Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 238(4): e14017, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37401190

RESUMO

AIM: We aimed to investigate the inter-individual variability in redox and physiological responses of antioxidant-deficient subjects after antioxidant supplementation. METHODS: Two hundred individuals were sorted by plasma vitamin C levels. A low vitamin C group (n = 22) and a control group (n = 22) were compared in terms of oxidative stress and performance. Subsequently, the low vitamin C group received for 30 days vitamin C (1 g) or placebo, in randomized, double-blind, crossover fashion, and the effects were examined through a mixed-effects model, while individual responses were calculated. RESULTS: The low vitamin C group exhibited lower vitamin C (-25 µmol/L; 95%CI[-31.7, -18.3]; p < 0.001), higher F2 -isoprostanes (+17.1 pg/mL; 95%CI[6.5, 27.7]; p = 0.002), impaired VO2max (-8.2 mL/kg/min; 95%CI[-12.8, -3.6]; p < 0.001) and lower isometric peak torque (-41.5 Nm; 95%CI[-61.8, -21.2]; p < 0.001) compared to the control group. Regarding antioxidant supplementation, a significant treatment effect was found in vitamin C (+11.6 µmol/L; 95%CI[6.8, 17.1], p < 0.001), F2 -isoprostanes (-13.7 pg/mL; 95%CI[-18.9, -8.4], p < 0.001), VO2max (+5.4 mL/kg/min; 95%CI[2.7, 8.2], p = 0.001) and isometric peak torque (+18.7; 95%CI[11.8, 25.7 Nm], p < 0.001). The standard deviation for individual responses (SDir) was greater than the smallest worthwhile change (SWC) for all variables indicating meaningful inter-individual variability. When a minimal clinically important difference (MCID) was set, inter-individual variability remained for VO2max , but not for isometric peak torque. CONCLUSION: The proportion of response was generally high after supplementation (82.9%-95.3%); however, a few participants did not benefit from the treatment. This underlines the potential need for personalized nutritional interventions in an exercise physiology context.


Assuntos
Antioxidantes , Ácido Ascórbico , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estudos Cross-Over , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Oxirredução , Estresse Oxidativo , Vitaminas/farmacologia , Método Duplo-Cego , Suplementos Nutricionais , Isoprostanos/farmacologia
2.
Mediators Inflamm ; 2017: 9257291, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265179

RESUMO

Background. Excessive autophagy is a major mechanism of myocardial ischemia reperfusion injury (I/RI) in diabetes with enhanced oxidative stress. Antioxidant N-acetylcysteine (NAC) reduces myocardial I/RI. It is unknown if inhibition of autophagy may represent a mechanism whereby NAC confers cardioprotection in diabetes. Methods and Results. Diabetes was induced in Sprague-Dawley rats with streptozotocin and they were treated without or with NAC (1.5 g/kg/day) for four weeks before being subjected to 30-minute coronary occlusion and 2-hour reperfusion. The results showed that cardiac levels of 15-F2t-Isoprostane were increased and that autophagy was evidenced as increases in ratio of LC3 II/I and protein P62 and AMPK and mTOR expressions were significantly increased in diabetic compared to nondiabetic rats, concomitant with increased postischemic myocardial infarct size and CK-MB release but decreased Akt and eNOS activation. Diabetes was also associated with increased postischemic apoptotic cell death manifested as increases in TUNEL positive cells, cleaved-caspase-3, and ratio of Bax/Bcl-2 protein expression. NAC significantly attenuated I/RI-induced increases in oxidative stress and cardiac apoptosis, prevented postischemic autophagy formation in diabetes, and reduced postischemic myocardial infarction (all p < 0.05). Conclusions. NAC confers cardioprotection against diabetic heart I/RI primarily through inhibiting excessive autophagy which might be a major mechanism why diabetic hearts are less tolerant to I/RI.


Assuntos
Acetilcisteína/uso terapêutico , Autofagia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Dinoprosta/análogos & derivados , Marcação In Situ das Extremidades Cortadas , Isoprostanos/farmacologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
3.
Biochem Biophys Res Commun ; 444(1): 69-74, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24434148

RESUMO

Atherosclerosis is the main underlying cause of major cardiovascular diseases such as stroke and heart attack. Oxidized phospholipids such as oxidized 1-palmitoyl-2-arachidonoyl-sn-Glycero-3-phosphorylcholine (OxPAPC) accumulate in lesions of and promote atherosclerosis. OxPAPC activates endothelial cells, a critical early event of atherogenesis. Epoxyisoprostane E2 (EI) is an oxidized fatty acid contained at the sn-2 position of 1-palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphorylcholine (PEIPC), the most active component of OxPAPC in regulating inflammation. OxPAPC and its components including PEIPC activate endothelial cells to express an array of genes in different categories including oxidative stress response genes such as tumor suppressor gene OKL38 and Heme oxygenase-1 (HO-1). EI can be released by lipase from PEIPC. In this study, we examined the ability of EI to stimulate oxidative stress response in endothelial cells. EI released from OxPAPC and synthetic EI stimulated the expression of oxidative stress response gene OKL38 and antioxidant gene HO-1. Treatment of endothelial cells with EI increased the production of superoxide. NADPH oxidase inhibitor Apocynin and superoxide scavenger N-acetyl-cysteine (NAC) significantly attenuated EI-stimulated expression of OKL38 and HO-1. We further demonstrated that EI activated oxidative stress-sensitive transcription factor Nrf2. Silencing of Nrf2 with siRNA significantly reduced EI stimulated expression of OKL38 and HO-1. Thus, we demonstrated that EI induced oxidative stress in endothelial cells leading to increased expression of oxidative stress response gene OKL38 and HO-1 via Nrf2 signaling pathway relevant to atherosclerosis.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Isoprostanos/farmacologia , Proteínas Reguladoras de Apoptose , Aterosclerose/etiologia , Aterosclerose/metabolismo , Células Cultivadas , Heme Oxigenase-1/genética , Humanos , Isoprostanos/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/farmacologia , Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
4.
Free Radic Biol Med ; 65: 201-207, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23792773

RESUMO

Despite evidence supporting a potential role for F2-isoprostanes (F2-IsoP's) in liver fibrosis, their signaling mechanisms are poorly understood. We have previously provided evidence that F2-IsoP's stimulate hepatic stellate cell (HSC) proliferation and collagen hyperproduction by activation of a modified form of isoprostane receptor homologous to the classic thromboxane receptor (TP). In this paper, we examined which signal transduction pathways are set into motion by F2-IsoP's to exert their fibrogenic effects. HSCs were isolated from rat liver, cultured to their activated myofibroblast-like phenotype, and then treated with the isoprostane 15-F2t-isoprostane (15-F2t-IsoP). Inositol trisphosphate (IP3) and adenosine 3',5'-cyclic monophosphate (cAMP) levels were determined using commercial kits. Mitogen-activated protein kinase (MAPK) and cyclin D1 expression was assessed by Western blotting. Cell proliferation and collagen synthesis were determined by measuring [(3)H]thymidine and [(3)H]proline incorporation, respectively. 15-F2t-IsoP elicited an activation of extracellular-signal-regulated kinase (ERK), p38 MAPK, and c-Jun NH2-terminal kinase (JNK), which are known to be also regulated by G-protein-coupled receptors. Preincubation with specific ERK (PD98059), p38 (SB203580), or JNK (SP600125) inhibitors prevented 15-F2t-IsoP-induced cell proliferation and collagen synthesis. 15-F2t-IsoP decreased cAMP levels within 30 min, suggesting binding to the TPß isoform and activation of Giα protein. Also, 15-F2t-IsoP increased IP3 levels within a few minutes, suggesting that the Gq protein pathway is also involved. In conclusion, the fibrogenic effects of F2-IsoP's in HSCs are mediated by downstream activation of MAPKs, through TP binding that couples via both Gqα and Giα proteins. Targeting TP receptor, or its downstream pathways, may contribute to preventing oxidative damage in liver fibrosis.


Assuntos
Células Estreladas do Fígado/metabolismo , Isoprostanos/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Células Cultivadas , Dinoprosta/análogos & derivados , Isoprostanos/farmacologia , Cirrose Hepática/metabolismo , Ratos , Receptores de Tromboxanos/metabolismo
6.
J Neurochem ; 119(3): 604-16, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21838782

RESUMO

Fatty acids such as eicosapentaenoic acid (EPA) have been shown to be beneficial for neurological function and human health. It is widely thought that oxidation products of EPA are responsible for biological activity, although the specific EPA peroxidation product(s) which exert these responses have not yet been identified. In this work we provide the first evidence that the synthesized representative cyclopentenone IsoP, 15-A(3t)-IsoP, serves as a potent inhibitor of lipopolysaccharide-stimulated macrophage activation. The anti-inflammatory activities of 15-A(3t)-IsoP were observed in response not only to lipopolysaccharide, but also to tumor necrosis factor alpha and IL-1b stimulation. Subsequently, this response blocked the ability of these compounds to stimulate nuclear factor kappa b (NFκB) activation and production of proinflammatory cytokines. The bioactivity of 15-A(3t)-IsoP was shown to be dependent upon an unsaturated carbonyl residue which transiently adducts to free thiols. Site directed mutagenesis of the redox sensitive C179 site of the Ikappa kinase beta subunit, blocked the biological activity of 15-A(3t)-IsoP and NFκB activation. The vasoprotective potential of 15-A(3t)-IsoP was underscored by the ability of this compound to block oxidized lipid accumulation, a critical step in foam cell transformation and atherosclerotic plaque formation. Taken together, these are the first data identifying the biological activity of a specific product of EPA peroxidation, which is formed in abundance in vivo. The clear mechanism linking 15-A(3t)-IsoP to redox control of NFκB transcription, and the compound's ability to block foam cell transformation suggest that 15-A(3t)-IsoP provides a unique and potent tool to provide vaso- and cytoprotection under conditions of oxidative stress.


Assuntos
Ácidos Graxos/metabolismo , Isoprostanos/química , Isoprostanos/farmacologia , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Transcrição Gênica/fisiologia , Animais , Linhagem Celular , Ácidos Graxos/fisiologia , Isoprostanos/fisiologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/genética , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Transcrição Gênica/efeitos dos fármacos
7.
Clin Immunol ; 133(2): 265-75, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19699688

RESUMO

Osteoporosis is a systemic disease that is associated with increased morbidity, mortality and health care costs. Whereas osteoclasts and osteoblasts are the main regulators of bone homeostasis, recent studies underscore a key role for the immune system, particularly via activation-induced T lymphocyte production of receptor activator of NFkappaB ligand (RANKL). Well-documented as a mediator of T lymphocyte/dendritic cell interactions, RANKL also stimulates the maturation and activation of bone-resorbing osteoclasts. Given that lipid oxidation products mediate inflammatory and metabolic disorders such as osteoporosis and atherosclerosis, and since oxidized lipids affect several T lymphocyte functions, we hypothesized that RANKL production might also be subject to modulation by oxidized lipids. Here, we show that short term exposure of both unstimulated and activated human T lymphocytes to minimally oxidized low density lipoprotein (LDL), but not native LDL, significantly enhances RANKL production and promotes expression of the lectin-like oxidized LDL receptor-1 (LOX-1). The effect, which is also observed with 8-iso-Prostaglandin E2, an inflammatory isoprostane produced by lipid peroxidation, is mediated via the NFkappaB pathway, and involves increased RANKL mRNA expression. The link between oxidized lipids and T lymphocytes is further reinforced by analysis of hyperlipidemic mice, in which bone loss is associated with increased RANKL mRNA in T lymphocytes and elevated RANKL serum levels. Our results suggest a novel pathway by which T lymphocytes contribute to bone changes, namely, via oxidized lipid enhancement of RANKL production. These findings may help elucidate clinical associations between cardiovascular disease and decreased bone mass, and may also lead to new immune-based approaches to osteoporosis.


Assuntos
Reabsorção Óssea/induzido quimicamente , Lipídeos/farmacologia , Ligante RANK/metabolismo , Linfócitos T/metabolismo , Animais , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/metabolismo , Núcleo Celular/metabolismo , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Dinoprostona/análogos & derivados , Dinoprostona/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Humanos , Isoprostanos/farmacologia , Lipoproteínas LDL/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Osteoprotegerina/genética , Oxirredução , Fosfatidilcolinas/farmacologia , Ligante RANK/sangue , Ligante RANK/genética , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo , Linfócitos T/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
8.
Biochim Biophys Acta ; 1791(4): 307-13, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19233311

RESUMO

Oxidative stress has been strongly implicated in pathological processes. Isoketals are highly reactive gamma-ketoaldehydes of the isoprostanes pathway of free radical-induced peroxidation of arachidonic acid that are analogous to cyclooxygenase-derived levuglandins. Because aldehydes, that are much less reactive than isoketals, have been shown to trigger platelet activation, we investigated the effect of one isoketal (E(2)-IsoK) on platelet aggregation. Isoketal potentiated aggregation and the formation of thromboxane B(2) in platelets challenged with collagen at a concentration as low as 1 nM. Moreover, the potentiating effect of 1 nM isoketal on collagen-induced platelet aggregation was prevented by pyridoxamine, an effective scavenger of gamma-ketoaldehydes. Furthermore, we provide evidence for the involvement of p38 mitogen-activated protein kinase in isoketal-mediated platelet priming, suggesting that isoketals may act upstream the activation of collagen-induced cytosolic phospholipase A(2). Additionally, the incubation of platelets with 1 nM isoketal led to the phosphorylation of cytosolic phospholipase A(2). The cytosolic phopholipase A(2) inhibitors AACOCF3 and MAFP both fully prevented the increase in isoketal-mediated platelet aggregation challenged with collagen. These results indicate that isoketals could play an important role in platelet hyperfunction observed in pathological states such as atherosclerosis and thrombosis through the activation of the endogenous arachidonic acid cascade.


Assuntos
Plaquetas/efeitos dos fármacos , Isoprostanos/farmacologia , MAP Quinase Quinase Quinases/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Tromboxano B2/metabolismo , Plaquetas/metabolismo , Western Blotting , Colágeno/farmacologia , Citosol/enzimologia , Humanos , Fosfolipases A2/metabolismo , Fosforilação , Prostaglandinas E/farmacologia , Piridoxamina/farmacologia , Complexo Vitamínico B/farmacologia
9.
J Thorac Cardiovasc Surg ; 135(1): 131-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18179929

RESUMO

OBJECTIVES: Radial artery vasospasm remains a potential cause of early graft failure after coronary bypass graft surgery, despite pretreatment with alpha-adrenergic or calcium channel blockers. We examined the roles of isoprostanes and prostanoid receptors selective for thromboxane A2 in the vasoconstriction of human radial arteries. METHODS: Human radial arterial segments were pretreated intraoperatively with verapamil/papaverine or nitroglycerine/phenoxybenzamine, or not treated. In the laboratory, we measured isometric contractions in ring segments, vasoconstriction in pressurized segments, and changes in [Ca2+] and K+ currents in single cells. RESULTS: Although phenoxybenzamine eliminated adrenergic responses, the isoprostane 15-F(2t)-IsoP and 2 closely related E-ring molecules (15-E(1t)-IsoP and 15-E(2t)-IsoP) still evoked powerful contractions; 15-E(2t)-IsoP was approximately 10-fold more potent than the other 2 agents. Responses were mediated through thromboxane receptors because they were sensitive to ICI-192605. Furthermore, they were sensitive to the Rho-kinase inhibitors Y-27632 or H-1152 (both 10(-5) mol/L) or to cyclopiazonic acid (which depletes the internal Ca2+ pool), but not to nifedipine. In single cells, 15-E(2t)-IsoP elevated [Ca2+]i and suppressed K+ current. CONCLUSIONS: Isoprostanes accumulate after coronary artery bypass graft surgery, yet none of the currently available antispasm treatments for radial artery grafts is effective against isoprostane-induced vasoconstriction. It is imperative that more specific treatment strategies be developed. We found that isoprostane responses in radial arteries are mediated by prostanoid receptors selective for thromboxane A2 with activation of Rho-kinase and release of Ca2+. Pretreatment of radial artery grafts with Rho-associated kinase inhibitors may potentially reduce postoperative graft spasm. Clinical studies to test this are indicated.


Assuntos
Isoprostanos/farmacologia , Artéria Radial/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Cálcio/metabolismo , Humanos , Técnicas In Vitro , Artéria Radial/fisiopatologia , Receptores de Tromboxanos/efeitos dos fármacos , Receptores de Tromboxano A2 e Prostaglandina H2 , Transdução de Sinais , Coleta de Tecidos e Órgãos , Proteína rhoA de Ligação ao GTP/metabolismo
10.
Am J Respir Cell Mol Biol ; 38(1): 88-94, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17673688

RESUMO

Isoprostanes comprise a class of membrane lipid metabolites produced during oxidative stress, including asthma, chronic obstructive pulmonary disease, and cystic fibrosis. They are widely recognized to evoke a variety of biological responses in airway and pulmonary vascular smooth muscle, lymphatics, and innervation. However, their effects on airway epithelium are largely unstudied. We examined the electrophysiological responses evoked by several different isoprostane species in bovine airway epithelium using the Ussing chamber technique. The E-ring isoprostanes 15-E(1t)-IsoP and 15-E(2t)-IsoP evoked a substantial increase in short-circuit current (I(SC)), whereas four different F-ring isomers were ineffective. 15-E(2t)-IsoP-evoked I(SC) was mimicked by the prostaglandin E(2)-selective prostanoid receptor (EP)-agonist prostaglandin E(2) but not by agonists of EP(1)/EP(3)-, FP-, or TP receptors (sulprostone, fluprostenol, and U46619, respectively). This response was significantly reduced by the EP(4)-receptor blocker GW627386 but not by blockers of other prostanoid receptors (ICI 192,605 [TP-selective], SC19220 [EP(1)-selective], AH6809 [DP/EP(1)/EP(2)-selective], and AL8810 [FP-selective]). 15-E(2t)-IsoP-evoked I(SC) was reduced by blockers of Cl(-) channels (niflumic acid and 5-nitro-2-(3-phenylpropylamino)-benzoic acid), of Na(+)/K(+)/2Cl(-) co-transport (furosemide and bumetanide), of adenylate cyclase (MDL 12,330A), or of guanylate cyclase (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) but not by blockers of Na(+) conductances (amiloride). We conclude that 15-E(2t)-IsoP activates a transepithelial Cl(-) conductance in bovine airway epithelium through an EP(4) receptor coupled to adenylate cyclase and soluble guanylate cyclase.


Assuntos
Canais de Cloreto/metabolismo , Isoprostanos/farmacologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores de Prostaglandina E/metabolismo , Mucosa Respiratória/metabolismo , Traqueia/metabolismo , Animais , Bovinos , Agonistas dos Canais de Cloreto , Condutividade Elétrica , Potenciais Evocados/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Isoprostanos/síntese química , Isoprostanos/química , Lipídeos de Membrana/metabolismo , Músculo Liso Vascular/inervação , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Estresse Oxidativo/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/patologia , Receptores de Prostaglandina E/agonistas , Receptores de Prostaglandina E Subtipo EP4 , Mucosa Respiratória/inervação , Mucosa Respiratória/patologia , Técnicas de Cultura de Tecidos , Traqueia/inervação , Traqueia/patologia
11.
Am J Respir Cell Mol Biol ; 38(2): 143-52, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17690331

RESUMO

Isoprostanes are biologically active molecules, produced when reactive oxygen species mediate the peroxidation of membrane polyunsaturated fatty acids. Previous work has demonstrated that the isoprostane 8-iso-prostaglandin E(2) (PGE(2)) stimulates cystic fibrosis transmembrane conductance regulator (CFTR)-mediated transepithelial anion secretion across the human airway epithelial cell line, Calu-3. Since isoprostanes predominantly achieve their effects via binding to prostanoid receptors, we hypothesized that this 8-iso-PGE(2) stimulation of CFTR activity was the result of the isoprostane binding to a prostanoid receptor. Using RT-PCR, immunoblotting, and immunofluorescence, we here demonstrate that Calu-3 cells express the EP(1-4) and FP receptors, and localize these proteins in polarized cell monolayers. Using iodide efflux as a marker for CFTR-mediated Cl(-) efflux, we investigate whether prostanoid receptor agonists elicit a functional response from Calu-3 cells. Application of the agonists PGE(2), misoprostol (EP(2), EP(3), and EP(4)) and PGE(1)-OH (EP(3) and EP(4)) stimulate iodide efflux; however, iloprost, butaprost, sulprostone, and fluoprostenol (agonists of the EP(1), EP(2), EP(3), and FP receptors, respectively) have no effect. The iodide efflux seen with 8-iso-PGE(2) is abolished by the EP(4) receptor antagonist AH23848, the CFTR inhibitor 172, and inhibition of PKA and the PI3K pathway. In conclusion, we demonstrate that although Calu-3 cells possess numerous prostanoid receptors, only the EP(4) subtype appears capable of eliciting a functional iodide efflux response, which is mediated via the EP(4) receptor. We propose that 8-iso-PGE(2), acting via EP(4) receptor, could play an important role in the CFTR-mediated response to oxidant stress, and which would be compromised in the CF airways.


Assuntos
Dinoprostona/análogos & derivados , Iodetos/metabolismo , Isoprostanos/farmacologia , Receptores de Prostaglandina E/fisiologia , Traqueia/efeitos dos fármacos , Ânions , Western Blotting , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Dinoprostona/farmacologia , Imunofluorescência , Humanos , Transporte de Íons , Receptores de Prostaglandina E Subtipo EP4 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Traqueia/metabolismo
13.
Circ Res ; 98(5): 642-50, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16456101

RESUMO

Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), which has been shown to accumulate in atherosclerotic lesions and other sites of chronic inflammation, activates endothelial cells (EC) to bind monocytes by activation of endothelial beta1 integrin and subsequent deposition of fibronectin on the apical surface. Our previous studies suggest this function of OxPAPC is mediated via a Gs protein-coupled receptor (GPCR). PEIPC (1-palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphorylcholine) is the most active lipid in OxPAPC that activates this pathway. We screened a number of candidate GPCRs for their interaction with OxPAPC and PEIPC, using a reporter gene assay; we identified prostaglandin E2 receptor EP2 and prostaglandin D2 receptor DP as responsive to OxPAPC. We focused on EP2, which is expressed in ECs, monocytes, and macrophages. OxPAPC component PEIPC, but not POVPC, activated EP2 with an EC50 of 108.6 nmol/L. OxPAPC and PEIPC were also able to compete with PGE2 for binding to EP2 in a ligand-binding assay. The EP2 specific agonist butaprost was shown to mimic the effect of OxPAPC on the activation of beta1 integrin and the stimulation of monocyte binding to endothelial cells. Butaprost also mimicked the effect of OxPAPC on the regulation of tumor necrosis factor-alpha and interleukin-10 in monocyte-derived cells. EP2 antagonist AH6809 blocked the activation of EP2 by OxPAPC in HEK293 cells and blocked the interleukin-10 response to PEIPC in monocytic THP-1 cells. These results suggest that EP2 functions as a receptor for OxPAPC and PEIPC, either as the phospholipid ester or the released fatty acid, in both endothelial cells and macrophages.


Assuntos
Aterosclerose/etiologia , Éteres Fosfolipídicos/farmacologia , Receptores de Prostaglandina E/efeitos dos fármacos , Alprostadil/análogos & derivados , Alprostadil/farmacologia , Células Cultivadas , Dinoprostona/metabolismo , Células Espumosas/fisiologia , Humanos , Interleucina-10/biossíntese , Isoprostanos/metabolismo , Isoprostanos/farmacologia , Macrófagos/metabolismo , Monócitos/metabolismo , Oxirredução , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/farmacologia , Éteres Fosfolipídicos/metabolismo , RNA Mensageiro/análise , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina E/fisiologia , Receptores de Prostaglandina E Subtipo EP2 , Fator de Necrose Tumoral alfa/biossíntese , Xantonas/farmacologia
14.
Eur J Pharmacol ; 520(1-3): 22-8, 2005 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-16153635

RESUMO

The inhibitory pathway of 8-isoprostaglandin E(2) was investigated in murine renal arterial smooth muscle. K(+) current was augmented in a concentration-dependent fashion, with an average increase of 123+/-28% (n=6) following application of 10(-5) M 8-iso PGE(2). This augmentation was observed in the presence of 4-aminopyridine (4-AP, 10(-3) M) but not that of charybdotoxin (Ch Tx, 10(-7) M). Fluorimetric recordings showed marked concentration-dependent increase of cytosolic Ca(2+) levels by 8-iso PGE(2), while an enzyme-linked immunosorbent assay (ELISA)-based cyclic AMP assay showed increased cAMP levels by 10(-7) M 8-iso PGE(2) challenge. The isoprostane-induced augmentation was prevented by the ryanodine receptor blocker ruthenium red (10(-5) M) or the adenylate cyclase blocker SQ 22536 (10(-4) M). The protein kinase A (PKA) inhibitor H 89 (10(-5) M) inhibited resting K(+) currents (78+/-5%, n=5) but did not prevent 8-iso PGE(2) from augmenting the remaining K(+) current. We conclude that 8-iso PGE(2) enhances Ca(2+)-dependent K(+) currents in murine renal artery through a cAMP-dependent pathway which may involve internally sequestered Ca(2+).


Assuntos
Dinoprostona/análogos & derivados , Isoprostanos/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/farmacologia , Inibidores de Adenilil Ciclases , Animais , Fatores Biológicos , Cálcio/metabolismo , AMP Cíclico/metabolismo , Dinoprostona/farmacologia , Relação Dose-Resposta a Droga , Técnicas In Vitro , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos BALB C , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Cálcio-Ativados/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Artéria Renal/efeitos dos fármacos , Artéria Renal/metabolismo , Transdução de Sinais
15.
Free Radic Res ; 39(7): 763-70, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16036356

RESUMO

Low concentrations of selenium (Se) predict mortality and cardiovascular diseases in some populations. The effect of Se on in vivo indicators of oxidative stress and inflammation, two important features of atherosclerosis, in human populations is largely unexplored. This study investigated the longitudinal association between serum selenium (s-Se) and a golden standard indicator of oxidative stress in vivo (8-iso-prostaglandin F2alpha, a major F2-isoprostane), an indicator of cyclooxygenase (COX)-mediated inflammation (prostaglandin F2alpha), high sensitive C-reactive protein (hsCRP), interleukin-6 (IL-6) and serum amyloid A protein (SAA) in a follow-up study of 27 years. The s-Se was measured in 615 Swedish men at 50 years of age in a health investigation. The status of oxidative stress and inflammation was evaluated in a re-investigation 27 years later by quantification of urinary 8-iso-PGF2alpha and 15-keto-dihydro-PGF2alpha (a major metabolite of PGF2alpha) and serum hsCRP, SAA and IL-6. Men in the highest quartile of s-Se at age 50 had decreased levels of 8-iso-PGF2alpha compared to all lower quartiles and decreased levels of PGF2alpha compared to all lower quartiles at follow-up. These associations were independent of BMI, diabetes, hyperlipidemia, hypertension, smoking, alpha-tocopherol and beta-carotene at baseline. The s-Se was not associated with hsCRP, SAA or IL-6 at follow-up. In conclusion, high concentrations of s-Se predict reduced levels of oxidative stress and subclinical COX-mediated (but not cytokine-mediated) inflammation in a male population. The associations between Se, oxidative stress and inflammation, respectively, might be related to the proposed cardiovascular protective property of Se.


Assuntos
Dinoprosta/análogos & derivados , Isoprostanos/farmacologia , Selênio/sangue , Idoso , Biomarcadores/sangue , Biomarcadores/urina , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/urina , Estudos de Coortes , Dieta , Dinoprosta/urina , Seguimentos , Humanos , Inflamação/sangue , Mediadores da Inflamação/sangue , Interleucina-6/sangue , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Radioimunoensaio , Selênio/administração & dosagem , Proteína Amiloide A Sérica/metabolismo , Suécia/epidemiologia
16.
Am J Physiol Lung Cell Mol Physiol ; 287(5): L1035-41, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15257985

RESUMO

Isoprostanes are generated during periods of oxidative stress, which characterize diseases such as asthma and cystic fibrosis. They also elicit functional responses and may therefore contribute to the pathology of these diseases. We set out to examine the effects of isoprostanes on airway responsiveness to cholinergic stimulation. Muscle bath techniques were employed using isolated bovine tracheal smooth muscle. 8-Isoprostaglandin E2 (8-iso-PGE2) increased tone directly on its own, although the magnitude of this response, even at the highest concentration tested, was only a fraction of that evoked by KCl or carbachol. More importantly, though, pretreatment of the tissues with 8-iso-PGE2 (10 microM) markedly augmented responses to submaximal and even subthreshold concentrations of KCl, carbachol, or histamine, whereas maximal responses to these agents were unaffected by the isoprostane. The augmentative effect on cholinergic responsiveness was mimicked by PGE2 (0.1 microM) and by the FP agonists PGF2 (0.1 microM) and fluprostenol (0.1 microM), but not by the EP3 agonist sulprostone (0.1 microM) or the TP agonist U-46619 (0.1 microM). Antagonists of EP1 receptors (AH-6809 and SC-19920, 10 microM) and TP receptors (ICI-192605, 1 microM) had no effect on 8-iso-PGE2-induced augmentation of cholinergic responsiveness. We conclude that 8-iso-PGE2 induces nonspecific airway smooth muscle hyperresponsiveness through a non-TP non-EP prostanoid receptor.


Assuntos
Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Dinoprostona/análogos & derivados , Dinoprostona/farmacologia , Isoprostanos/farmacologia , Músculo Liso/efeitos dos fármacos , Traqueia/efeitos dos fármacos , Vasoconstritores/farmacologia , Animais , Hiper-Reatividade Brônquica/fisiopatologia , Broncoconstritores/farmacologia , Bovinos , Sinergismo Farmacológico , Histamina/farmacologia , Técnicas In Vitro , Músculo Liso/fisiologia , Cloreto de Potássio/farmacologia , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina E/metabolismo , Receptores de Prostaglandina E Subtipo EP1 , Receptores de Prostaglandina E Subtipo EP3 , Receptores de Tromboxanos/metabolismo , Traqueia/fisiologia
17.
Mol Pharmacol ; 64(2): 298-307, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12869634

RESUMO

Isoprostanes are liberated when reactive oxygen species (ROS) mediate the peroxidation of arachidonic acid or other polyunsaturated fatty acids. Because exposure to ROS is associated with tissue damage in the lung, we examined whether exposure to isoprostanes elicited a response in airway epithelial cells, potentially implicating isoprostane production in the epithelial response to oxidant stress. Application of the isoprostane 8-iso-prostaglandin E2 (8-iso-PGE2) produced an increase in transepithelial anion secretion across monolayers of the human airway epithelial cell line Calu-3, measured as an increase in short circuit current (Isc). This increase in Isc was greater when 8-iso-PGE2 was applied to the basolateral rather than the apical face of the Calu-3 monolayers and was almost entirely abolished by the addition of diphenylamine-2-carboxylate, implicating the cystic fibrosis transmembrane conductance regulator Cl- channel in the response. Experiments with electrically isolated apical and basolateral membrane preparations revealed that 8-iso-PGE2 stimulated both apical Cl- and basolateral K+ conductances. Using reverse transcription-polymerase chain reaction, we found that Calu-3 cells express the TPalpha, but not the TPbeta, isoform of the receptor, and that these cells secrete in response to the thromboxane A2 (TP) receptor agonist 9,11-dideoxy-9alpha,11alpha-methanoepoxy-prostaglandin F2alpha (U-46619). However, although part of the response seems to mediated via TP receptors, there are significant non-TP receptor-mediated effects on both the apical and basolateral membranes of Calu-3 cells. This is the first report of an isoprostane eliciting an effect in airway epithelial cells and suggests a potential role for this class of molecules in pulmonary host defense.


Assuntos
Dinoprostona/análogos & derivados , Células Epiteliais/efeitos dos fármacos , Isoprostanos/farmacologia , Sistema Respiratório/citologia , Canais de Cloreto/antagonistas & inibidores , Dinoprostona/farmacologia , Condutividade Elétrica , Células Epiteliais/metabolismo , Humanos , Potássio/metabolismo
18.
FASEB J ; 16(7): 715-7, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11978738

RESUMO

Oxidative stress can impair proteasome function, both of which are features of neurodegenerative diseases. Inhibition of proteasome function leads to protein accumulation and cell death. We discovered recently the formation of highly reactive g-ketoaldehydes, isoketals (IsoKs), and neuroketals (NeuroKs) as products of the isoprostane and neuroprostane pathways of free radical-induced lipid peroxidation that are analogous to cyclooxygenase-derived levuglandins (LGs). Because aldehydes that are much less reactive than IsoKs have been shown to inhibit proteasome function, we explored the ability of the proteasome to degrade IsoK-adducted proteins/peptides and the effect of IsoK and IsoK-adducted proteins/peptides on proteasome function. Adduction of IsoK to model proteasome substrates significantly reduced their rate of degradation by the 20S proteasome. The ability of IsoK to inhibit proteasome function directly was observed only at very high concentrations. However, at much lower concentrations, an IsoK-adducted protein (ovalbumin) and peptide (Ab1-40) significantly inhibited chymotrypsin-like activity of the 20S proteasome. Moreover, incubation of IsoK with P19 neuroglial cultures dose-dependently inhibited proteasome activity (IC50 = 330 nM) and induced cell death (LC50 = 670 nM). These findings suggest that IsoKs/NeuroKs/LGs can inhibit proteasome activity and, if overproduced, may have relevance to the pathogenesis of neurodegenerative diseases.


Assuntos
Inibidores de Cisteína Proteinase/biossíntese , Inibidores de Cisteína Proteinase/farmacologia , Isoprostanos/biossíntese , Isoprostanos/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , Aldeídos/química , Peptídeos beta-Amiloides/metabolismo , Animais , Morte Celular , Linhagem Celular , Cisteína Endopeptidases , Inibidores de Cisteína Proteinase/metabolismo , Isoprostanos/metabolismo , Cinética , Modelos Biológicos , Fragmentos de Peptídeos/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Prostaglandinas E/metabolismo , Complexo de Endopeptidases do Proteassoma
19.
J Biol Chem ; 277(16): 14221-6, 2002 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-11827970

RESUMO

Lipid oxidation products promote atherosclerosis and may also affect osteoporosis. We showed previously that oxidized lipids including 8-isoprostaglandin E2 (isoPGE2) inhibit osteoblastic differentiation of preosteoblasts. Since osteoporosis is mediated both by decreased osteoblastic bone formation and by increased osteoclastic bone resorption, we assessed whether oxidized lipids regulate the osteoclastic potential of marrow hematopoietic cells. Treatment of marrow-derived preosteoclasts with isoPGE2 enhanced osteoclastic differentiation as evidenced by increased tartrate-resistant acid phosphatase (TRAP) activity and multinucleation, which were inhibited by calcitonin, and increased numbers of resorption pits. The enhanced osteoclastic differentiation by isoPGE2 was observed whether preosteoclasts were in coculture with stromal cells or in monoculture in the presence of receptor-activated NFkappaB ligand (RANKL) and macrophage colony-stimulating factor. Receptor antagonist studies suggest that isoPGE2 effects were mediated by prostaglandin receptor subtypes EP2/DP on preosteoclasts and subtype EP1 and thromboxane receptors on stromal/osteoblast cells. The enhanced TRAP activity was also inhibited by cAMP-dependent protein kinase inhibitors, and isoPGE2 elevated intracellular cAMP levels of preosteoclast monocultures. Other oxidized lipids also enhanced the TRAP activity of preosteoclast monocultures. These data suggest that isoPGE2 enhances osteoclastic differentiation of marrow preosteoclasts and that this regulation occurs via the cAMP-dependent protein kinase pathway.


Assuntos
Proteínas de Transporte/metabolismo , AMP Cíclico/metabolismo , Dinoprostona/farmacologia , Isoprostanos/farmacologia , Glicoproteínas de Membrana/metabolismo , Osteoclastos/metabolismo , Actinas/metabolismo , Animais , Células da Medula Óssea , Calcitonina/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinoprostona/análogos & derivados , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Contraste de Fase , Osteoporose/metabolismo , Oxigênio/metabolismo , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Vasoconstritores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA