Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 710
Filtrar
1.
Mol Med ; 30(1): 171, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390392

RESUMO

BACKGROUND: Aging-related strength decline contributes to physiological deterioration and is a good predictor of poor prognosis. However, the mechanisms underlying neuromuscular junction disorders affecting contraction in aging are not well described. We hypothesized that the autocrine effect of interleukin (IL)-6 secreted by skeletal muscle inhibits acetylcholine receptor (AChR) expression, potentially causing aging-related strength decline. Therefore, we investigated IL-6 and AChR ß-subunit (AChR-ß) expression in the muscles and sera of aging C57BL/6J mice and verified the effect of IL-6 on AChR-ß expression. METHODS: Animal experiments, in vitro studies, bioinformatics, gene manipulation, dual luciferase reporter gene assays, and chromatin immunoprecipitation experiments were used to explore the role of the transcription cofactor peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) and its interacting transcription factors in the IL-6-mediated regulation of AChR-ß expression. RESULTS: IL-6 expression gradually increased during aging, inhibiting AChR-ß expression, which was reversed by tocilizumab. Both tocilizumab and the PGC1α agonist reversed the inhibiting effect of IL-6 expression on AChR-ß. Compared to inhibition of signal transducer and activator of transcription 3, extracellular signal-regulated kinases 1/2 (ERK1/2) inhibition suppressed the effects of IL-6 on AChR-ß and PGC1α. In aging mouse muscles and myotubes, myocyte enhancer factor 2 C (MEF2C) was recruited by PGC1α, which directly binds to the AChR-ß promoter to regulate its expression. CONCLUSIONS: This study verifies AChR-ß regulation by the IL-6/IL-6R-ERK1/2-PGC1α/MEF2C pathway. Hence, evaluating muscle secretion, myokines, and AChRs at an earlier stage to determine pathological progression is important. Moreover, developing intervention strategies for monitoring, maintaining, and improving muscle structure and function is necessary.


Assuntos
Envelhecimento , Interleucina-6 , Músculo Esquelético , Junção Neuromuscular , Animais , Interleucina-6/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Envelhecimento/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição MEF2/genética , Receptores Colinérgicos/metabolismo
2.
JCI Insight ; 9(18)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39053472

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurological disorder caused by deleterious CAG repeat expansion in the coding region of the ataxin 7 gene (polyQ-ataxin-7). Infantile-onset SCA7 leads to severe clinical manifestation of respiratory distress, but the exact cause of respiratory impairment remains unclear. Using the infantile-SCA7 mouse model, the SCA7266Q/5Q mouse, we examined the impact of pathological polyQ-ataxin-7 on hypoglossal (XII) and phrenic motor units. We identified the transcript profile of the medulla and cervical spinal cord and investigated the XII and phrenic nerves and the neuromuscular junctions in the diaphragm and tongue. SCA7266Q/5Q astrocytes showed significant intranuclear inclusions of ataxin-7 in the XII and putative phrenic motor nuclei. Transcriptomic analysis revealed dysregulation of genes involved in amino acid and neurotransmitter transport and myelination. Additionally, SCA7266Q/5Q mice demonstrated blunted efferent output of the XII nerve and demyelination in both XII and phrenic nerves. Finally, there was an increased number of neuromuscular junction clusters with higher expression of synaptic markers in SCA7266Q/5Q mice compared with WT controls. These preclinical findings elucidate the underlying pathophysiology responsible for impaired glial cell function and death leading to dysphagia, aspiration, and respiratory failure in infantile SCA7.


Assuntos
Modelos Animais de Doenças , Nervo Hipoglosso , Nervo Frênico , Ataxias Espinocerebelares , Animais , Camundongos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Nervo Hipoglosso/patologia , Nervo Frênico/patologia , Ataxina-7 , Bulbo/patologia , Bulbo/metabolismo , Junção Neuromuscular/patologia , Junção Neuromuscular/metabolismo , Camundongos Transgênicos , Humanos , Masculino , Feminino , Diafragma/patologia , Diafragma/fisiopatologia , Astrócitos/patologia , Astrócitos/metabolismo , Língua/patologia , Medula Espinal/patologia , Medula Espinal/metabolismo , Peptídeos
3.
Eur J Histochem ; 68(3)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963135

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder involving motor neuron (MN) loss in the motor cortex, brainstem and spinal cord leading to progressive paralysis and death. Due to the pathogenetic complexity, there are no effective therapies available. In this context the use of mesenchymal stem cells and their vesicular counterpart is an emerging therapeutic strategy to counteract neurodegeneration. The extracellular vesicles derived from adipose stem cells (ASC-EVs) recapitulate and ameliorate the neuroprotective effect of stem cells and, thanks to their small dimensions, makes their use suitable to develop novel therapeutic approaches for neurodegenerative diseases as ALS. Here we investigate a therapeutic regimen of ASC-EVs injection in SOD1(G93A) mice, the most widely used murine model of ALS. Repeated intranasal administrations of high doses of ASC-EVs were able to ameliorate motor performance of injected SOD1(G93A) mice at the early stage of the disease and produce a significant improvement at the end-stage in the lumbar MNs rescue. Moreover, ASC-EVs preserve the structure of neuromuscular junction without counteracting the muscle atrophy. The results indicate that the intranasal ASC-EVs administration acts in central nervous system sites rather than at peripheral level in SOD1(G93A) mice. These considerations allow us to identify future applications of ASC-EVs that involve different targets simultaneously to maximize the clinical and neuropathological outcomes in ALS in vivo models.


Assuntos
Esclerose Lateral Amiotrófica , Vesículas Extracelulares , Células-Tronco Mesenquimais , Superóxido Dismutase-1 , Animais , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Tecido Adiposo/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo
4.
Cell Commun Signal ; 22(1): 371, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044222

RESUMO

BACKGROUND: Protein kinase A (PKA) enhances neurotransmission at the neuromuscular junction (NMJ), which is retrogradely regulated by nerve-induced muscle contraction to promote Acetylcholine (ACh) release through the phosphorylation of molecules involved in synaptic vesicle exocytosis (SNAP-25 and Synapsin-1). However, the molecular mechanism of the retrograde regulation of PKA subunits and its targets by BDNF/TrkB pathway and muscarinic signalling has not been demonstrated until now. At the NMJ, retrograde control is mainly associated with BDNF/TrkB signalling as muscle contraction enhances BDNF levels and controls specific kinases involved in the neurotransmission. Neurotransmission at the NMJ is also highly modulated by muscarinic receptors M1 and M2 (mAChRs), which are related to PKA and TrkB signallings. Here, we investigated the hypothesis that TrkB, in cooperation with mAChRs, regulates the activity-dependent dynamics of PKA subunits to phosphorylate SNAP-25 and Synapsin-1. METHODS: To explore this, we stimulated the rat phrenic nerve at 1Hz (30 minutes), with or without subsequent contraction (abolished by µ-conotoxin GIIIB). Pharmacological treatments were conducted with the anti-TrkB antibody clone 47/TrkB for TrkB inhibition and exogenous h-BDNF; muscarinic inhibition with Pirenzepine-dihydrochloride and Methoctramine-tetrahydrochloride for M1 and M2 mAChRs, respectively. Diaphragm protein levels and phosphorylation' changes were detected by Western blotting. Location of the target proteins was demonstrated using immunohistochemistry. RESULTS: While TrkB does not directly impact the levels of PKA catalytic subunits Cα and Cß, it regulates PKA regulatory subunits RIα and RIIß, facilitating the phosphorylation of critical exocytotic targets such as SNAP-25 and Synapsin-1. Furthermore, the muscarinic receptors pathway maintains a delicate balance in this regulatory process. These findings explain the dynamic interplay of PKA subunits influenced by BDNF/TrkB signalling, M1 and M2 mAChRs pathways, that are differently regulated by pre- and postsynaptic activity, demonstrating the specific roles of the BDNF/TrkB and muscarinic receptors pathway in retrograde regulation. CONCLUSION: This complex molecular interplay has the relevance of interrelating two fundamental pathways in PKA-synaptic modulation: one retrograde (neurotrophic) and the other autocrine (muscarinic). This deepens the fundamental understanding of neuromuscular physiology of neurotransmission that gives plasticity to synapses and holds the potential for identifying therapeutic strategies in conditions characterized by impaired neuromuscular communication.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Proteínas Quinases Dependentes de AMP Cíclico , Junção Neuromuscular , Receptor trkB , Transdução de Sinais , Sinapsinas , Proteína 25 Associada a Sinaptossoma , Animais , Masculino , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Junção Neuromuscular/metabolismo , Fosforilação , Ratos Wistar , Receptor trkB/metabolismo , Receptores Muscarínicos/metabolismo , Sinapsinas/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo
5.
Skelet Muscle ; 14(1): 17, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044305

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron (MN) degeneration, leading to neuromuscular junction (NMJ) dismantling and severe muscle atrophy. The nuclear receptor interaction protein (NRIP) functions as a multifunctional protein. It directly interacts with calmodulin or α-actinin 2, serving as a calcium sensor for muscle contraction and maintaining sarcomere integrity. Additionally, NRIP binds with the acetylcholine receptor (AChR) for NMJ stabilization. Loss of NRIP in muscles results in progressive motor neuron degeneration with abnormal NMJ architecture, resembling ALS phenotypes. Therefore, we hypothesize that NRIP could be a therapeutic factor for ALS. METHODS: We used SOD1 G93A mice, expressing human SOD1 with the ALS-linked G93A mutation, as an ALS model. An adeno-associated virus vector encoding the human NRIP gene (AAV-NRIP) was generated and injected into the muscles of SOD1 G93A mice at 60 days of age, before disease onset. Pathological and behavioral changes were measured to evaluate the therapeutic effects of AAV-NRIP on the disease progression of SOD1 G93A mice. RESULTS: SOD1 G93A mice exhibited lower NRIP expression than wild-type mice in both the spinal cord and skeletal muscle tissues. Forced NRIP expression through AAV-NRIP intramuscular injection was observed in skeletal muscles and retrogradely transduced into the spinal cord. AAV-NRIP gene therapy enhanced movement distance and rearing frequencies in SOD1 G93A mice. Moreover, AAV-NRIP increased myofiber size and slow myosin expression, ameliorated NMJ degeneration and axon terminal denervation at NMJ, and increased the number of α-motor neurons (α-MNs) and compound muscle action potential (CMAP) in SOD1 G93A mice. CONCLUSIONS: AAV-NRIP gene therapy ameliorates muscle atrophy, motor neuron degeneration, and axon terminal denervation at NMJ, leading to increased NMJ transmission and improved motor functions in SOD1 G93A mice. Collectively, AAV-NRIP could be a potential therapeutic drug for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Dependovirus , Modelos Animais de Doenças , Terapia Genética , Camundongos Transgênicos , Neurônios Motores , Atrofia Muscular , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Terapia Genética/métodos , Atrofia Muscular/genética , Atrofia Muscular/terapia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Dependovirus/genética , Camundongos , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Vetores Genéticos/administração & dosagem , Degeneração Neural/genética , Degeneração Neural/terapia , Masculino , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
6.
Dis Model Mech ; 17(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38903011

RESUMO

Pathogenic variants in GFPT1, encoding a key enzyme to synthesize UDP-N-acetylglucosamine (UDP-GlcNAc), cause congenital myasthenic syndrome (CMS). We made a knock-in (KI) mouse model carrying a frameshift variant in Gfpt1 exon 9, simulating that found in a patient with CMS. As Gfpt1 exon 9 is exclusively expressed in striated muscles, Gfpt1-KI mice were deficient for Gfpt1 only in skeletal muscles. In Gfpt1-KI mice, (1) UDP-HexNAc, CMP-NeuAc and protein O-GlcNAcylation were reduced in skeletal muscles; (2) aged Gfpt1-KI mice showed poor exercise performance and abnormal neuromuscular junction structures; and (3) markers of the unfolded protein response (UPR) were elevated in skeletal muscles. Denervation-mediated enhancement of endoplasmic reticulum (ER) stress in Gfpt1-KI mice facilitated protein folding, ubiquitin-proteasome degradation and apoptosis, whereas autophagy was not induced and protein aggregates were markedly increased. Lack of autophagy was accounted for by enhanced degradation of FoxO1 by increased Xbp1-s/u proteins. Similarly, in Gfpt1-silenced C2C12 myotubes, ER stress exacerbated protein aggregates and activated apoptosis, but autophagy was attenuated. In both skeletal muscles in Gfpt1-KI mice and Gfpt1-silenced C2C12 myotubes, maladaptive UPR failed to eliminate protein aggregates and provoked apoptosis.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Músculo Esquelético , Dobramento de Proteína , Resposta a Proteínas não Dobradas , Animais , Camundongos , Apoptose , Proteína Forkhead Box O1/metabolismo , Técnicas de Introdução de Genes , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Especificidade de Órgãos , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregados Proteicos , Proteína 1 de Ligação a X-Box/metabolismo
7.
Sheng Li Xue Bao ; 76(3): 376-384, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38939932

RESUMO

The present study aimed to explore the effects of different exercise modes on neuromuscular junction (NMJ) and metabolism of skeletal muscle-related proteins in aging rats. Ten from 38 male Sprague-Dawley (SD) rats (3-month-old) were randomly selected into young (Y) group, while the rest were raised to 21 months old and randomly divided into elderly control (O), endurance exercise (EN) and resistance exercise (R) groups. After 8 weeks of corresponding exercises training, the gastrocnemius muscles of rats were collected, and the expression of S100B in Schwann cells was detected by immunofluorescence staining. Western blot was used to detect the protein expression levels of agglutinate protein (Agrin), low-density lipoprotein receptor-related protein 4 (Lrp4), muscle- specific kinase protein (MuSK), downstream tyrosine kinase 7 (Dok7), phosphorylated protein kinase B (p-Akt), phosphorylated mammalian target rapamycin (p-mTOR), and phosphorylated forkhead box O1 (p-FoxO1) in rat gastrocnemius muscles. The results showed that, endurance and resistance exercises increased the wet weight ratio of gastrocnemius muscle in the aging rats. The protein expression of S100B in the R group was significantly higher than those in the O and EN groups. Proteins related to NMJ function, including Agrin, Lrp4, MuSK, and Dok7 were significantly decreased in the O group compared with those in the Y group. Resistance exercise up-regulated these four proteins in the aging rats, whereas endurance exercise could not reverse the protein expression levels of Lrp4, MuSK and Dok7. Regarding skeletal muscle-related proteins, the O group showed down-regulated p-Akt, and p-mTOR protein expression levels and up-regulated p-FoxO1 protein expression level, compared to the Y group. Resistance and endurance exercises reversed the changes in p-mTOR and p-FoxO1 protein expression in the aging rats. These findings demonstrate that both exercise modes can enhance NMJ function, increase protein synthesis and reduce the catabolism of skeletal muscle-related proteins in aging rats, with resistance exercise showing a more pronounced effect.


Assuntos
Envelhecimento , Músculo Esquelético , Junção Neuromuscular , Condicionamento Físico Animal , Ratos Sprague-Dawley , Animais , Masculino , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Ratos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Proteínas Musculares/metabolismo , Treinamento Resistido/métodos , Proteína Forkhead Box O1
8.
Neurochem Res ; 49(8): 2021-2037, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814360

RESUMO

Acetylcholine is the main neurotransmitter at the vertebrate neuromuscular junctions (NMJs). ACh exocytosis is precisely modulated by co-transmitter ATP and its metabolites. It is assumed that ATP/ADP effects on ACh release rely on activation of presynaptic Gi protein-coupled P2Y13 receptors. However, downstream signaling mechanism of ATP/ADP-mediated modulation of neuromuscular transmission remains elusive. Using microelectrode recording and fluorescent indicators, the mechanism underlying purinergic regulation was studied in the mouse diaphragm NMJs. Pharmacological stimulation of purinoceptors with ADP decreased synaptic vesicle exocytosis evoked by both low and higher frequency stimulation. This inhibitory action was suppressed by antagonists of P2Y13 receptors (MRS 2211), Ca2+ mobilization (TMB8), protein kinase C (chelerythrine) and NADPH oxidase (VAS2870) as well as antioxidants. This suggests the participation of Ca2+ and reactive oxygen species (ROS) in the ADP-triggered signaling. Indeed, ADP caused an increase in cytosolic Ca2+ with subsequent elevation of ROS levels. The elevation of [Ca2+]in was blocked by MRS 2211 and TMB8, whereas upregulation of ROS was prevented by pertussis toxin (inhibitor of Gi protein) and VAS2870. Targeting the main components of lipid rafts, cholesterol and sphingomyelin, suppressed P2Y13 receptor-dependent attenuation of exocytosis and ADP-induced enhancement of ROS production. Inhibition of P2Y13 receptors decreased ROS production and increased the rate of exocytosis during intense activity. Thus, suppression of neuromuscular transmission by exogenous ADP or endogenous ATP can rely on P2Y13 receptor/Gi protein/Ca2+/protein kinase C/NADPH oxidase/ROS signaling, which is coordinated in a lipid raft-dependent manner.


Assuntos
Microdomínios da Membrana , Junção Neuromuscular , Oxirredução , Transdução de Sinais , Transmissão Sináptica , Animais , Junção Neuromuscular/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Camundongos , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Exocitose/fisiologia , Exocitose/efeitos dos fármacos , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Cálcio/metabolismo
9.
J Cachexia Sarcopenia Muscle ; 15(4): 1358-1375, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38646816

RESUMO

BACKGROUND: Alzheimer's disease (AD) impairs cognitive functions and peripheral systems, including skeletal muscles. The PS19 mouse, expressing the human tau P301S mutation, shows cognitive and muscular pathologies, reflecting the central and peripheral atrophy seen in AD. METHODS: We analysed skeletal muscle morphology and neuromuscular junction (NMJ) through immunohistochemistry and advanced image quantification. A factorial Analysis of Variance assessed muscle weight, NCAM expression, NMJ, myofibre type distribution, cross-sectional areas, expression of single or multiple myosin heavy-chain isoforms, and myofibre grouping in PS19 and wild type (WT) mice over their lifespan (1-12 months). RESULTS: Significant weight differences in extensor digitorum longus (EDL) and soleus muscles between WT and PS19 mice were noted by 7-8 months. For EDL muscle in females, WT weighed 0.0113 ± 0.0005 compared with PS19's 0.0071 ± 0.0008 (P < 0.05), and in males, WT was 0.0137 ± 0.0001 versus PS19's 0.0069 ± 0.0006 (P < 0.005). Similarly, soleus muscle showed significant differences; females (WT: 0.0084 ± 0.0004; PS19: 0.0057 ± 0.0005, P < 0.005) and males (WT: 0.0088 ± 0.0003; PS19: 0.0047 ± 0.0004, P < 0.0001). Analysis of the NMJ in PS19 mice revealed a marked reduction in myofibre innervation at 5 months, with further decline by 10 months. NMJ pre-terminals in PS19 mice became shorter and simpler by 5 months, showing a steep decline by 10 months. Genotype and age strongly influenced muscle NCAM immunoreactivity, denoting denervation as early as 5-6 months in EDL muscle Type II fibres, with earlier effects in soleus muscle Type I and II fibres at 3-4 months. Muscle denervation and subsequent myofibre atrophy were linked to a reduction in Type IIB fibres in the EDL muscle and Type IIA fibres in the soleus muscle, accompanied by an increase in hybrid fibres. The EDL muscle showed Type IIB fibre atrophy with WT females at 1505 ± 110 µm2 versus PS19's 1208 ± 94 µm2, and WT males at 1731 ± 185 µm2 versus PS19's 1227 ± 116 µm2. Similarly, the soleus muscle demonstrated Type IIA fibre atrophy from 5 to 6 months, with WT females at 1194 ± 52 µm2 versus PS19's 858 ± 62 µm2, and WT males at 1257 ± 43 µm2 versus PS19's 1030 ± 55 µm2. Atrophy also affected Type IIX, I + IIA, and IIA + IIX fibres in both muscles. The timeline for both myofibre and overall muscle atrophy in PS19 mice was consistent, indicating a simultaneous decline. CONCLUSIONS: Progressive and accelerated neurogenic sarcopenia may precede and potentially predict cognitive deficits observed in AD.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Transtornos da Memória , Camundongos Transgênicos , Músculo Esquelético , Sarcopenia , Animais , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Camundongos , Sarcopenia/metabolismo , Sarcopenia/patologia , Masculino , Feminino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Humanos , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Tauopatias/patologia , Tauopatias/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Proteínas tau/metabolismo
10.
Eur J Neurosci ; 59(12): 3292-3308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38650308

RESUMO

Muscle-specific kinase myasthenia gravis (MuSK MG) is caused by autoantibodies against MuSK in the neuromuscular junction (NMJ). MuSK MG patients have fluctuating, fatigable skeletal muscle weakness, in particular of bulbar muscles. Severity differs greatly between patients, in spite of comparable autoantibody levels. One explanation for inter-patient and inter-muscle variability in sensitivity might be variations in compensatory muscle responses. Previously, we developed a passive transfer mouse model for MuSK MG. In preliminary ex vivo experiments, we observed that muscle contraction of some mice, in particular those with milder myasthenia, had become partially insensitive to inhibition by µ-Conotoxin-GIIIB, a blocker of skeletal muscle NaV1.4 voltage-gated sodium channels. We hypothesised that changes in NaV channel expression profile, possibly co-expression of (µ-Conotoxin-GIIIB insensitive) NaV1.5 type channels, might lower the muscle fibre's firing threshold and facilitate neuromuscular synaptic transmission. To test this hypothesis, we here performed passive transfer in immuno-compromised mice, using 'high', 'intermediate' and 'low' dosing regimens of purified MuSK MG patient IgG4. We compared myasthenia levels, µ-Conotoxin-GIIIB resistance and muscle fibre action potential characteristics and firing thresholds. High- and intermediate-dosed mice showed clear, progressive myasthenia, not seen in low-dosed animals. However, diaphragm NMJ electrophysiology demonstrated almost equal myasthenic severities amongst all regimens. Nonetheless, low-dosed mouse diaphragms showed a much higher degree of µ-Conotoxin-GIIIB resistance. This was not explained by upregulation of Scn5a (the NaV1.5 gene), lowered muscle fibre firing thresholds or histologically detectable upregulated NaV1.5 channels. It remains to be established which factors are responsible for the observed µ-Conotoxin-GIIIB insensitivity and whether the NaV repertoire change is compensatory beneficial or a bystander effect.


Assuntos
Músculo Esquelético , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Humanos , Miastenia Gravis/metabolismo , Miastenia Gravis/fisiopatologia , Miastenia Gravis/imunologia , Modelos Animais de Doenças , Feminino , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/imunologia , Canais de Sódio Disparados por Voltagem/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Autoanticorpos , Masculino , Conotoxinas/farmacologia , Imunização Passiva
11.
Handb Clin Neurol ; 200: 283-305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494283

RESUMO

Myasthenia gravis (MG) is an autoimmune disease characterized by dysfunction of the neuromuscular junction resulting in skeletal muscle weakness. It is equally prevalent in males and females, but debuts at a younger age in females and at an older age in males. Ptosis, diplopia, facial bulbar weakness, and limb weakness are the most common symptoms. MG can be classified based on the presence of serum autoantibodies. Acetylcholine receptor (AChR) antibodies are found in 80%-85% of patients, muscle-specific kinase (MuSK) antibodies in 5%-8%, and <1% may have low-density lipoprotein receptor-related protein 4 (Lrp4) antibodies. Approximately 10% of patients are seronegative for antibodies binding the known disease-related antigens. In patients with AChR MG, 10%-20% have a thymoma, which is usually detected at the onset of the disease. Important differences between clinical presentation, treatment responsiveness, and disease mechanisms have been observed between these different serologic MG classes. Besides the typical clinical features and serologic testing, the diagnosis can be established with additional tests, including repetitive nerve stimulation, single fiber EMG, and the ice pack test. Treatment options for MG consist of symptomatic treatment (such as pyridostigmine), immunosuppressive treatment, or thymectomy. Despite the treatment with symptomatic drugs, steroid-sparing immunosuppressants, intravenous immunoglobulins, plasmapheresis, and thymectomy, a large proportion of patients remain chronically dependent on corticosteroids (CS). In the past decade, the number of treatment options for MG has considerably increased. Advances in the understanding of the pathophysiology have led to new treatment options targeting B or T cells, the complement cascade, the neonatal Fc receptor or cytokines. In the future, these new treatments are likely to reduce the chronic use of CS, diminish side effects, and decrease the number of patients with refractory disease.


Assuntos
Miastenia Gravis , Feminino , Humanos , Masculino , Autoanticorpos , Eletromiografia , Imunossupressores , Miastenia Gravis/diagnóstico , Miastenia Gravis/terapia , Junção Neuromuscular/metabolismo
12.
Hum Mol Genet ; 33(11): 935-944, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38382647

RESUMO

Many genes with distinct molecular functions have been linked to genetically heterogeneous amyotrophic lateral sclerosis (ALS), including SuperOxide Dismutase 1 (SOD1) and Valosin-Containing Protein (VCP). SOD1 converts superoxide to oxygen and hydrogen peroxide. VCP acts as a chaperon to regulate protein degradation and synthesis and various other cellular responses. Although the functions of these two genes differ, in the current report we show that overexpression of wild-type VCP in mice enhances lifespan and maintains the size of neuromuscular junctions (NMJs) of both male and female SOD1G93A mice, a well-known ALS mouse model. Although VCP exerts multiple functions, its regulation of ER formation and consequent protein synthesis has been shown to play the most important role in controlling dendritic spine formation and social and memory behaviors. Given that SOD1 mutation results in protein accumulation and aggregation, it may direct VCP to the protein degradation pathway, thereby impairing protein synthesis. Since we previously showed that the protein synthesis defects caused by Vcp deficiency can be improved by leucine supplementation, to confirm the role of the VCP-protein synthesis pathway in SOD1-linked ALS, we applied leucine supplementation to SOD1G93A mice and, similar to Vcp overexpression, we found that it extends SOD1G93A mouse lifespan. In addition, the phenotypes of reduced muscle strength and fewer NMJs of SOD1G93A mice are also improved by leucine supplementation. These results support the existence of crosstalk between SOD1 and VCP and suggest a critical role for protein synthesis in ASL. Our study also implies a potential therapeutic treatment for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Modelos Animais de Doenças , Leucina , Longevidade , Camundongos Transgênicos , Junção Neuromuscular , Fenótipo , Superóxido Dismutase-1 , Proteína com Valosina , Animais , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Camundongos , Junção Neuromuscular/metabolismo , Feminino , Masculino , Longevidade/genética , Leucina/farmacologia , Leucina/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo
13.
Sci Rep ; 14(1): 1780, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245592

RESUMO

The neuromuscular junction (NMJ)-formed between a motor nerve terminal and skeletal muscle fiber-plays an important role in muscle contraction and other muscle functions. Aging and neurodegeneration worsen NMJ formation and impair muscle function. Downstream of tyrosine kinase-7 (Dok-7), expressed in skeletal muscle fibers, is essential for the formation of NMJ. Exercise increases the expression of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) in skeletal muscles and restores NMJ formation. In this study, we used skeletal muscle-specific PGC1α knockout or overexpression mice to examine the role of PGC1α in regulating Dok-7 expression and NMJ formation. Our findings revealed that Dok-7 expression is regulated by PGC1α, and luciferase activity of the Dok-7 promoter is greatly increased by coexpressing PGC1α and estrogen receptor-related receptor α. Thus, we suggest PGC1α is involved in exercise-mediated restoration of NMJ formation.


Assuntos
Junção Neuromuscular , PPAR gama , Animais , Camundongos , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , PPAR gama/metabolismo , Proteínas Tirosina Quinases/metabolismo
14.
Neuroscience ; 532: 103-112, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37778690

RESUMO

At the vertebrate neuromuscular junction (NMJ), presynaptic homeostatic potentiation (PHP) refers to an increase in neurotransmitter release that restores the strength of synaptic transmission following a blockade of nicotinic acetylcholine receptors (nAChRs). Mechanisms informing the presynaptic terminal of the loss of postsynaptic receptivity remain poorly understood. Previous research at the mouse NMJ suggests that extracellular protons may function as a retrograde signal that triggers an upregulation of neurotransmitter output (measured by quantal content, QC) through the activation of acid-sensing ion channels (ASICs). We further investigated the pH-dependency of PHP in an ex-vivo mouse muscle preparation. We observed that increasing the buffering capacity of the perfusion saline with HEPES abolishes PHP and that acidifying the saline from pH 7.4 to pH 7.2-7.1 increases QC, demonstrating the necessity and sufficiency of extracellular acidification for PHP. We then sought to uncover how the blockade of nAChRs leads to the pH decrease. Plasma-membrane calcium ATPase (PMCA), a calcium-proton antiporter, is known to alkalize the synaptic cleft following neurotransmission in a calcium-dependent manner. We hypothesize that since nAChR blockade reduces postsynaptic calcium entry, it also reduces the alkalizing activity of the PMCA, thereby causing acidosis, ASIC activation, and QC upregulation. In line with this hypothesis, we found that pharmacological inhibition of the PMCA with carboxyeosin induces QC upregulation and that this effect requires functional ASICs. We also demonstrated that muscles pre-treated with carboxyeosin fail to generate PHP. These findings suggest that reduced PMCA activity causes presynaptic homeostatic potentiation by activating ASICs at the mouse NMJ.


Assuntos
Cálcio , Junção Neuromuscular , Animais , Camundongos , Cálcio/metabolismo , Junção Neuromuscular/metabolismo , Transmissão Sináptica , Terminações Pré-Sinápticas/metabolismo , Canais Iônicos Sensíveis a Ácido , Neurotransmissores/farmacologia , Concentração de Íons de Hidrogênio , ATPases Transportadoras de Cálcio/farmacologia
15.
Biochem Pharmacol ; 218: 115872, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37865142

RESUMO

Myasthenia gravis (MG) is a type of autoimmune disease caused by the blockage of neuromuscular junction transmission owing to the attack of autoantibodies on transmission-related proteins. Related antibodies, such as anti-AChR, anti-MuSK and anti-LRP4 antibodies, can be detected in most patients with MG. Although traditional therapies can control most symptoms, several challenges remain to be addressed, necessitating the development of more effective and safe treatment strategies for MG. With the in-depth exploration on the mechanism and immune targets of MG, effective therapies, especially therapies using biologicals, have been reported recently. Given the important roles of immune cells, cytokines and intercellular interactions in the pathological process of MG, B-cell targeted therapy, T-cell targeted therapy, proteasome inhibitors targeting plasma cell, complement inhibitors, FcRn inhibitors have been developed for the treatment of MG. Although these novel therapies exert good therapeutic effects, they may weaken the immunity and increase the risk of infection in MG patients. This review elaborates on the pathogenesis of MG and discusses the advantages and disadvantages of the strategies of traditional treatment and biologicals. In addition, this review emphasises that combined therapy may have better therapeutic effects and reducing the risk of side effects of treatments, which has great prospects for the treatment of MG. With the deepening of research on immunotherapy targets in MG, novel opportunities and challenges in the treatment of MG will be introduced.


Assuntos
Miastenia Gravis , Receptores Proteína Tirosina Quinases , Humanos , Receptores Proteína Tirosina Quinases/metabolismo , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/diagnóstico , Junção Neuromuscular/metabolismo , Autoanticorpos/metabolismo , Imunoterapia
16.
Muscle Nerve ; 68(5): 798-804, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37705312

RESUMO

INTRODUCTION/AIMS: Myasthenia gravis (MG) is an autoimmune disease affecting the neuromuscular junction (NMJ) of skeletal muscle. Complement activation is one of the mechanisms by which anti-acetylcholine receptor (anti-AChR) autoantibodies reduce synaptic transmission at the NMJ. In this study, we aimed to examine the activation of the complement pathways, including the classical pathway, as potential contributors to the pathogenesis of MG with anti-AChR antibodies. METHODS: In this single-center, observational study of 45 patients with anti-AChR-antibody-positive generalized MG, serum concentrations of major components of the complement pathways, including C1q, C5, C5a, soluble C5b-9 (sC5b-9), Ba, and complement factor H, were measured using an enzyme-linked immunosorbent assay. A total of 25 patients with a non-inflammatory neurological disorder served as controls. In addition, the relationships of complement activation with clinical characteristics were examined. RESULTS: The patients with MG exhibited lower serum levels of C5 (p = .0001) and higher serum levels of sC5b-9 (p = .004) compared with the control group. At about 6 months (range, 172-209 days) after the start of immunotherapy, serum levels of Ba were significantly higher than baseline levels (p = .002) and were associated with improvement in MG clinical scores. DISCUSSION: Herein, we provide evidence for the activation of the classical complement pathway and its association with disease activity in anti-AChR-antibody-positive generalized MG.


Assuntos
Via Clássica do Complemento , Miastenia Gravis , Humanos , Receptores Colinérgicos , Autoanticorpos , Junção Neuromuscular/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento
17.
G3 (Bethesda) ; 13(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757863

RESUMO

At synapses, chemical neurotransmission mediates the exchange of information between neurons, leading to complex movement, behaviors, and stimulus processing. The immense number and variety of neurons within the nervous system make discerning individual neuron populations difficult, necessitating the development of advanced neuronal labeling techniques. In Drosophila, Bruchpilot-Short and mCD8-GFP, which label presynaptic active zones and neuronal membranes, respectively, have been widely used to study synapse development and organization. This labeling is often achieved via the expression of 2 independent constructs by a single binary expression system, but expression can weaken when multiple transgenes are expressed by a single driver. Recent work has sought to circumvent these drawbacks by developing methods that encode multiple proteins from a single transcript. Self-cleaving peptides, specifically 2A peptides, have emerged as effective sequences for accomplishing this task. We leveraged 2A ribosomal skipping peptides to engineer a construct that produces both Bruchpilot-Short-mStraw and mCD8-GFP from the same mRNA, which we named SynLight. Using SynLight, we visualized the putative synaptic active zones and membranes of multiple classes of olfactory, visual, and motor neurons and observed the correct separation of signal, confirming that both proteins are being generated separately. Furthermore, we demonstrate proof of principle by quantifying synaptic puncta number and neurite volume in olfactory neurons and finding no difference between the synapse densities of neurons expressing SynLight or neurons expressing both transgenes separately. At the neuromuscular junction, we determined that the synaptic puncta number labeled by SynLight was comparable to the endogenous puncta labeled by antibody staining. Overall, SynLight is a versatile tool for examining synapse density in any nervous system region of interest and allows new questions to be answered about synaptic development and organization.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Sinapses/genética , Junção Neuromuscular/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neurônios Motores/metabolismo , Peptídeos
18.
J Neuromuscul Dis ; 10(5): 761-776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522215

RESUMO

Neuromuscular disorders (NMDs) are a large group of diseases associated with either alterations of skeletal muscle fibers, motor neurons or neuromuscular junctions. Most of these diseases is characterized with muscle weakness or wasting and greatly alter the life of patients. Animal models do not always recapitulate the phenotype of patients. The development of innovative and representative human preclinical models is thus strongly needed for modeling the wide diversity of NMDs, characterization of disease-associated variants, investigation of novel genes function, or the development of therapies. Over the last decade, the use of patient's derived induced pluripotent stem cells (hiPSC) has resulted in tremendous progress in biomedical research, including for NMDs. Skeletal muscle is a complex tissue with multinucleated muscle fibers supported by a dense extracellular matrix and multiple cell types including motor neurons required for the contractile activity. Major challenges need now to be tackled by the scientific community to increase maturation of muscle fibers in vitro, in particular for modeling adult-onset diseases affecting this tissue (neuromuscular disorders, cachexia, sarcopenia) and the evaluation of therapeutic strategies. In the near future, rapidly evolving bioengineering approaches applied to hiPSC will undoubtedly become highly instrumental for investigating muscle pathophysiology and the development of therapeutic strategies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neuromusculares , Adulto , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular , Músculo Esquelético , Fibras Musculares Esqueléticas/metabolismo , Junção Neuromuscular/metabolismo , Doenças Neuromusculares/terapia , Doenças Neuromusculares/metabolismo
19.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240237

RESUMO

Duchenne muscular dystrophy (DMD) is a severe muscular disorder caused by mutations in the dystrophin gene. It leads to respiratory and cardiac failure and premature death at a young age. Although recent studies have greatly deepened the understanding of the primary and secondary pathogenetic mechanisms of DMD, an effective treatment remains elusive. In recent decades, stem cells have emerged as a novel therapeutic product for a variety of diseases. In this study, we investigated nonmyeloablative bone marrow cell (BMC) transplantation as a method of cell therapy for DMD in an mdx mouse model. By using BMC transplantation from GFP-positive mice, we confirmed that BMCs participate in the muscle restoration of mdx mice. We analyzed both syngeneic and allogeneic BMC transplantation under different conditions. Our data indicated that 3 Gy X-ray irradiation with subsequent BMC transplantation improved dystrophin synthesis and the structure of striated muscle fibers (SMFs) in mdx mice as well as decreasing the death rate of SMFs. In addition, we observed the normalization of neuromuscular junctions (NMJs) in mdx mice after nonmyeloablative BMC transplantation. In conclusion, we demonstrated that nonmyeloablative BMC transplantation could be considered a method for DMD treatment.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofina/genética , Distrofina/metabolismo , Camundongos Endogâmicos mdx , Transplante de Medula Óssea , Distrofia Muscular de Duchenne/genética , Fibras Musculares Esqueléticas/metabolismo , Junção Neuromuscular/metabolismo , Músculo Esquelético/metabolismo , Modelos Animais de Doenças
20.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240370

RESUMO

Amyotrophic lateral sclerosis (ALS) is manifested as skeletal muscle denervation, loss of motor neurons and finally severe respiratory failure. Mutations of RNA-binding protein FUS are one of the common genetic reasons of ALS accompanied by a 'dying back' type of degeneration. Using fluorescent approaches and microelectrode recordings, the early structural and functional alterations in diaphragm neuromuscular junctions (NMJs) were studied in mutant FUS mice at the pre-onset stage. Lipid peroxidation and decreased staining with a lipid raft marker were found in the mutant mice. Despite the preservation of the end-plate structure, immunolabeling revealed an increase in levels of presynaptic proteins, SNAP-25 and synapsin 1. The latter can restrain Ca2+-dependent synaptic vesicle mobilization. Indeed, neurotransmitter release upon intense nerve stimulation and its recovery after tetanus and compensatory synaptic vesicle endocytosis were markedly depressed in FUS mice. There was a trend to attenuation of axonal [Ca2+]in increase upon nerve stimulation at 20 Hz. However, no changes in neurotransmitter release and the intraterminal Ca2+ transient in response to low frequency stimulation or in quantal content and the synchrony of neurotransmitter release at low levels of external Ca2+ were detected. At a later stage, shrinking and fragmentation of end plates together with a decrease in presynaptic protein expression and disturbance of the neurotransmitter release timing occurred. Overall, suppression of synaptic vesicle exo-endocytosis upon intense activity probably due to alterations in membrane properties, synapsin 1 levels and Ca2+ kinetics could be an early sign of nascent NMJ pathology, which leads to neuromuscular contact disorganization.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Proteína FUS de Ligação a RNA/genética , Sinapsinas/genética , Sinapsinas/metabolismo , Junção Neuromuscular/metabolismo , Neurotransmissores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA