Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Mar Drugs ; 22(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667795

RESUMO

This open-label, two-part, phase Ib drug-drug interaction study investigated whether the pharmacokinetic (PK) and safety profiles of lurbinectedin (LRB), a marine-derived drug, are affected by co-administration of itraconazole (ITZ), a strong CYP3A4 inhibitor, in adult patients with advanced solid tumors. In Part A, three patients were sequentially assigned to Sequence 1 (LRB 0.8 mg/m2, 1-h intravenous [IV] + ITZ 200 mg/day oral in Cycle 1 [C1] and LRB alone 3.2 mg/m2, 1 h, IV in Cycle 2 [C2]). In Part B, 11 patients were randomized (1:1) to receive either Sequence 1 (LRB at 0.9 mg/m2 + ITZ in C1 and LRB alone in C2) or Sequence 2 (LRB alone in C1 and LRB + ITZ in C2). Eleven patients were evaluable for PK analysis: three in Part A and eight in Part B (four per sequence). The systemic total exposure of LRB increased with ITZ co-administration: 15% for Cmax, area under the curve (AUC) 2.4-fold for AUC0-t and 2.7-fold for AUC0-∞. Co-administration with ITZ produced statistically significant modifications in the unbound plasma LRB PK parameters. The LRB safety profile was consistent with the toxicities described in previous studies. Co-administration with multiple doses of ITZ significantly altered LRB systemic exposure. Hence, to avoid LRB overexposure when co-administered with strong CYP3A4 inhibitors, an LRB dose reduction proportional to CL reduction should be applied.


Assuntos
Carbolinas , Inibidores do Citocromo P-450 CYP3A , Interações Medicamentosas , Compostos Heterocíclicos de 4 ou mais Anéis , Itraconazol , Neoplasias , Humanos , Itraconazol/farmacocinética , Itraconazol/administração & dosagem , Itraconazol/efeitos adversos , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Neoplasias/tratamento farmacológico , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/efeitos adversos , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacologia , Carbolinas/farmacocinética , Carbolinas/administração & dosagem , Carbolinas/efeitos adversos , Adulto , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/efeitos adversos , Área Sob a Curva , Antineoplásicos/farmacocinética , Antineoplásicos/efeitos adversos , Antineoplásicos/administração & dosagem
2.
Cancer Chemother Pharmacol ; 93(2): 107-119, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37838624

RESUMO

PURPOSE: Entrectinib (ENT) is a potent c-ros oncogene 1(ROS1) and neurotrophic tyrosine receptor kinase (NTRKA/B/C) inhibitor. To determine the optimum dosage of ENT using ROS1 and NTRKA/B/C occupancy in plasma and cerebrospinal fluid (CSF) in drug-drug interactions (DDIs), physiologically-based pharmacokinetic (PBPK) models for healthy subjects and cancer population were developed for ENT and M5 (active metabolite). METHODS: The PBPK models were built using the modeling parameters of ENT and M5 that were mainly derived from the published paper on the ENT PBPK model, and then validated by the observed pharmacokinetics (PK) in plasma and CSF from healthy subjects and patients. RESULTS: The PBPK model showed that AUC, Cmax, and Ctrough ratios between predictions and observations are within the range of 0.5-2.0, except that the M5 AUC ratio is slightly above 2.0 (2.34). Based on the efficacy (> 75% occupancy for ROS1 and NTRKA/B/C) and safety (AUC < 160 µM·h and Cmax < 8.9 µM), the appropriate dosing regimens were identified. The appropriate dosage is 600 mg once daily (OD) when administered alone, reduced to 200 mg and 400 mg OD with itraconazole and fluconazole, respectively. ENT is not recommended for co-administration with rifampicin or efavirenz, but is permitted with fluvoxamine or dexamethasone. CONCLUSION: The PBPK models can serve as a powerful approach to predict ENT concentration as well as ROS1 and NTRKA/B/C occupancy in plasma and CSF.


Assuntos
Benzamidas , Indazóis , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Humanos , Interações Medicamentosas , Itraconazol/farmacocinética , Modelos Biológicos
3.
Clin Pharmacol Drug Dev ; 12(9): 856-862, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37449963

RESUMO

Capivasertib is a potent, selective inhibitor of all 3 Akt isoforms (Akt1/2/3), and it is currently being tested in Phase III trials for the treatment of prostate and breast cancer. To investigate the effect of a cytochrome P450 3A4 (CYP3A4) inhibitor on the pharmacokinetics of capivasertib, a Phase I drug-drug interaction study of capivasertib and itraconazole was conducted in 11 healthy volunteers (median age, 54 years). The 8-day study had 3 stages: Participants received a single dose of capivasertib 80 mg in Stage 1, 4 doses of itraconazole 200 mg over 3 days in Stage 2, and a final dose of capivasertib 80 mg coadministered with itraconazole 200 mg in Stage 3. Capivasertib pharmacokinetics were examined in Stages 1 and 3. Itraconazole coadministration increased the maximum plasma concentration of capivasertib and total capivasertib exposure (area under the concentration-time curve from time of administration to infinity) by 1.70-fold (90% confidence interval, 1.56-1.86) and 1.95-fold (90% confidence interval, 1.82-2.10), respectively.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Itraconazol , Humanos , Pessoa de Meia-Idade , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas , Voluntários Saudáveis , Itraconazol/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-akt , Serina , Treonina
4.
AAPS J ; 25(4): 62, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344751

RESUMO

Itraconazole is a potent inhibitor of cytochrome P450 3A4 (CYP3A4), associated with numerous drug-drug interactions (DDI). PUR1900, a dry powder formulation of itraconazole for oral inhalation, results in high lung and low systemic exposure. This project used physiologically based pharmacokinetic (PBPK) modeling to assess the DDI potential of inhaled PUR1900, using midazolam as a "victim drug." The basic and mechanistic static models evaluated the DDI potential of PUR1900, assuming 5 mg of midazolam coadministration at steady-state itraconazole exposure. Subsequently, Simcyp® PBPK simulation software and pharmacokinetic data from a Phase 1 clinical trial with PUR1900 (NCT03479411) were used to optimize an existing itraconazole PBPK model. The model was applied to investigate the potential for CYP3A4 DDI when 5 mg of midazolam is co-administered with inhaled PUR1900 at a steady state in a virtual healthy population at PUR1900 doses up to 40 mg per day. The basic static and mechanistic static models suggested a strong likelihood for DDI with inhaled PUR1900. The PBPK model was consistent with PUR1900 Phase 1 trial data. The geometric mean Cmax and AUC ratios of midazolam at a maximum dose of 40 mg PUR1900 were 1.14 and 1.26, respectively, indicating a minimal likelihood of DDI with inhaled PUR1900. The low systemic exposure of itraconazole when administered as PUR1900 results in minimal to no CYP3A4 inhibition, reducing the concern of drug-drug interactions. As the risk of CYP3A4 DDI is predicted to be significantly lower when itraconazole is administered via oral inhalation as PUR1900, it is likely that PUR1900 can be safely used for the treatment of pulmonary fungal infections in patients taking pharmaceuticals currently contraindicated with oral itraconazole.


Assuntos
Itraconazol , Midazolam , Humanos , Itraconazol/farmacocinética , Midazolam/farmacocinética , Modelos Biológicos , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Citocromo P-450 CYP3A , Interações Medicamentosas
5.
J Clin Pharmacol ; 63(2): 228-238, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36087217

RESUMO

Capmatinib is a highly specific, potent, and selective mesenchymal-epithelial transition factor inhibitor predominantly eliminated by cytochrome P450 (CYP) 3A4 and aldehyde oxidase. Here, we investigated the effects of a strong CYP3A inhibitor (itraconazole) and a strong CYP3A inducer (rifampicin) on single-dose pharmacokinetics of capmatinib. In addition, serum creatinine and cystatin C were monitored to assess the potential inhibition of renal transporters by capmatinib. This was an open-label, 2-cohort (inhibition and induction), 2-period (capmatinib alone and inhibition/induction periods) study in healthy subjects. In the inhibition cohort, capmatinib (400 mg/day) was given alone, then with itraconazole (200 mg/day for 10 days, 5-day lead-in before coadministration). In the induction cohort, capmatinib (400 mg/day) was given alone, then with rifampicin (600 mg/day for 9 days, 5-day lead-in before coadministration). Fifty-three subjects (inhibition cohort, n = 27; induction cohort, n = 26) were enrolled. Coadministration of itraconazole resulted in an increase of capmatinib area under the plasma concentration-time curve from time 0 to infinity by 42% (geometric mean ratio [GMR], 1.42; 90%CI, 1.33-1.52) with no change in maximum plasma concentration (GMR, 1.03; 90%CI, 0.866-1.22). Coadministration of rifampicin resulted in a reduction of capmatinib area under the plasma concentration-time curve from time 0 to infinity by 66.5% (GMR, 0.335; 90%CI, 0.300-0.374) and a decrease in maximum plasma concentration by 55.9% (GMR, 0.441; 90%CI, 0.387-0.502). After a single dose of capmatinib, a transient increase in serum creatinine was observed with no change in serum cystatin C concentration during the 3-day monitoring period. In conclusion, coadministration of itraconazole or rifampicin resulted in clinically relevant changes in systemic exposure to capmatinib. The transient increase in serum creatinine without any increase in cystatin C suggests inhibition of renal transport by capmatinib.


Assuntos
Itraconazol , Rifampina , Humanos , Itraconazol/farmacocinética , Rifampina/farmacocinética , Cistatina C , Voluntários Saudáveis , Creatinina , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Área Sob a Curva
6.
Clin Drug Investig ; 42(8): 679-692, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35842567

RESUMO

BACKGROUND AND OBJECTIVE: Trilaciclib is a cyclin-dependent kinase 4/6 inhibitor indicated to decrease the incidence of chemotherapy-induced myelosuppression in patients with extensive-stage small-cell lung cancer. Trilaciclib is a substrate and time-dependent inhibitor of cytochrome P450 3A4 and an inhibitor of multidrug and toxin extrusion 1, multidrug and toxin extrusion 2-K, organic cation transporter 1, and organic cation transporter 2. Here, we investigate the pharmacokinetic drug-drug interaction potential of trilaciclib. METHODS: Two phase I studies were conducted as prospective, open-label, fixed-sequence drug-drug interaction studies in healthy subjects (n = 57, n = 20) to investigate potential interactions between intravenously administered trilaciclib (200 or 240 mg/m2) and orally administered midazolam (5 mg), metformin (1000 mg), itraconazole (200 mg), and rifampin (600 mg). A population pharmacokinetic model was fit to phase Ib/IIa data in patients with extensive-stage small-cell lung cancer (n = 114) to assess the impact of trilaciclib dose and exposure (area under the plasma concentration-time curve) on topotecan clearance. RESULTS: Coadministration with trilaciclib had minimal effects on the exposure (area under the plasma concentration-time curve from time 0 to infinity) of midazolam (geometric least-square mean ratio [GMR] vs midazolam alone 1.065; 90% confidence interval [CI] 0.984-1.154) but statistically significantly increased plasma exposure (GMR 1.654; 90% CI 1.472-1.858) and decreased renal clearance (GMR 0.633; 90% CI 0.572-0.701) of metformin. Coadministration of trilaciclib with rifampin or itraconazole decreased trilaciclib area under the plasma concentration-time curve from time 0 to infinity by 17.3% (GMR 0.827; 90% CI 0.785-0.871) and 14.0% (GMR 0.860; 0.820-0.902), respectively, vs trilaciclib alone. Population pharmacokinetic modeling showed no significant effect of trilaciclib on topotecan clearance. CONCLUSIONS: Overall, the drug-drug interaction and safety profiles of trilaciclib in these studies support its continued use in patients with extensive-stage small-cell lung cancer. CLINICAL TRIAL REGISTRATION: Study 106: EudraCT number: 2019-002303-18; Study 114: not applicable; Study 03: Clinicaltrials.org: NCT02514447; August 2015.


Assuntos
Neoplasias Pulmonares , Metformina , Área Sob a Curva , Interações Medicamentosas , Voluntários Saudáveis , Humanos , Itraconazol/farmacocinética , Neoplasias Pulmonares/tratamento farmacológico , Midazolam , Estudos Prospectivos , Pirimidinas , Pirróis , Rifampina , Topotecan
7.
CPT Pharmacometrics Syst Pharmacol ; 11(7): 894-905, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35506332

RESUMO

Pemigatinib is a potent inhibitor of fibroblast growth factor receptor being developed for oncology indications. It is primarily metabolized by cytochrome P450 (CYP) 3A4, and the ratio of estimated concentration over concentration required for 50% inhibition ratio for pemigatinib as an inhibitor of P-glycoprotein (P-gp), organic cation transporter-2 (OCT2), and multidrug and toxin extrusion protein-1 (MATE1) exceeds the cutoff values established in regulatory guidance. A Simcyp minimal physiologically based pharmacokinetic (PBPK) with advanced dissolution, absorption, and metabolism absorption model for pemigatinib was developed and validated using observed clinical pharmacokinetic (PK) data and itraconazole/rifampin drug-drug interaction (DDI) data. The model accurately predicted itraconazole DDI (approximate 90% area under the plasma drug concentration-time curve [AUC] and approximate 20% maximum plasma drug concentration [Cmax ] increase). The model underpredicted rifampin induction by 100% (approximate 6.7-fold decrease in AUC and approximate 2.6-fold decrease in Cmax in the DDI study), presumably reflecting non-CYP3A4 mechanisms being impacted. The verified PBPK model was then used to predict the effect of other CYP3A4 inhibitors/inducers on pemigatinib PK and pemigatinib as an inhibitor of P-gp or OCT2/MATE1 substrates. The worst-case scenario DDI simulation for pemigatinib as an inhibitor of P-gp or OCT2/MATE1 substrates showed only a modest DDI effect. The recommendation based on this simulation and clinical data is to reduce pemigatinib dose for coadministration with strong and moderate CYP3A4 inhibitors. No dose adjustment is required for weak CYP3A4 inhibitors. The coadministration of strong and moderate CYP3A4 inducers with pemigatinib should be avoided. PBPK modeling suggested no dose adjustment with P-gp or OCT2/MATE1 substrates.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Rifampina , Citocromo P-450 CYP3A/metabolismo , Indutores do Citocromo P-450 CYP3A/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas , Humanos , Itraconazol/farmacocinética , Modelos Biológicos , Morfolinas , Pirimidinas , Pirróis , Rifampina/farmacocinética
8.
Clin Cancer Res ; 27(21): 5771-5780, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34426442

RESUMO

PURPOSE: To evaluate drug-drug interactions between the human epidermal growth factor receptor 2 (HER2)-targeted antibody-drug conjugate trastuzumab deruxtecan (T-DXd; DS-8201a) and the OATP1B/CYP3A inhibitor ritonavir or the strong CYP3A inhibitor itraconazole. PATIENTS AND METHODS: Patients with HER2-expressing advanced solid tumors were enrolled in this phase I, open-label, single-sequence crossover study (NCT03383692) and received i.v. T-DXd 5.4 mg/kg every 3 weeks. Patients received ritonavir (cohort 1) or itraconazole (cohort 2) from day 17 of cycle 2 through the end of cycle 3. Primary endpoints were maximum serum concentration (C max) and partial area under the concentration-time curve from beginning of cycle through day 17 (AUC17d) for T-DXd and deruxtecan (DXd) with (cycle 3) and without (cycle 2) ritonavir or itraconazole treatment. RESULTS: Forty patients were enrolled (cohort 1, n = 17; cohort 2, n = 23). T-DXd C max was similar whether combined with ritonavir [cohort 1, cycle 3/cycle 2; 90% confidence interval (CI): 1.05 (0.98-1.13)] or itraconazole [cohort 2, 1.03 (0.96-1.09)]. T-DXd AUC17d increased from cycle 2 to 3; however, the cycle 3/cycle 2 ratio upper CI bound remained at ≤1.25 for both cohorts. For DXd (cycle 3/cycle 2), C max ratio was 0.99 (90% CI, 0.85-1.14) for cohort 1 and 1.04 (0.92-1.18) for cohort 2; AUC17d ratio was 1.22 (1.08-1.37) and 1.18 (1.11-1.25), respectively. The safety profile of T-DXd plus ritonavir or itraconazole was consistent with previous studies of T-DXd monotherapy. T-DXd demonstrated promising antitumor activity across HER2-expressing solid-tumor types. CONCLUSIONS: T-DXd was safely combined with ritonavir or itraconazole without clinically meaningful impact on T-DXd or DXd pharmacokinetics.


Assuntos
Camptotecina/análogos & derivados , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Itraconazol/farmacocinética , Itraconazol/uso terapêutico , Neoplasias/tratamento farmacológico , Ritonavir/farmacocinética , Ritonavir/uso terapêutico , Trastuzumab/farmacocinética , Trastuzumab/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Camptotecina/efeitos adversos , Camptotecina/farmacocinética , Camptotecina/uso terapêutico , Estudos Cross-Over , Combinação de Medicamentos , Feminino , Humanos , Imunoconjugados/efeitos adversos , Itraconazol/efeitos adversos , Masculino , Pessoa de Meia-Idade , Neoplasias/química , Neoplasias/patologia , Receptor ErbB-2/análise , Ritonavir/efeitos adversos , Trastuzumab/efeitos adversos , Resultado do Tratamento
9.
Mol Cancer Ther ; 20(10): 1904-1915, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376577

RESUMO

Itraconazole, an FDA-approved antifungal, has antitumor activity against a variety of cancers. We sought to determine the effects of itraconazole on esophageal cancer and elucidate its mechanism of action. Itraconazole inhibited cell proliferation and induced G1-phase cell-cycle arrest in esophageal squamous cell carcinoma and adenocarcinoma cell lines. Using an unbiased kinase array, we found that itraconazole downregulated protein kinase AKT phosphorylation in OE33 esophageal adenocarcinoma cells. Itraconazole also decreased phosphorylation of downstream ribosomal protein S6, transcriptional expression of the upstream receptor tyrosine kinase HER2, and phosphorylation of upstream PI3K in esophageal cancer cells. Lapatinib, a tyrosine kinase inhibitor that targets HER2, and siRNA-mediated knockdown of HER2 similarly suppressed cancer cell growth in vitro Itraconazole significantly inhibited growth of OE33-derived flank xenografts in mice with detectable levels of itraconazole and its primary metabolite, hydroxyitraconazole, in esophagi and tumors. HER2 total protein and phosphorylation of AKT and S6 proteins were decreased in xenografts from itraconazole-treated mice compared to xenografts from placebo-treated mice. In an early phase I clinical trial (NCT02749513) in patients with esophageal cancer, itraconazole decreased HER2 total protein expression and phosphorylation of AKT and S6 proteins in tumors. These data demonstrate that itraconazole has potent antitumor properties in esophageal cancer, partially through blockade of HER2/AKT signaling.


Assuntos
Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Itraconazol/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Animais , Apoptose , Ciclo Celular , Movimento Celular , Proliferação de Células , Inibidores do Citocromo P-450 CYP3A/farmacologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Humanos , Itraconazol/farmacocinética , Dose Máxima Tolerável , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Drug Deliv ; 28(1): 906-919, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33960245

RESUMO

Itraconazole (ITC), a well-tolerated antifungal drug, exerts multiple anticancer effects which justified its preclinical and clinical investigation as potential anti-cancer agent with reduced side effects. Enhancement of ITC anti-cancer efficacy would bring valuable benefits to patients. We propose herein lipid nanocapsules (LNCs) modified with a subtherapeutic dose of miltefosine (MFS) as a membrane bioactive amphiphilic additive (M-ITC-LNC) for the development of an ITC nanoformulation with enhanced anticancer activity compared with ITC solution (ITC-sol) and unmodified ITC-LNC. Both LNC formulations showed a relatively small size (43-46 nm) and high entrapment efficiency (>97%), though ITC release was more sustained by M-ITC-LNC. Cytotoxicity studies revealed significantly greater anticancer activity and selectivity of M-ITC-LNC for MCF-7 breast cancer cells compared with ITC-sol and ITC-LNC. This trend was substantiated by in vivo findings following a 14 day-treatment of murine mammary pad Ehrlich tumors. M-ITC-LNC showed the greatest enhancement of the ITC-induced tumor growth inhibition, proliferation, and necrosis. At the molecular level, the tumor content of Gli 1, caspase-3, and vascular endothelial growth factor verified superiority of M-ITC-LNC in enhancing the ITC antiangiogenic, apoptotic, and Hedgehog pathway inhibitory effects. Finally, histopathological and biochemical analysis indicated greater reduction of ITC systemic toxicity by M-ITC-LNC. Superior performance of M-ITC-LNC was attributed to the effect of MFS on the structural and release properties of LNC coupled with its distinct bioactivities. In conclusion, MFS-modified LNC provides a simple nanoplatform integrating the potentials of LNC and MFS for enhancing the chemotherapeutic efficacy of ITC and possibly other oncology drugs.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Itraconazol/farmacologia , Nanocápsulas/química , Fosforilcolina/análogos & derivados , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Portadores de Fármacos/química , Combinação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Proteínas Hedgehog/efeitos dos fármacos , Humanos , Itraconazol/administração & dosagem , Itraconazol/farmacocinética , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/tratamento farmacológico , Tamanho da Partícula , Fosforilcolina/administração & dosagem , Fosforilcolina/farmacocinética , Fosforilcolina/farmacologia , Distribuição Aleatória
11.
Eur J Clin Pharmacol ; 77(2): 223-231, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32965548

RESUMO

PURPOSE: Iberdomide is a cereblon E3 ligase modulator capable of redirecting the protein degradation machinery of the cell towards the elimination of target proteins potentially driving therapeutic effects. In vitro studies demonstrated that iberdomide predominantly undergoes oxidative metabolism mediated by cytochrome P450 (CYP) 3A4/5 but had no notable inhibition or induction of CYP enzymes. Consequently, the potential of iberdomide as a victim of drug-drug interactions (DDI) was evaluated in a clinical study with healthy subjects. METHODS: A total of 33 males and 5 females with 19 subjects per part were enrolled. Part 1 evaluated the pharmacokinetics (PK) of iberdomide alone (0.6 mg) and when administered with the CYP3A and P-gp inhibitor itraconazole (200 mg twice daily on day 1 and 200 once daily on days 2 through 9). Part 2 evaluated the PK of iberdomide alone (0.6 mg) and with CYP3A4 inducer rifampin (600 mg QD days 1 through 13). Plasma concentrations of iberdomide and the active metabolite M12 were determined by validated liquid chromatography-tandem mass spectrometry assay. RESULTS: Coadministration of iberdomide with itraconazole increased iberdomide peak plasma concentration (Cmax) 17% and area under the concentration curve (AUC) approximately 2.4-fold relative to administration of iberdomide alone. The Cmax and AUC of iberdomide were reduced by approximately 70% and 82%, respectively, when iberdomide was administered with rifampin compared with iberdomide administered alone. Exploratory assessment of metabolite M12 concentrations demonstrated that CYP3A is responsible for M12 formation. CONCLUSIONS: Caution should be taken when coadministering iberdomide with strong CYP3A inhibitors. Coadministration of iberdomide with strong CYP3A inducers is not advised. CLINICAL TRIAL REGISTRATION: Clinical trial identification number is NCT02820935 and was registered in July 2016.


Assuntos
Indutores do Citocromo P-450 CYP3A/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Fatores Imunológicos/farmacocinética , Adulto , Área Sob a Curva , Citocromo P-450 CYP3A/metabolismo , Indutores do Citocromo P-450 CYP3A/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Interações Medicamentosas , Feminino , Voluntários Saudáveis , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Humanos , Fatores Imunológicos/administração & dosagem , Itraconazol/administração & dosagem , Itraconazol/farmacocinética , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Microssomos Hepáticos , Pessoa de Meia-Idade , Morfolinas , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Ftalimidas , Piperidonas , Rifampina/administração & dosagem , Rifampina/farmacocinética , Adulto Jovem
12.
Eur J Clin Pharmacol ; 77(3): 369-379, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33033881

RESUMO

PURPOSE: Serum markers of renal function have not been characterized in patients treated with itraconazole (ITZ). This study aimed to evaluate the associations between plasma ITZ and its hydroxylated metabolite (OH-ITZ) concentrations and serum markers of renal function in patients with hematopoietic or immune-related disorder. METHODS: This study enrolled 40 patients with hematopoietic or immune-related disorder who are receiving oral ITZ solution. Plasma concentrations of ITZ and OH-ITZ at 12 h after dosing were determined at steady state. Their relationships with serum levels of creatinine and cystatin C and their estimated glomerular filtration rate (eGFR) were evaluated. RESULTS: The free plasma concentration of ITZ had no correlation with serum creatinine and serum creatinine-based estimated glomerular filtration rate (eGFR-cre). The free plasma concentration of OH-ITZ was positively and negatively correlated with serum creatinine and eGFR-cre, respectively. The free plasma concentrations of ITZ and OH-ITZ had no association with serum cystatin C and serum cystatin C-based eGFR. Serum creatinine was higher by 16% after than before starting ITZ treatment, while eGFR-cre was lower by 9.3%. The serum creatinine ratio after/before ITZ treatment was positively correlated with the free plasma concentration of OH-ITZ. The patients co-treated with trimethoprim-sulfamethoxazole had higher serum creatinine. Concomitant glucocorticoid administration did not significantly alter serum cystatin C. CONCLUSIONS: Patients with hematopoietic or immune-related disorder treated with oral ITZ had a higher level of serum creatinine. Although serum creatinine potentially increases in conjunction with the free plasma concentration of OH-ITZ, concomitant ITZ administration has a slight impact on the eGFR-cre level in clinical settings.


Assuntos
Antifúngicos/farmacocinética , Doenças Hematológicas/tratamento farmacológico , Doenças do Sistema Imunitário/tratamento farmacológico , Itraconazol/farmacocinética , Administração Oral , Idoso , Antifúngicos/administração & dosagem , Creatinina/sangue , Cistatina C/sangue , Feminino , Taxa de Filtração Glomerular , Humanos , Hidroxilação , Itraconazol/administração & dosagem , Masculino , Pessoa de Meia-Idade
13.
Curr Drug Metab ; 21(13): 1022-1030, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33092505

RESUMO

BACKGROUND: Dasatinib, as an oral multi-targeted inhibitor of BCR-ABL and SRC family kinases, has been widely used for the treatment of Philadelphia Chromosome Positive Leukemias in imatinib-acquired resistance and intolerance. The study aimed to develop and validate a simple and robust assay with a small volume of plasma based on liquid chromatography coupled with tandem mass spectrometry to determine the concentration of dasatinib and to investigate the impact of the cytochrome 3A4 inhibitors, including ketoconazole, voriconazole, itraconazole and posaconazole, on the pharmacokinetics of dasatinib in rats. METHODS: Thirty rats were divided randomly into five groups, control group (0.5% carboxymethylcellulose sodium), ketoconazole (30 mg/kg) group, voriconazole group (30 mg/kg), itraconazole group (30 mg/kg) and posaconazole group (30 mg/kg). After 150 µL blood samples were collected at 0, 0.5, 1, 2, 4, 6, 8, 10, 12, 24, and 48 h and precipitated with acetonitrile, the plasma concentration of dasatinib was determined through Fluoro- Phenyl column (150 mm×2.1 mm, 3 µm) in a positive ionization mode. RESULTS: The results suggested that ketoconazole, voriconazole, and posaconazole could increase the AUC0-t of dasatinib to varying degrees while significantly reducing its clearance. However, there was no significant impact on the pharmacokinetics of dasatinib, co-administered with itraconazole except for the CL and MRT0-t of dasatinib. Additionally, voriconazole could significantly increase Cmax of dasatinib by approximately 4.12 fold. CONCLUSION: These data indicated that ketoconazole, posaconazole and voriconazole should be cautiously co-administered with dasatinib or close therapeutic drug monitoring of dasatinib concentration, which might cause the drug-drug interaction.


Assuntos
Antifúngicos/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Dasatinibe/farmacocinética , Monitoramento de Medicamentos/métodos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacocinética , Administração Oral , Animais , Antifúngicos/administração & dosagem , Antifúngicos/isolamento & purificação , Área Sob a Curva , Cromatografia Líquida de Alta Pressão/métodos , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/isolamento & purificação , Dasatinibe/administração & dosagem , Dasatinibe/isolamento & purificação , Interações Medicamentosas , Humanos , Itraconazol/administração & dosagem , Itraconazol/isolamento & purificação , Itraconazol/farmacocinética , Cetoconazol/administração & dosagem , Cetoconazol/isolamento & purificação , Cetoconazol/farmacocinética , Masculino , Modelos Animais , Inibidores de Proteínas Quinases/administração & dosagem , Ratos , Espectrometria de Massas em Tandem/métodos , Triazóis/administração & dosagem , Triazóis/isolamento & purificação , Triazóis/farmacocinética , Voriconazol/administração & dosagem , Voriconazol/isolamento & purificação , Voriconazol/farmacocinética
14.
Cancer Chemother Pharmacol ; 86(5): 619-632, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32978634

RESUMO

PURPOSE: Develop a physiologically based pharmacokinetic (PBPK) model of ivosidenib using in vitro and clinical PK data from healthy participants (HPs), refine it with clinical data on ivosidenib co-administered with itraconazole, and develop a model for patients with acute myeloid leukemia (AML) and apply it to predict ivosidenib drug-drug interactions (DDI). METHODS: An HP PBPK model was developed in Simcyp Population-Based Simulator (version 15.1), with the CYP3A4 component refined based on a clinical DDI study. A separate model accounting for the reduced apparent oral clearance in patients with AML was used to assess the DDI potential of ivosidenib as the victim of CYP3A perpetrators. RESULTS: For a single 250 mg ivosidenib dose, the HP model predicted geometric mean ratios of 2.14 (plasma area under concentration-time curve, to infinity [AUC0-∞]) and 1.04 (maximum plasma concentration [Cmax]) with the strong CYP3A4 inhibitor, itraconazole, within 1.26-fold of the observed values (2.69 and 1.0, respectively). The AML model reasonably predicted the observed ivosidenib concentration-time profiles across all dose levels in patients. Predicted ivosidenib geometric mean steady-state AUC0-∞ and Cmax ratios were 3.23 and 2.26 with ketoconazole, and 1.90 and 1.52 with fluconazole, respectively. Co-administration of the strong CYP3A4 inducer, rifampin, predicted a greater DDI effect on a single dose of ivosidenib than on multiple doses (AUC ratios 0.35 and 0.67, Cmax ratios 0.91 and 0.81, respectively). CONCLUSION: Potentially clinically relevant DDI effects with CYP3A4 inducers and moderate and strong inhibitors co-administered with ivosidenib were predicted. Considering the challenges of conducting clinical DDI studies in patients, this PBPK approach is valuable in ivosidenib DDI risk assessment and management.


Assuntos
Antineoplásicos/farmacocinética , Indutores do Citocromo P-450 CYP3A/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Itraconazol/farmacocinética , Leucemia Mieloide Aguda/tratamento farmacológico , Administração Oral , Antineoplásicos/administração & dosagem , Área Sob a Curva , Simulação por Computador , Citocromo P-450 CYP3A/metabolismo , Indutores do Citocromo P-450 CYP3A/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Interações Medicamentosas , Feminino , Fluconazol/administração & dosagem , Fluconazol/farmacocinética , Glicina/administração & dosagem , Glicina/análogos & derivados , Glicina/farmacocinética , Voluntários Saudáveis , Humanos , Itraconazol/administração & dosagem , Cetoconazol/administração & dosagem , Cetoconazol/farmacocinética , Masculino , Microssomos Hepáticos , Modelos Biológicos , Piridinas/administração & dosagem , Piridinas/farmacocinética , Rifampina/administração & dosagem , Rifampina/farmacocinética
15.
Clin Cancer Res ; 26(22): 6017-6027, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32847935

RESUMO

PURPOSE: Itraconazole has been repurposed as an anticancer therapeutic agent for multiple malignancies. In preclinical models, itraconazole has antiangiogenic properties and inhibits Hedgehog pathway activity. We performed a window-of-opportunity trial to determine the biologic effects of itraconazole in human patients. EXPERIMENTAL DESIGN: Patients with non-small cell lung cancer (NSCLC) who had planned for surgical resection were administered with itraconazole 300 mg orally twice daily for 10-14 days. Patients underwent dynamic contrast-enhanced MRI and plasma collection for pharmacokinetic and pharmacodynamic analyses. Tissues from pretreatment biopsy, surgical resection, and skin biopsies were analyzed for itraconazole and hydroxyitraconazole concentration, and vascular and Hedgehog pathway biomarkers. RESULTS: Thirteen patients were enrolled in this study. Itraconazole was well-tolerated. Steady-state plasma concentrations of itraconazole and hydroxyitraconazole demonstrated a 6-fold difference across patients. Tumor itraconazole concentrations trended with and exceeded those of plasma. Greater itraconazole levels were significantly and meaningfully associated with reduction in tumor volume (Spearman correlation, -0.71; P = 0.05) and tumor perfusion (Ktrans; Spearman correlation, -0.71; P = 0.01), decrease in the proangiogenic cytokines IL1b (Spearman correlation, -0.73; P = 0.01) and GM-CSF (Spearman correlation, -1.00; P < 0.001), and reduction in tumor microvessel density (Spearman correlation, -0.69; P = 0.03). Itraconazole-treated tumors also demonstrated distinct metabolic profiles. Itraconazole treatment did not alter transcription of GLI1 and PTCH1 mRNA. Patient size, renal function, and hepatic function did not predict itraconazole concentrations. CONCLUSIONS: Itraconazole demonstrates concentration-dependent early antivascular, metabolic, and antitumor effects in patients with NSCLC. As the number of fixed dose cancer therapies increases, attention to interpatient pharmacokinetics and pharmacodynamics differences may be warranted.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Itraconazol/administração & dosagem , Neovascularização Patológica/tratamento farmacológico , Adulto , Inibidores da Angiogênese/efeitos adversos , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Biópsia , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Feminino , Proteínas Hedgehog/genética , Humanos , Itraconazol/análogos & derivados , Itraconazol/sangue , Itraconazol/farmacocinética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/sangue , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/cirurgia , Receptor Patched-1/genética , Proteína GLI1 em Dedos de Zinco/genética
16.
Drug Des Devel Ther ; 14: 2061-2067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32546970

RESUMO

BACKGROUND: Gilteritinib, a novel, potent FLT3/AXL inhibitor, was recently approved in Japan and USA for the treatment of adult patients who have relapsed or refractory acute myeloid leukemia (AML) with a FLT3 mutation. PURPOSE AND METHODS: In this study, we aimed to develop and validate a sensitive and simple ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the quantification of gilteritinib in plasma and to investigate whether CYP3A4 inhibitors (fluconazole and itraconazole) could influence the pharmacokinetics of gilteritinib from a drug-drug interaction study in rats. Sample preparation was done by a simple protein crash with acetonitrile containing the internal standard (IS) pirfenidone, followed by UPLC-MS/MS quantification. RESULTS: The assay was successfully validated in a 1-500 ng/mL calibration range for gilteritinib, where the lower limit of quantification (LLOQ) was set at 1 ng/mL. The intra-day and inter-day precisions for gilteritinib were less than 10.6%, and the accuracies were in the range of -14.5% to 11.1%. Recovery and matrix effect of the analyte and IS were acceptable, and the analyte was stable during the assay and storage in plasma samples. The validated UPLC-MS/MS method was successfully applied to a drug-drug interaction study between gilteritinib and CYP3A4 inhibitors (fluconazole and itraconazole) in rats. Itraconazole significantly increased the exposure of gilteritinib, and affected the pharmacokinetics of gilteritinib in rats, not fluconazole. CONCLUSION: A further clinical study should be conducted to investigate the effect of itraconazole on the metabolism of gilteritinib in subjects.


Assuntos
Compostos de Anilina/sangue , Fluconazol/sangue , Itraconazol/sangue , Pirazinas/sangue , Administração Oral , Compostos de Anilina/administração & dosagem , Compostos de Anilina/farmacocinética , Animais , Cromatografia Líquida de Alta Pressão , Interações Medicamentosas , Fluconazol/administração & dosagem , Fluconazol/farmacocinética , Itraconazol/administração & dosagem , Itraconazol/farmacocinética , Masculino , Pirazinas/administração & dosagem , Pirazinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
17.
J Clin Pharmacol ; 60(10): 1314-1323, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32459872

RESUMO

The effects of itraconazole on the pharmacokinetics of rovatirelin were investigated in an open-label, single-sequence drug-drug interaction study in 16 healthy subjects. Subjects were administered a single oral dose of rovatirelin (1.6 mg) on day 1 and day 15. From day 8 through 16, subjects received daily oral doses of itraconazole (200 mg/day). Concentrations of rovatirelin and (thiazolylalanyl)methylpyrrolidine (TAMP), the major metabolite of rovatirelin formed by cytochrome P450 (CYP) 3A4/5, were determined in plasma and urine. Pharmacokinetic parameters were used to evaluate the drug-drug interaction potential of rovatirelin as a victim. With coadministration, maximum concentration (Cmax ) and area under the concentration-time curve extrapolated to infinity (AUCinf ) of rovatirelin increased 3.05-fold and 2.82-fold, respectively, and the 90% confidence intervals of the ratios for Cmax (2.64-3.52) and AUCinf (2.47-3.23) did not fall within the 0.8-1.25 boundaries. Urinary excretion of rovatirelin increased at almost the same ratio as the AUCinf ratio with coadministration; however, renal clearance did not change. Cmax , AUCinf , and urinary excretion of TAMP were decreased by coadministration. Itraconazole has the potential to inhibit drug transport via intestinal P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP); therefore, substrate assessments of rovatirelin for the 2 transporters were evaluated using Caco-2 cell monolayers. In vitro studies showed that rovatirelin is a substrate for P-gp but not for BCRP. The current study shows that itraconazole's effect on rovatirelin pharmacokinetics is mediated through inhibition of CYP3A4/5 and intestinal P-gp.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Interações Medicamentosas , Itraconazol/farmacocinética , Oxazolidinonas/farmacocinética , Pirrolidinas/farmacocinética , Hormônio Liberador de Tireotropina/análogos & derivados , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Administração Oral , Adulto , Área Sob a Curva , Povo Asiático , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/farmacologia , Vias de Eliminação de Fármacos/efeitos dos fármacos , Voluntários Saudáveis , Hormônios/sangue , Humanos , Itraconazol/administração & dosagem , Itraconazol/farmacologia , Masculino , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Oxazolidinonas/administração & dosagem , Oxazolidinonas/efeitos adversos , Oxazolidinonas/metabolismo , Permeabilidade/efeitos dos fármacos , Pirrolidinas/administração & dosagem , Pirrolidinas/efeitos adversos , Pirrolidinas/metabolismo , Adulto Jovem
18.
J Avian Med Surg ; 34(1): 52-56, 2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32237682

RESUMO

Aspergillosis is a common cause of morbidity and mortality in captive penguins. Itraconazole, an antifungal drug, is commonly used to treat aspergillosis infections in avian species; however, commercially available human formulations are costly, and studies have shown the effectiveness of compounded formulations to be unreliable. The US Food and Drug Administration (FDA) recently approved a veterinary formulation of itraconazole, Itrafungol, for use in cats. This study provides preliminary results from limited sampling evaluating whether this veterinary formulation is suitable for future studies in the African penguin (Spheniscus demersus). A 20 mg/kg PO itraconazole dose was administered to 9 African penguins. Blood samples were taken over the course of 24 hours; each sample was collected from a different bird to minimize stress to the animals. Plasma was analyzed by high-performance liquid chromatography for concentrations of itraconazole. The drug was absorbed in all penguins, and plasma concentrations in 5 of 9 penguins (56%) were found to be greater than the established therapeutic dose of 1.0 µg/ mL. To our knowledge, this is the first study that has investigated a 20 mg/kg dose of itraconazole in a penguin species. The small sample size limits the conclusions that can be drawn from this preliminary study. Nonetheless, we demonstrate encouraging evidence that the FDA-approved formulation of oral itraconazole solution should be considered for future study as a cost-effective treatment for aspergillosis in African penguins and other avian species.


Assuntos
Antifúngicos/farmacocinética , Itraconazol/farmacocinética , Spheniscidae/metabolismo , Administração Oral , Animais , Antifúngicos/administração & dosagem , Antifúngicos/sangue , Aspergilose/tratamento farmacológico , Aspergilose/veterinária , Doenças das Aves/tratamento farmacológico , Composição de Medicamentos/veterinária , Feminino , Meia-Vida , Itraconazol/administração & dosagem , Itraconazol/sangue , Masculino , Projetos Piloto
19.
Int J Pharm ; 575: 119002, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31893546

RESUMO

Itraconazole (ITZ) can be used for the treatment of cryptococcus neoformans meningitis and aspergillus brain abscess. While, the inherent hydrophobicity of ITZ and the existence of blood brain barrier (BBB) limit its applications as a central nervous system drug. In this study, a novel brain targeting drug delivery system based on bovine serum albumin (BSA) was constructed for enhancing ITZ distribution in brain. Firstly, ITZ was loaded into BSA nanoparticles (ITZ-NPs) with 11.6% of drug loading. Subsequently, the nanoparticles were modified with borneol (BO) and polyethylene glycol (PEG) (PEG/BO-ITZ-NPs). The resulting nanoparticles retained their nanosize (186.3 nm), uniform and spherical morphology, and negative surface charge (-21.03 mV). Cell uptake studies showed that compared with ITZ-NPs, PEG/BO-ITZ-NPs had significantly increased uptake in bEnd.3 cells, and the increase in BO concentration was beneficial for the cellular uptake of NPs. Moreover, PEG/BO-ITZ-NPs displayed an approximately 3.5-fold higher area under the curve in rats and about 2-fold higher brain distribution in mice than that of Sporanox®, i.e. ITZ solubilized by hydroxylpropyl-ß-cyclodetrin, after i.v. administration. In a word, BO and PEG dual modified BSA nanoparticles may potentially serve as an ITZ vehicle for brain targeting.


Assuntos
Barreira Hematoencefálica/metabolismo , Portadores de Fármacos/química , Itraconazol/farmacocinética , Nanopartículas/química , Tecnologia Farmacêutica/métodos , Animais , Encéfalo/metabolismo , Canfanos/química , Linhagem Celular , Liberação Controlada de Fármacos , Itraconazol/administração & dosagem , Masculino , Camundongos , Tamanho da Partícula , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Soroalbumina Bovina/química
20.
Clin Pharmacol Drug Dev ; 9(2): 214-223, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31287236

RESUMO

In vitro data support involvement of cytochrome P450 (CYP)2C8 and CYP3A4 in the metabolism of the anaplastic lymphoma kinase inhibitor brigatinib. A 3-arm, open-label, randomized, single-dose, fixed-sequence crossover study was conducted to characterize the effects of the strong inhibitors gemfibrozil (of CYP2C8) and itraconazole (of CYP3A) and the strong inducer rifampin (of CYP3A) on the single-dose pharmacokinetics of brigatinib. Healthy subjects (n = 20 per arm) were administered a single dose of brigatinib (90 mg, arms 1 and 2; 180 mg, arm 3) alone in treatment period 1 and coadministered with multiple doses of gemfibrozil 600 mg twice daily (BID; arm 1), itraconazole 200 mg BID (arm 2), or rifampin 600 mg daily (QD; arm 3) in period 2. Compared with brigatinib alone, coadministration of gemfibrozil with brigatinib did not meaningfully affect brigatinib area under the plasma concentration-time curve (AUC0-inf ; geometric least-squares mean [LSM] ratio [90%CI], 0.88 [0.83-0.94]). Coadministration of itraconazole with brigatinib increased AUC0-inf (geometric LSM ratio [90%CI], 2.01 [1.84-2.20]). Coadministration of rifampin with brigatinib substantially reduced AUC0-inf (geometric LSM ratio [90%CI], 0.20 [0.18-0.21]) compared with brigatinib alone. The treatments were generally tolerated. Based on these results, strong CYP3A inhibitors and inducers should be avoided during brigatinib treatment. If concomitant use of a strong CYP3A inhibitor is unavoidable, the results of this study support a dose reduction of brigatinib by approximately 50%. Furthermore, CYP2C8 is not a meaningful determinant of brigatinib clearance, and no dose modifications are needed during coadministration of brigatinib with CYP2C8 inhibitors.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Indutores do Citocromo P-450 CYP3A/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Compostos Organofosforados/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/farmacocinética , Administração Oral , Adulto , Idoso , Quinase do Linfoma Anaplásico/metabolismo , Área Sob a Curva , Estudos Cross-Over , Indutores do Citocromo P-450 CYP2B6/administração & dosagem , Indutores do Citocromo P-450 CYP2B6/farmacocinética , Citocromo P-450 CYP2C8/metabolismo , Inibidores do Citocromo P-450 CYP2C8/administração & dosagem , Inibidores do Citocromo P-450 CYP2C8/farmacocinética , Interações Medicamentosas , Quimioterapia Combinada , Feminino , Genfibrozila/administração & dosagem , Genfibrozila/farmacocinética , Voluntários Saudáveis , Humanos , Itraconazol/administração & dosagem , Itraconazol/farmacocinética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Compostos Organofosforados/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Rifampina/administração & dosagem , Rifampina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA