized to viral replication centers, while E1A RNA expressed from the cell's genome was not. This loss of the late E1A mRNAs and their associated proteins impacts viral growth, gene expression, and protein levels. Complementation of the late E1A mRNAs in 293 cells restored some of the growth defect observed with dl312 and resulted in higher virus growth.IMPORTANCE Human adenovirus has become an important tool for medicine and research, and 293 cells and various similar cell lines are used extensively for virus production in situations where high viral yields are important. Such complementing cell lines are used for the production of viral vectors and vaccines, which often have deletions and replacements in various viral genes. Deletions in essential genes, such as E1, are often complemented by the cell line that is used for virus propagation in trans Here, we show that even complete genetic complementation of a viral gene does not result in full protein complementation, a defect that compromises virus growth. This is particularly important when high viral yields are crucial, as in virus production for vaccine development or gene therapy.


Assuntos
Proteínas E1A de Adenovirus/genética , Adenovírus Humanos/genética , Splicing de RNA/genética , RNA Mensageiro/metabolismo , Proteínas E1A de Adenovirus/metabolismo , Adenovírus Humanos/crescimento & desenvolvimento , Regulação Viral da Expressão Gênica , Teste de Complementação Genética , Células HEK293 , Humanos , Mutação , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , RNA Mensageiro/genética , Compartimentos de Replicação Viral/metabolismo , Replicação Viral
13.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977489

RESUMO

Insulin-like growth factor 1 (IGF1) is a key regulator of tissue growth and development that is also implicated in the initiation and progression of various cancers. The human IGF1 gene contains six exons and five long introns, the transcription of which is controlled by two promoters (P1 and P2). Alternate promoter usage, as well as alternative splicing (AS) of IGF1, results in the expression of six various variants (isoforms) of mRNA, i.e., IA, IB, IC, IIA, IIB, and IIC. A mature 70-kDa IGF1 protein is coded only by exons 3 and 4, while exons 5 and 6 are alternatively spliced code for the three C-terminal E peptides: Ea (exon 6), Eb (exon 5), and Ec (fragments of exons 5 and 6). The most abundant of those transcripts is IGF1Ea, followed by IGF1Eb and IGF1Ec (also known as mechano-growth factor, MGF). The presence of different IGF1 transcripts suggests tissue-specific auto- and/or paracrine action, as well as separate regulation of both of these gene promoters. In physiology, the role of different IGF1 mRNA isoforms and pro-peptides is best recognized in skeletal muscle tissue. Their functions include the development and regeneration of muscles, as well as maintenance of proper muscle mass. In turn, in nervous tissue, a neuroprotective function of short peptides, produced as a result of IGF1 expression and characterized by significant blood-brain barrier penetrance, has been described and could be a potential therapeutic target. When it comes to the regulation of carcinogenesis, the potential biological role of different var iants of IGF1 mRNAs and pro-peptides is also intensively studied. This review highlights the role of IGF1 isoform expression (mRNAs, proteins) in physiology and different types of human tumors (e.g., breast cancer, cervical cancer, colorectal cancer, osteosarcoma, prostate and thyroid cancers), as well as mechanisms of IGF1 spliced variants involvement in tumor biology.


Assuntos
Processamento Alternativo , Fator de Crescimento Insulin-Like I , Proteínas de Neoplasias , Neoplasias , Isoformas de RNA/metabolismo , RNA Mensageiro , RNA Neoplásico , Animais , Humanos , Fator de Crescimento Insulin-Like I/biossíntese , Fator de Crescimento Insulin-Like I/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Isoformas de RNA/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética
14.
Genomics ; 112(6): 4268-4276, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32659328

RESUMO

Alternative splicing is commonly involved in carcinogenesis, being highly implicated in differential expression of cancer-related genes. Recent studies have shown that the human CEACAM19 gene is overexpressed in malignant breast and ovarian tumors, possessing significant biomarker attributes. In the present study, 3' rapid amplification of cDNA ends (3' RACE) and next-generation sequencing (NGS) were used for the detection and identification of novel CEACAM19 transcripts. Bioinformatical analysis of our NGS data revealed novel splice junctions between previously annotated exons and ultimately new exons. Next, fifteen novel CEACAM19 transcripts were identified with Sanger sequencing. Additionally, their expression profile was investigated in a wide panel of human cell lines, using nested PCR with variant-specific primers. The broad expression pattern of the CEACAM19 gene, along with the fact that its overexpression has previously been associated with ovarian and breast cancer progression, indicate the potential of novel CEACAM19 transcripts as putative diagnostic and/or prognostic biomarkers.


Assuntos
Processamento Alternativo , Antígenos de Neoplasias/genética , Moléculas de Adesão Celular/genética , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Isoformas de RNA/metabolismo
15.
Nat Commun ; 11(1): 2973, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532987

RESUMO

Alternative splicing allows expression of mRNA isoforms from a single gene, expanding the diversity of the proteome. Its prevalence in normal biological and disease processes warrant precise tools for modulation. Here we report the engineering of CRISPR Artificial Splicing Factors (CASFx) based on RNA-targeting CRISPR-Cas systems. We show that simultaneous exon inclusion and exclusion can be induced at distinct targets by differential positioning of CASFx. We also create inducible CASFx (iCASFx) using the FKBP-FRB chemical-inducible dimerization domain, allowing small molecule control of alternative splicing. Finally, we demonstrate the activation of SMN2 exon 7 splicing in spinal muscular atrophy (SMA) patient fibroblasts, suggesting a potential application of the CASFx system.


Assuntos
Processamento Alternativo , Sistemas CRISPR-Cas/genética , Éxons/genética , Fatores de Processamento de RNA/genética , RNA/genética , Sequência de Bases , Linhagem Celular , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , RNA/metabolismo , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
16.
Nat Commun ; 11(1): 2977, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532995

RESUMO

Independent scientific achievements have led to the discovery of aberrant splicing patterns in oncogenesis, while more recent advances have uncovered novel gene fusions involving neurotrophic tyrosine receptor kinases (NTRKs) in gliomas. The exploration of NTRK splice variants in normal and neoplastic brain provides an intersection of these two rapidly evolving fields. Tropomyosin receptor kinase B (TrkB), encoded NTRK2, is known for critical roles in neuronal survival, differentiation, molecular properties associated with memory, and exhibits intricate splicing patterns and post-translational modifications. Here, we show a role for a truncated NTRK2 splice variant, TrkB.T1, in human glioma. TrkB.T1 enhances PDGF-driven gliomas in vivo, augments PDGF-induced Akt and STAT3 signaling in vitro, while next generation sequencing broadly implicates TrkB.T1 in the PI3K signaling cascades in a ligand-independent fashion. These TrkB.T1 findings highlight the importance of expanding upon whole gene and gene fusion analyses to include splice variants in basic and translational neuro-oncology research.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Glicoproteínas de Membrana/genética , Oncogenes/genética , Isoformas de RNA/genética , Splicing de RNA , Receptor trkB/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Células Cultivadas , Perfilação da Expressão Gênica , Ontologia Genética , Glioma/metabolismo , Glioma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Células NIH 3T3 , Células-Tronco Neurais/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Isoformas de RNA/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais/genética
17.
Mol Syst Biol ; 16(3): e9170, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32175694

RESUMO

Profiling of biological relationships between different molecular layers dissects regulatory mechanisms that ultimately determine cellular function. To thoroughly assess the role of protein post-translational turnover, we devised a strategy combining pulse stable isotope-labeled amino acids in cells (pSILAC), data-independent acquisition mass spectrometry (DIA-MS), and a novel data analysis framework that resolves protein degradation rate on the level of mRNA alternative splicing isoforms and isoform groups. We demonstrated our approach by the genome-wide correlation analysis between mRNA amounts and protein degradation across different strains of HeLa cells that harbor a high grade of gene dosage variation. The dataset revealed that specific biological processes, cellular organelles, spatial compartments of organelles, and individual protein isoforms of the same genes could have distinctive degradation rate. The protein degradation diversity thus dissects the corresponding buffering or concerting protein turnover control across cancer cell lines. The data further indicate that specific mRNA splicing events such as intron retention significantly impact the protein abundance levels. Our findings support the tight association between transcriptome variability and proteostasis and provide a methodological foundation for studying functional protein degradation.


Assuntos
Isoformas de Proteínas/análise , Proteínas/análise , Isoformas de RNA/metabolismo , RNA Mensageiro/metabolismo , Processamento Alternativo , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Marcação por Isótopo/métodos , Espectrometria de Massas , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , Proteólise , Proteômica/métodos , Isoformas de RNA/genética , RNA Mensageiro/genética , Fluxo de Trabalho
18.
Genomics ; 112(3): 2418-2425, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31981701

RESUMO

Alternative splicing contributes to the diversity of gene products by producing multiple transcript variants from one gene. Previous studies have revealed highly variable splicing patterns in single cells, but there is still a controversy in the understanding of the simultaneous expression of multiple transcript variants. Here we show that the dominance of a single transcript variant is a common phenomenon in single cells. We analyzed several single-cell RNA sequencing datasets and observed consistent results. Our results demonstrate that single cells tend to express one major transcript variant of a gene, and the diversity of transcript variants in cell populations mainly results from the heterogeneity of splicing pattern in single cells.


Assuntos
Processamento Alternativo , Isoformas de RNA/metabolismo , Animais , Expressão Gênica , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Análise de Sequência de RNA , Análise de Célula Única
19.
Genomics ; 112(1): 943-951, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31200028

RESUMO

The human RNASEK gene encodes Ribonuclease κ, an endoribonuclease that belongs to a highly conserved protein family of metazoans. Recent evidence suggests that the mRNA levels of the RNASEK gene possess biomarker attributes in patients with prostate cancer. In the present study, we used 3' RACE and next-generation sequencing (NGS) to detect and identify novel RNASEK transcripts. Computational analysis of the NGS data revealed new alternative splicing events that support the existence of novel RNASEK alternative transcripts. As a result, eight RNASEK splice variants were discovered and their expression profile was analyzed with the use of nested PCR in a wide panel of human cell lines, originating from several cancerous and/or normal human tissues. Based on in silico analysis, six of the eight novel RNASEK transcripts are predicted to encode new protein isoforms, while the remaining two splice variants could be considered as nonsense-mediated mRNA decay (NMD) candidates.


Assuntos
Processamento Alternativo , Endorribonucleases/genética , Linhagem Celular , Linhagem Celular Tumoral , Endorribonucleases/química , Endorribonucleases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Isoformas de RNA/metabolismo , Análise de Sequência de RNA
20.
Genomics ; 111(6): 1249-1257, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30145283

RESUMO

This study aimed to discuss the potential roles of isomiRs of miR-27 family in metabolisms associated with disease via analyses of their evolution, expression, and function. miR-27b-3p was relatively highly expressed in liver cancer samples compared to miR-27a-3p and miR-27-5p loci. The diversity of isomiRs in miR-27-3p locus is similar to that of miRNAs among homologous genes. IsomiRs exhibited variable expression across different cancer tissue types, and some of them were abnormally expressed in ob/ob mice. Further experimental validation indicated that the protein expression of metabolism-related proteins, including PEPCK, G6Pase, FAS, and CPT1A, were significantly suppressed when canonical miR-27b was transfected into AML-12 cells. In contrast, the expression of these proteins was only slightly inhibited by isomiR-27b-1 or isomiR-27b-2 after transfection into AML-12 cells. These observations support that isomiRs exhibiting sequence divergence are functional regulatory molecules, and that they may contribute to biological processes via coordinated interactions in regulatory networks.


Assuntos
MicroRNAs/genética , Animais , Células Cultivadas , Evolução Molecular , Expressão Gênica , Humanos , Metabolismo/genética , Camundongos , MicroRNAs/metabolismo , Família Multigênica , Neoplasias/genética , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Vertebrados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA