Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 846
Filtrar
1.
Zhonghua Xue Ye Xue Za Zhi ; 45(9): 872-875, 2024 Sep 14.
Artigo em Chinês | MEDLINE | ID: mdl-39414615

RESUMO

Refractory acute T-lymphoblastic leukemia (T-ALL), which is characterized by a low sensitivity to conventional induction therapy and poor prognosis, poses significant challenges during treatment. This study reported a case of refractory T-ALL patient with mutations in the JAK1, JAK3, and STAT5B genes from Nanjing University's Gulou Hospital. Following an unsuccessful course of standard VDLP regimen chemotherapy, the treatment was modified to include ruxolitinib in combination with venetoclax and azacitidine. Subsequent to this therapy, the patient achieved bone marrow minimal residual disease (MRD) negativity. Notably, pleural effusion and mediastinal mass significantly improved the post-chest cavity infusion of dexamethasone combined with etoposide at the same stage. The patient also underwent allogeneic hematopoietic stem cell transplantation upon achieving bone marrow remission and was followed up until January 2024. Ruxolitinib combined with venetoclax and azacytidine has shown promising efficacy and safety in treating refractory T-ALL harboring the JAK1, JAK3, and STAT5B mutations, providing a novel therapeutic approach for such patients.


Assuntos
Azacitidina , Compostos Bicíclicos Heterocíclicos com Pontes , Janus Quinase 1 , Janus Quinase 3 , Mutação , Nitrilas , Pirazóis , Pirimidinas , Fator de Transcrição STAT5 , Sulfonamidas , Humanos , Sulfonamidas/administração & dosagem , Fator de Transcrição STAT5/genética , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Janus Quinase 1/genética , Janus Quinase 3/genética , Nitrilas/administração & dosagem , Azacitidina/administração & dosagem , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
2.
Neoplasia ; 57: 101048, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39276532

RESUMO

Indolent natural killer cell lymphoproliferative disorder of the gastrointestinal tract (iNKLPD-GI) is an uncommon, recently recognized lymphoid proliferation of mature NK cells primarily manifesting in the GI tract. Unlike NK/T lymphoma, iNKLPD-GI exhibits a rather indolent clinical course, underscoring the need for cautious management to prevent unnecessary interventions. However, clinical and molecular features of this entity have not been thoroughly understood. This study aimed to add more information to the current knowledge of this disease. Seven patients with iNKLPD-GI were included in our study. Clinical data included initial symptoms, endoscopic manifestations, pathological features, and therapies. Besides, next-generation sequencing was arranged to explore the underlying genetic mechanism of this disease. In our study, iNKLPD-GI in the urinary bladder was first identified. Edema of extremities (3, 42.8 %) was the most prevalent onset symptom which was reported for the first time. Pathological and immunohistological features were found to display the phenotype of NK cells. Unlike extranodal NK/T cell lymphoma, Epstein-Barr virus-encoded small RNA (EBER) were negative in all patients. Moreover, we found that two patients harbored JAK3 mutation. Apart from JAK3 K563_C565del previously reported in the literature, we discovered new JAK3 mutation sites. Other mutations including BRAF, KRAS, and SH2B3 were also identified. In conclusion, iNKLPD-GI was an indolent atypical NK-cell proliferation with diverse clinical characteristics. "Watch and wait" therapy was preferable to intense chemotherapy. Recurrent JAK3 mutation may be the underlying mechanism responsible for the neoplastic nature of the disease and may serve as a potential target for patients with severe symptoms.


Assuntos
Células Matadoras Naturais , Transtornos Linfoproliferativos , Mutação , Humanos , Masculino , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Células Matadoras Naturais/imunologia , Feminino , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/patologia , Pessoa de Meia-Idade , Adulto , Idoso , Sequenciamento de Nucleotídeos em Larga Escala , Janus Quinase 3/genética , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , China/epidemiologia , População do Leste Asiático
3.
Neurotherapeutics ; 21(5): e00431, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39153914

RESUMO

Glioblastoma (GBM) is a brain tumor characterized by its aggressive and invasive properties. It is found that STAT3 is abnormally activated in GBM, and inhibiting STAT3 signaling can effectively suppress tumor progression. In this study, novel pyrimidine compounds, BY4003 and BY4008, were synthesized to target the JAK3/STAT3 signaling pathway, and their therapeutic efficacy and mechanisms of action were evaluated and compared with Tofacitinib in U251, A172, LN428 and patient-derived glioblastoma cells. The ADP-Glo™ kinase assay was utilized to assessed the inhibitory effects of BY4003 and BY4008 on JAK3, a crucial member of the JAK family. The results showed that both compounds significantly inhibited JAK3 enzyme activity, with IC50 values in the nanomolar range. The antiproliferative effects of BY4003, BY4008, and Tofacitinib on GBM and patient-derived glioblastoma cells were evaluated by MTT and H&E assays. The impact of BY4003 and BY4008 on GBM cell migration and apoptosis induction was assessed through wound healing, transwell, and TUNEL assays. STAT3-regulated protein expression and relative mRNA levels were analyzed by western blotting, immunocytochemistry, immunofluorescence, and qRT-PCR. It was found that BY4003, BY4008 and Tofacitinib could inhibit U251, A172, LN428 and patient-derived glioblastoma cells growth and proliferation. Results showed decreased expression of STAT3-associated proteins, including p-STAT3, CyclinD1, and Bcl-2, and increased expression of Bax, a pro-apoptotic protein, as well as significant down-regulation of STAT3 and STAT3-related genes. These findings suggested that BY4003 and BY4008 could inhibit GBM growth by suppressing the JAK3/STAT3 signaling pathway, providing valuable insights into the therapeutic development of GBM.


Assuntos
Neoplasias Encefálicas , Proliferação de Células , Glioblastoma , Janus Quinase 3 , Pirimidinas , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Pirimidinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Janus Quinase 3/metabolismo , Janus Quinase 3/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Piperidinas
4.
Drug Metab Dispos ; 52(10): 1124-1136, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39111823

RESUMO

Ritlecitinib is an oral once-daily irreversible inhibitor of Janus kinase 3 and tyrosine-protein kinase family being developed for the treatment of moderate-to-severe alopecia areata. This study examined the disposition of ritlecitinib in male participants following oral and intravenous administration using accelerator mass spectroscopy methodology to estimate pharmacokinetic parameters and characterize metabolite profiles. The results indicated ritlecitinib had a systemic clearance of 43.7 L/h, a steady state volume of distribution of 73.8 L, extent of absorption of 89%, time to maximum plasma concentration of ∼0.5 hours, and absolute oral bioavailability of 64%. An observed long terminal half-life of total radioactivity was primarily attributed to ritlecitinib binding to plasma albumin. Ritlecitinib was the main circulating drug species in plasma (∼30%), with one major pharmacologically inactive cysteine conjugated metabolite (M2) at >10%. Oxidative metabolism (fractional clearance 0.47) and glutathione-related conjugation (fractional clearance 0.24) were the primary routes of elimination for ritlecitinib with the greatest disposition of radioactivity shown in the urine (∼71%). In vitro phenotyping indicated ritlecitinib cytochrome P450 (CYP) fraction of metabolism assignments of 0.29 for CYP3A, 0.09 for CYP2C8, 0.07 for CYP1A2, and 0.02 for CYP2C9. In vitro phenotyping in recombinant human glutathione S-transferases indicated ritlecitinib was turned over by a number of cytosolic and microsomal enzyme isoforms. SIGNIFICANCE STATEMENT: This study provides a detailed understanding of the disposition and metabolism of ritlecitinib, a JAK3 and TEC family kinase inhibitor for alopecia areata in humans, as well as characterization of clearance pathways and pharmacokinetics of ritlecitinib and its metabolites. As an AMS-based ADME study design, we have expanded on reporting the standard ADME endpoints, providing key pharmacokinetic parameters, such as clearance, volume of distribution, and bioavailability, allowing for a more comprehensive understanding of drug disposition.


Assuntos
Inibidores de Proteínas Quinases , Humanos , Masculino , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/administração & dosagem , Adulto , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/metabolismo , Administração Oral , Adulto Jovem , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Disponibilidade Biológica , Meia-Vida , Administração Intravenosa
5.
Transpl Immunol ; 85: 102075, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936745

RESUMO

BACKGROUND: Despite the significant role of JAK3 in various autoimmune diseases, including graft-versus-host disease (GVHD), there has been a lack of potent and selective JAK3 inhibitors specifically studied for GVHD. In our preclinical investigations, we evaluated a novel JAK3 inhibitor called CS12192, which is already undergoing clinical investigation in autoimmune diseases. METHODS: We evaluated the efficacy of CS12192 in GVHD through mixed lymphocyte reaction (MLR) in both mouse and human cells, as well as allogeneic bone marrow transplantation (BMT) in a murine model. RESULTS: CS12192, starting at a concentration of 0.5 µM, dose-dependently reduced the intracellular positivity for cytokines TNF-α and IFN-γ in CD4+ T cells (p < 0.05 to p < 0.0001) and CD8+ T cells (p < 0.01 to p < 0.0001) during mouse allogeneic MLR assays. This effect was observed for both single and double positivity of the cytokines. Moreover, In MLR assays with three different human donors, CS12192 also demonstrated a dose-dependent reduction in the proportion of IFN-γ positive CD4+ T cells (p < 0.0001) and CD8+ T cells (p < 0.01 to p < 0.0001). Additionally, it suppressed T cell proliferation in the mouse MLR (p < 0.05 to p < 0.0001), but this effect was observed in only one human donor (p < 0.001 to p < 0.0001). Furthermore, the administration of CS12192 at 40 and 80 mg/kg BID significantly improved the survival rate in the BMT model, resulting in cumulative 62-day survival rates of 88.89% (p < 0.01) and 100% (p < 0.001), respectively, compared with prednisolone (p < 0.05). CONCLUSIONS: CS12192 is a novel, potent and selective JAK3 inhibitor demonstrating great potential to mitigate acute GVHD.


Assuntos
Transplante de Medula Óssea , Doença Enxerto-Hospedeiro , Janus Quinase 3 , Animais , Humanos , Camundongos , Doença Aguda , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/tratamento farmacológico , Interferon gama/metabolismo , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/metabolismo , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/farmacologia , Teste de Cultura Mista de Linfócitos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nitrilas/uso terapêutico , Pirimidinas/uso terapêutico , Pirimidinas/farmacologia , Transplante Homólogo , Fator de Necrose Tumoral alfa/metabolismo
6.
Gene ; 927: 148719, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38917875

RESUMO

Renal cell carcinoma (RCC) represents a significant portion of genitourinary cancers, marked by challenging prognosis and high metastasis rates. Immunotherapy has been applied in managing advanced renal cell carcinoma, but the therapeutic outcomes are unsatisfactory. In this study, we order to construct a Janus kinase/signal transduction and activator transcriptional (JAK/STAT)-related signature linked to kidney patient outcomes for better predicting the efficacy to immune checkpoint inhibitors (ICIs) and to provide guidance for effective combination therapy. We screened 25 differentially expressed genes (DEGs) that exhibited high expression in RCC samples and were enriched in the JAK-STAT signaling pathway. Among these genes, 11 key genes were identified and correlated with the expectation of Kidney Clear Cell Carcinoma (KIRC) patients and all these genes was significantly elevated in RCC tumor tissues and cancer cells compared to para-cancer tissues and normal renal cells. Utilizing these 11 genes, we divided RCC patients into high-risk and low-risk groups. We found a clear correlation between the clinicopathologic factors of KIRC patients and the JAK-STAT-related risk score. And the IHC results shown that the JAK3 and STAT4 expression of tumor was significantly higher than normal tissue in RCC patients, the level of JAK3 and STAT4 was positively related to the T stage of RCC patients. In addition, high-risk patients had a poorer prognosis and greater protumor immune cell infiltration, and benefitted less from immunotherapy than did low-risk patients. Furthermore, the JAK-STAT-related risk score can predict disease-free survival (DFS) in RCC patients according to the nomogram, which constructed in combination with other clinical features such as age, TNM-staging and stage. Our study demonstrated the JAK-STAT signaling pathway's important regulatory function in RCC tumor immunity. This insight not only enhances our ability to accurately predict the survival rate of RCC patients, but also underscores a potential therapeutic alternative for RCC, involving the combined targeting of the JAK-STAT pathway and immune checkpoints.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Regulação Neoplásica da Expressão Gênica , Imunoterapia , Neoplasias Renais , Transdução de Sinais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Imunoterapia/métodos , Feminino , Masculino , Fator de Transcrição STAT4/genética , Fator de Transcrição STAT4/metabolismo , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Janus Quinases/metabolismo , Janus Quinases/genética , Pessoa de Meia-Idade , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Transcriptoma , Perfilação da Expressão Gênica
7.
Apoptosis ; 29(9-10): 1738-1756, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38641760

RESUMO

To investigate the protective role of immune response gene 1 (IRG1) and exogenous itaconate in autoimmune hepatitis (AIH) and elucidate the underlying mechanisms. Wild-type and IRG1-/- AIH mouse models were established, and samples of liver tissue and ocular blood were collected from each group of mice to assess the effects of IRG1/itaconate on the expression of pro- and anti-inflammatory cytokines. The levels of liver enzymes and related inflammatory factors were determined using enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (PCR). Liver histomorphology was detected through hematoxylin and eosin staining and then scored for liver injury, and the infiltration levels of tissue-resident memory T (TRM) cells and related molecules in the liver tissue were detected through immunofluorescence staining in vitro. RNA sequencing and gene enrichment analysis were conducted to identify the corresponding molecules and pathways, and lentiviral transfection was used to generate TRM cell lines with IRG1, Jak3, Stat3, and p53 knockdown. Real-time quantitative PCR and western blot were performed to detect the expression levels of relevant mRNAs and proteins in the liver tissue and cells. The percentage of apoptotic cells was determined using flow cytometry. IRG1/itaconate effectively reduced the release of pro-inflammatory cytokines and the pathological damage to liver tissue, thereby maintaining normal liver function. At the same time, IRG1/itaconate inhibited the JAK3/STAT3 signaling pathway, regulated the expression of related downstream proteins, and inhibited the proliferation and promoted the apoptosis of CD69+CD103+CD8+ TRM cells. For the first time, P53 was found to act as a downstream molecule of the JAK3/STAT3 pathway and was regulated by IRG1/itaconate to promote the apoptosis of CD8+ TRM cells. IRG1/itaconate can alleviate concanavalin A-induced autoimmune hepatitis in mice by inhibiting the proliferation and promoting the apoptosis of CD69+CD103+CD8+ TRM cells via the JAK3/STAT3/P53 pathway.


Assuntos
Antígenos de Diferenciação de Linfócitos T , Apoptose , Linfócitos T CD8-Positivos , Proliferação de Células , Hepatite Autoimune , Cadeias alfa de Integrinas , Janus Quinase 3 , Fator de Transcrição STAT3 , Proteína Supressora de Tumor p53 , Animais , Camundongos , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Apoptose/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Hepatite Autoimune/imunologia , Hepatite Autoimune/patologia , Hepatite Autoimune/genética , Hepatite Autoimune/tratamento farmacológico , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Janus Quinase 3/antagonistas & inibidores , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/imunologia , Células T de Memória/imunologia , Células T de Memória/metabolismo , Células T de Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
8.
J Clin Immunol ; 44(4): 98, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598033

RESUMO

Biallelic null or hypomorphic variants in JAK3 cause SCID and less frequently Omenn syndrome. We investigated homozygous hypomorphic JAK3 mutations in two patients, and expression and function of a novel JAK3R431P variant in Omenn syndrome. Immunophenotyping of PBMC from the patient with the novel JAK3R431P variant was undertaken, by flow cytometry and Phosflow after stimulation with IL-2, IL-7, and IL-15. JAK3 expression was investigated by Western blotting. We report two patients with homozygous hypomorphic JAK3 variants and clinical features of Omenn syndrome. One patient had a previously described JAK3R775H variant, and the second had a novel JAK3R431P variant. One patient with a novel JAK3R431P variant had normal expression of JAK3 in immortalised EBV-LCL cells but reduced phosphorylation of STAT5 after stimulation with IL-2, IL-7, and IL-15 consistent with impaired kinase activity. These results suggest the JAK3R431P variant to be hypomorphic. Both patients are alive and well after allogeneic haematopoietic stem cell transplantation. They have full donor chimerism, restitution of thymopoiesis and development of appropriate antibody responses following vaccination. We expand the phenotype of hypomorphic JAK3 deficiency and demonstrate the importance of functional testing of novel variants in disease-causing genes.


Assuntos
Janus Quinase 3 , Imunodeficiência Combinada Severa , Humanos , Lactente , Interleucina-15 , Interleucina-2 , Interleucina-7 , Janus Quinase 3/genética , Leucócitos Mononucleares , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia
9.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474223

RESUMO

The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.


Assuntos
Síndromes de Imunodeficiência , Neoplasias , Animais , Humanos , Janus Quinase 3/metabolismo , Transdução de Sinais , Janus Quinases/metabolismo , Receptores de Citocinas/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo
10.
Clin Exp Rheumatol ; 42(9): 1736-1743, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38530663

RESUMO

OBJECTIVES: To explore the effectiveness of tofacitinib for immunoglobulin G4-related disease (IgG4-RD) and idiopathic retroperitoneal fibrosis (IRF), and investigate the expression of JAKs in the lesion of these diseases. METHODS: Clinical data of patients with IgG4-RD or IRF who were administered with tofacitinib monotherapy were collected. IgG4-RD responder index (IgG4-RD RI) was assessed. The expression of JAK1, JAK2, JAK3, and TYK2 were analysed with immunohistochemistry staining in three salivary glands specimens of IgG4-RD and one retroperitoneal tissue of IRF. RESULTS: Two patients with IRF and two patients with IgG4-RD used tofacitinib monotherapy. Two patients with IRF achieved complete remission with diminished retroperitoneal mass and decreased CRP, as IgG4-RD RI decreased from 6 to 1 in both of them. One with IgG4-RD achieved complete remission with alleviated enlargement of pancreas and IgG4 level decreased from 13.7 g/L to 2.4 g/L, as IgG4-RD RI decreased from 12 to 1. One with IgG4-RD achieved partial response with IgG4 level decreased from 77.1g/L to 25.8g/L as IgG4-RD RI from 18 to 6. JAK1, JAK2, JAK3, and TYK2 expression were detected in biopsy tissues. The staining intensity of the JAK family on the lesion from one IRF patient was similar to those from IgG4-RD patients. CONCLUSIONS: Tofacitinib is a potentially effective treatment for IgG4-RD and IRF and it is reasonable to conduct clinical trial to validate its efficacy. The JAKs were expressed in the inflammatory lesions of IgG4-RD and IRF and they may share a common pathogenesis pathway that is independent of IgG4 production.


Assuntos
Doença Relacionada a Imunoglobulina G4 , Piperidinas , Inibidores de Proteínas Quinases , Pirimidinas , Fibrose Retroperitoneal , TYK2 Quinase , Humanos , Piperidinas/uso terapêutico , Fibrose Retroperitoneal/tratamento farmacológico , Pirimidinas/uso terapêutico , Doença Relacionada a Imunoglobulina G4/tratamento farmacológico , Doença Relacionada a Imunoglobulina G4/diagnóstico , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/uso terapêutico , Resultado do Tratamento , Feminino , Janus Quinase 1 , Janus Quinase 2 , Janus Quinase 3 , Idoso , Indução de Remissão , Adulto , Imunoglobulina G , Inibidores de Janus Quinases/uso terapêutico
11.
Int Immunopharmacol ; 132: 111931, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547769

RESUMO

Peficitinib is a selective Janus kinase (JAK3) inhibitor recently developed and approved for the treatment of rheumatoid arthritis in Japan. Glycolysis in macrophages could induce NOD-like receptor (NLR) family and pyrin domain-containing protein 3 (NLRP3) inflammasome activation, thus resulting in pyroptosis and acute lung injury (ALI). The aim of our study was to investigate whether Peficitinib could alleviate lipopolysaccharide (LPS)-induced ALI by inhibiting NLRP3 inflammasome activation. Wild type C57BL/6J mice were intraperitoneally injected with Peficitinib (5 or 10 mg·kg-1·day-1) for 7 consecutive days before LPS injection. The results showed that Peficitinib pretreatment significantly relieved LPS-induced pulmonary edema, inflammation, and apoptosis. NLRP3 inflammasome and glycolysis in murine lung tissues challenged with LPS were also blocked by Peficitinib. Furthermore, we found that the activation of JAK3/signal transducer and activator of transcription 3 (STAT3) was also suppressed by Peficitinib in mice with ALI. However, in Jak3 knockout mice, Peficitinib did not show obvious protective effects after LPS injection. In vitro experiments further showed that Jak3 overexpression completely abolished Peficitinib-elicited inhibitory effects on pyroptosis and glycolysis in LPS-induced RAW264.7 macrophages. Finally, we unveiled that LPS-induced activation of JAK3/STAT3 was mediated by toll-like receptor 4 (TLR4) in RAW264.7 macrophages. Collectively, our study proved that Peficitinib could protect against ALI by blocking JAK3-mediated glycolysis and pyroptosis in macrophages, which may serve as a promising candidate against ALI in the future.


Assuntos
Lesão Pulmonar Aguda , Adamantano/análogos & derivados , Glicólise , Janus Quinase 3 , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Niacinamida , Niacinamida/análogos & derivados , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Janus Quinase 3/metabolismo , Janus Quinase 3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Glicólise/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Knockout , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Inflamassomos/metabolismo , Piroptose/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia
12.
Arch Pharm (Weinheim) ; 357(6): e2300753, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38442328

RESUMO

Selective inhibition of Janus kinase 3 (JAK3) is a promising strategy for the treatment of autoimmune diseases. Based on the discovery of a hydrophobic pocket unutilized between the lead compound RB1 and the JAK3 protein, a series of covalent JAK3 inhibitors were prepared by introducing various aromatic fragments to RB1. Among them, J1b (JAK3 IC50 = 7.2 nM, other JAKs IC50 > 1000 nM) stood out because of its low toxicity (MTD > 2 g/kg) and superior anti-inflammatory activity in Institute of Cancer Research mice. Moreover, the acceptable bioavailability (F% = 31.69%) ensured that J1b displayed excellent immune regulation in collagen-induced arthritis mice, whose joints in the high-dose group were almost recovered to a normal state. Given its clear kinase selectivity (Bmx IC50 = 539.9 nM, other Cys909 kinases IC50 > 1000 nM), J1b was nominated as a highly selective JAK3 covalent inhibitor, which could be used to safely treat arthritis and other autoimmune diseases.


Assuntos
Artrite Experimental , Artrite Reumatoide , Desenho de Fármacos , Janus Quinase 3 , Inibidores de Proteínas Quinases , Animais , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/metabolismo , Camundongos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/induzido quimicamente , Artrite Experimental/enzimologia , Artrite Reumatoide/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Camundongos Endogâmicos DBA , Humanos , Relação Dose-Resposta a Droga , Estrutura Molecular , Masculino , Simulação de Acoplamento Molecular
13.
J Pharmacol Exp Ther ; 389(1): 40-50, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336380

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent type of cancer in young children and is associated with high levels of reactive oxygen species (ROS). The antioxidant N-acetylcysteine (NAC) was tested for its ability to alter disease progression in a mouse model of B-ALL. Mb1-CreΔPB mice have deletions in genes encoding PU.1 and Spi-B in B cells and develop B-ALL at 100% incidence. Treatment of Mb1-CreΔPB mice with NAC in drinking water significantly reduced the frequency of CD19+ pre-B-ALL cells infiltrating the thymus at 11 weeks of age. However, treatment with NAC did not reduce leukemia progression or increase survival by a median 16 weeks of age. NAC significantly altered gene expression in leukemias in treated mice. Mice treated with NAC had increased frequencies of activating mutations in genes encoding Janus kinases 1 and 3. In particular, frequencies of Jak3 R653H mutations were increased in mice treated with NAC compared with control drinking water. NAC opposed oxidization of PTEN protein ROS in cultured leukemia cells. These results show that NAC alters leukemia progression in this mouse model, ultimately selecting for leukemias with high Jak3 R653H mutation frequencies. SIGNIFICANCE STATEMENT: In a mouse model of precursor B-cell acute lymphoblastic leukemia associated with high levels of reactive oxygen species, treatment with N-acetylcysteine did not delay disease progression but instead selected for leukemic clones with activating R653H mutations in Janus kinase 3.


Assuntos
Água Potável , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Camundongos , Animais , Pré-Escolar , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Janus Quinases , Taxa de Mutação , Espécies Reativas de Oxigênio/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Mutação , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Progressão da Doença
14.
Am J Clin Dermatol ; 25(2): 299-314, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263353

RESUMO

BACKGROUND: The ALLEGRO phase 2a and 2b/3 studies demonstrated that ritlecitinib, an oral JAK3/TEC family kinase inhibitor, is efficacious at doses of ≥ 30 mg in patients aged ≥ 12 years with alopecia areata (AA). OBJECTIVE: The objective of this study was to evaluate the safety of ritlecitinib in an integrated analysis of four studies in AA. METHODS: Two cohorts were analyzed: a placebo-controlled and an all-exposure cohort. Proportions and study size-adjusted incidence rates (IRs) of adverse events (AEs) of interest and laboratory abnormalities are reported. RESULTS: In the placebo-controlled cohort (n = 881; median exposure: 169 days), the proportion of ritlecitinib-treated patients with AEs was 70.2-75.4% across doses versus 69.5% in the placebo group; serious AEs occurred in 0-3.2% versus 1.9% for the placebo. A total of 19 patients permanently discontinued due to AEs (5 while receiving the placebo). In the all-exposure cohort (n = 1294), median ritlecitinib exposure was 624 days [2091.7 total patient-years (PY)]. AEs were reported in 1094 patients (84.5%) and serious AEs in 57 (4.4%); 78 (6.0%) permanently discontinued due to AEs. The most common AEs were headache (17.7%; 11.9/100 PY), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive test (15.5%; 9.8/100 PY), and nasopharyngitis (12.4%; 8.2/100 PY). There were two deaths (breast cancer and acute respiratory failure/cardiorespiratory arrest). Proportions (IRs) were < 0.1% (0.05/100 PY) for opportunistic infections, 1.5% (0.9/100 PY) for herpes zoster, 0.5% (0.3/100 PY) for malignancies (excluding nonmelanoma skin cancer), and 0.2% (0.1/100 PY) for major adverse cardiovascular events. CONCLUSIONS: Ritlecitinib is well tolerated with an acceptable safety profile up to 24 months in patients aged ≥ 12 years with AA (video abstract and graphical plain language summary available). TRIAL REGISTRIES: ClinicalTrials.gov: NCT02974868 (date of registration: 11/29/2016), NCT04517864 (08/18/2020), NCT03732807 (11/07/2018), and NCT04006457 (07/05/2019).


Assuntos
Alopecia em Áreas , Antineoplásicos , Triptaminas , Humanos , Alopecia em Áreas/tratamento farmacológico , Alopecia em Áreas/epidemiologia , Carbazóis , Janus Quinase 3 , Inibidores de Proteínas Quinases/efeitos adversos , SARS-CoV-2 , Resultado do Tratamento
15.
Mol Biomed ; 5(1): 3, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172378

RESUMO

The disruptor of telomeric silencing 1-like (DOT1L), a specific histone methyltransferase that catalyzed methylation of histone H3 on lysine 79, was associated with the pathogenesis of many diseases, but its role in peritoneal fibrosis remained unexplored. Here, we examined the role of DOT1L in the expression and activation of protein tyrosine kinases and development of peritoneal fibrosis. We found that a significant rise of DOT1L expression in the fibrotic peritoneum tissues from long-term PD patients and mice. Inhibition of DOT1L significantly attenuated the profibrotic phenotypic differentiation of mesothelial cells and macrophages, and alleviated peritoneal fibrosis. Mechanistically, RNA sequencing and proteomic analysis indicated that DOT1L was mainly involved in the processes of protein tyrosine kinase binding and extracellular matrix structural constituent in the peritoneum. Chromatin immunoprecipitation (ChIP) showed that intranuclear DOT1L guided H3K79me2 to upregulate EGFR in mesothelial cells and JAK3 in macrophages. Immunoprecipitation and immunofluorescence showed that extranuclear DOT1L could interact with EGFR and JAK3, and maintain the activated signaling pathways. In summary, DOT1L promoted the expression and activation of tyrosine kinases (EGFR in mesothelial cells and JAK3 in macrophages), promoting cells differentiate into profibrotic phenotype and thus peritoneal fibrosis. We provide the novel mechanism of dialysis-related peritoneal fibrosis (PF) and the new targets for clinical drug development. DOT1L inhibitor had the PF therapeutic potential.


Assuntos
Histona-Lisina N-Metiltransferase , Fibrose Peritoneal , Proteínas Tirosina Quinases , Animais , Feminino , Humanos , Masculino , Camundongos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Janus Quinase 3/metabolismo , Janus Quinase 3/genética , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fibrose Peritoneal/patologia , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
16.
J Allergy Clin Immunol ; 153(1): 161-172.e8, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37777018

RESUMO

BACKGROUND: Vitiligo is an autoimmune depigmenting disorder with no effective and safe treatments. Its pathogenesis is not fully elucidated. OBJECTIVE: This substudy of a randomized, double-blind, placebo-controlled phase 2b trial (NCT03715829) evaluated effects of ritlecitinib, an oral JAK3/TEC family kinase inhibitor, on skin and blood biomarkers in participants with nonsegmental vitiligo (NSV). METHODS: Sixty-five adults with NSV participated in the substudy and received daily treatment for 24 weeks with placebo (n = 14) or ritlecitinib with or without a 4-week loading dose: 200 (loading dose)/50 mg (n = 13), 100/50 mg (n = 12), 50 mg (n = 11), 30 mg (n = 8), or 10 mg (n = 6). Skin (lesional and nonlesional) biopsy samples were obtained at baseline and at 4 and 24 weeks. Changes from baseline to weeks 4 and 24 in skin and blood molecular and cellular biomarkers were evaluated by RNA sequencing, quantitative real-time PCR, proteomic analysis, and flow cytometry. RESULTS: Ritlecitinib-treated groups showed downregulation of immune biomarkers and upregulation of melanocyte-related markers at weeks 4 and 24 compared to baseline and/or placebo. Significant reductions were seen in CD3+/CD8+ T-cell infiltrates, with significant increases in melanocyte markers (tyrosinase; Melan-A) in NSV lesions in the 50 mg ritlecitinib groups (both P < .05). There was significant, dose-dependent downregulation in T-cell activation, NK, cytotoxic, and regulatory markers in lesional skin (IL-2, IL2-RA, IL-15, CCR7, CD5, CRTAM, NCR1, XCL1, KIR3DL1, FASLG, KLRD; P < .05). TH1 and TH2 markers were also downregulated in lesional skin and blood in a dose-dependent manner (P < .05). Changes in immune biomarkers correlated with clinical response. CONCLUSIONS: Ritlecitinib significantly downregulated proinflammatory biomarkers and increased melanocyte products in skin and blood of participants with NSV, suggesting its potential in treatment. Ritlecitinib-mediated changes positively correlated with clinical response.


Assuntos
Vitiligo , Adulto , Humanos , Vitiligo/tratamento farmacológico , Proteômica , Melanócitos , Pele , Biomarcadores , Janus Quinase 3
17.
Hematol Oncol ; 42(1): e3233, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37876297

RESUMO

Peripheral T-cell lymphoma (PTCL) is a clinically heterogeneous group that represents 10%-15% of all lymphomas. Despite improved genetic and molecular understanding, treatment outcomes for PTCL have not shown significant improvement. Although Janus kinase-2 (JAK2) plays an important role in myeloproliferative neoplasms, the critical role of JAK isoforms in mediating prosurvival signaling in PTCL cells is not well defined. Immunohistochemical analysis of PTCL tumors (n = 96) revealed high levels of constitutively active JAK3 (pJAK3) that significantly (p < 0.04) correlated with the activation state of its canonical substrate STAT3. Furthermore, constitutive activation of JAK3 and STAT3 positively correlated, at least in part, with an oncogenic tyrosine phosphatase PTPN11. Pharmacological inhibition of JAK3 but not JAK1/JAK2 significantly (p < 0.001) decreased PTCL proliferation, survival and STAT3 activation. A sharp contrast was observed in the pJAK3 positivity between ALK+ (85.7%) versus ALK-negative (10.0%) in human PTCL tumors and PTCL cell lines. Moreover, JAK3 and ALK reciprocally interacted in PTCL cells, forming a complex to possibly regulate STAT3 signaling. Finally, combined inhibition of JAK3 (by WHI-P154) and ALK (by crizotinib or alectinib) significantly (p < 0.01) decreased the survival of PTCL cells as compared to either agent alone by inhibiting STAT3 downstream signaling. Collectively, our findings establish that JAK3 is a therapeutic target for a subset of PTCL, and provide rationale for the clinical evaluation of JAK3 inhibitors combined with ALK-targeted therapy in PTCL.


Assuntos
Linfoma de Células T Periférico , Humanos , Linfoma de Células T Periférico/tratamento farmacológico , Linfoma de Células T Periférico/genética , Linhagem Celular Tumoral , Transdução de Sinais , Fosforilação , Receptores Proteína Tirosina Quinases , Janus Quinase 3
18.
Skinmed ; 21(6): 434-438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38051245

RESUMO

LITFULOTM (ritlecitinib) capsules were recently approved for the treatment of severe alopecia areata in adolescents and adults, aged ≥12 years. Ritlecitinib is the active ingredient and a dual inhibitor of Janus kinase 3 and the tyrosine kinase expressed in hepatocellular carcinoma kinase family. It prevents immune attack on the hair follicles that leads to hair loss. In a phase 2b-3 dose-dependant study, five doses of oral ritlecitinib and placebo administered once daily (QD) were investigated. Ritlecitinib demonstrated efficacy in achieving the primary outcome, Severity of Alopecia Tool (SALT) score of ≤20, at week 24 (31% [38/124] 200-mg ritlecitinib QD for 4 weeks, then 50 mg QD for 20 weeks; 22% [27/121] 200-mg ritlecitinib QD for 4 weeks, then 30 mg QD for 20 weeks; 23% [29/124] 50-mg ritlecitinib QD; 14% [17/119] 30-mg ritlecitinib QD; 2% [1/59] 10-mg ritlecitinib QD; and 2% [2/130] placebo). Mild to moderate common adverse effects were observed, which included headache, nasopharyngitis, and upper respiratory tract infection. The recommended regimen of ritlecitinib capsules is 50 mg QD with without food and swallowed whole.


Assuntos
Alopecia em Áreas , Inibidores de Janus Quinases , Adulto , Adolescente , Humanos , Alopecia em Áreas/induzido quimicamente , Inibidores de Janus Quinases/efeitos adversos , Janus Quinase 3 , Pirimidinas/efeitos adversos , Alopecia/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos
19.
Cells ; 12(21)2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37947625

RESUMO

Glioblastoma multiforme (GBM) is the most deadly brain tumor, effective treatment options for which still remain elusive. The current treatment procedure of maximal resection followed by chemotherapy has proved to be grossly insufficient to prevent disease progression and death. Despite best efforts, the maximum survival post-diagnosis is a mere 1.5 years. Therefore, there is a huge unmet clinical need to find effective therapeutic procedures to prevent the pathogenesis and relapse of GBM. Small-molecule inhibitors of signaling pathways are an attractive option to prevent various types of tumors. However, no effective small-molecule inhibitors have been successful against GBM in clinical trials. Various signaling pathways are altered and an array of signaling molecules, transcription factors (TFs), and epigenetic modifying factors have been implicated in the pathogenesis of GBM. JAK-STAT pathway alteration is an important contributor to GBM pathogenesis and relapse. Many small-molecule inhibitors of JAKs, or STAT TFs, especially JAK2 and STAT3, have been assessed for their anti-tumor activity in GBM. However, no definitive success so far has been achieved. Herein, by using two small-molecule inhibitors of JAK3, we show that they are quite effective in inhibiting GBM cell proliferation and neurosphere formation, downregulating their stemness character, and inducing differentiation into neuronal origin cells. The effect of a single treatment with the drugs, both in a serum-containing differentiation medium and in a proliferation medium containing EGF and FGF, was really strong in limiting GBM cell growth, suggesting a potential therapeutic application for these JAK inhibitors in GBM therapy.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Recidiva Local de Neoplasia , Recidiva , Janus Quinase 3
20.
Cells ; 12(19)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37830594

RESUMO

Constitutively activated tyrosine kinase JAK3 is implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCL). The mechanisms of constitutive JAK3 activation are unknown although a JAK3 mutation was reported in a small portion of CTCL patients. In this study, we assessed the oncogenic roles of a newly identified JAK3-INSL3 fusion transcript in CTCL. Total RNA from malignant T-cells in 33 patients with Sézary syndrome (SS), a leukemic form of CTCL, was examined for the new JAK3-INSL3 fusion transcript by RT-PCR followed by Sanger sequencing. The expression levels were assessed by qPCR and correlated with patient survivals. Knockdown and/or knockout assays were conducted in two CTCL cell lines (MJ cells and HH cells) by RNA interference and/or CRISPR/Cas9 gene editing. SS patients expressed heterogeneous levels of a new JAK3-INSL3 fusion transcript. Patients with high-level expression of JAK3-INSL3 showed poorer 5-year survival (n = 19, 42.1%) than patients with low-level expression (n = 14, 78.6%). CTCL cells transduced with specific shRNAs or sgRNAs had decreased new JAK3-INSL3 fusion transcript expression, reduced cell proliferation, and decreased colony formation. In NSG xenograft mice, smaller tumor sizes were observed in MJ cells transduced with specific shRNAs than cells transduced with controls. Our results suggest that the newly identified JAK3-INSL3 fusion transcript confers an oncogenic event in CTCL.


Assuntos
Linfoma Cutâneo de Células T , Proteínas de Fusão Oncogênica , Síndrome de Sézary , Neoplasias Cutâneas , Animais , Humanos , Camundongos , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Linfoma Cutâneo de Células T/metabolismo , RNA Guia de Sistemas CRISPR-Cas , RNA Interferente Pequeno , Síndrome de Sézary/genética , Neoplasias Cutâneas/patologia , Proteínas de Fusão Oncogênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA