Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Microb Ecol ; 87(1): 5, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38030815

RESUMO

Cholangiocarcinoma (CCA) is a serious health problem worldwide. The gut and bile microbiota have not been clearly characterized in patients with CCA, and better noninvasive diagnostic approaches for CCA need to be established. The aim of this study was to investigate the characteristics of the gut and bile microbiota in CCA patients. Forty-two CCA patients and 16 healthy normal controls (HNCs) were enrolled. DNA was extracted from fecal and bile samples and subjected to 16S rRNA gene analysis. We found that there were significant differences in the species diversity, structure, and composition of the microbial communities between the CCA group and the HNC grouAt the phylum level, compared with that in the HNC group, the relative abundance of Firmicutes and Actinobacteriota was significantly decreased in the CCA group, whereas Proteobacteria and Bacteroidota were significantly enriched. The Firmicutes/Bacteroidota (F/B) ratio significantly decreased in the CCA group compared to the HNC grouThe relative abundance of Klebsiella in the CCA group was significantly higher than that in the HNC group, while the relative abundance of Bifidobacterium was significantly decreased. The Bifidobacterium/Klebsiella (B/K) ratio was established as a novel biomarker and was found to be significantly decreased in the CCA group compared with the HNC grouOur findings provide evidence supporting the use of Klebsiella and Bifidobacterium as noninvasive intestinal microbiomarkers for improving the diagnosis of CCA.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Bifidobacterium/genética , Klebsiella/genética , RNA Ribossômico 16S/genética , Bile , Firmicutes/genética , Bacteroidetes/genética , Fezes/microbiologia
2.
Res Microbiol ; 174(7): 104075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37141929

RESUMO

Bacteria use type II secretion systems (T2SS) to secrete to their surface folded proteins that confer diverse functions, from nutrient acquisition to virulence. In the Klebsiella species, T2SS-mediated secretion of pullulanase (PulA) requires assembly of a dynamic filament called the endopilus. The inner membrane assembly platform (AP) subcomplex is essential for endopilus assembly and PulA secretion. AP components PulL and PulM interact with each other through their C-terminal globular domains and transmembrane segments. Here, we investigated the roles of their periplasmic helices, predicted to form a coiled coil, in assembly and function of the PulL-PulM complex. PulL and PulM variants lacking these periplasmic helices were defective for interaction in the bacterial two-hybrid (BACTH) assay. Their functions in PulA secretion and assembly of PulG subunits into endopilus filaments were strongly reduced. Interestingly, deleting the cytoplasmic peptide of PulM nearly abolished the function of variant PulMΔN and its interaction with PulG, but not with PulL, in the BACTH assay. Nevertheless, PulL was specifically proteolyzed in the presence of the PulMΔN variant, suggesting that PulM N-terminal peptide stabilizes PulL in the cytoplasm. We discuss the implications of these results for the T2S endopilus and type IV pilus assembly mechanisms.


Assuntos
Klebsiella , Sistemas de Secreção Tipo II , Klebsiella/genética , Sistemas de Secreção Tipo II/genética , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Proteínas de Bactérias/metabolismo
3.
Chemosphere ; 313: 137375, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36435315

RESUMO

Co-contamination by antibiotics and heavy metal is common in the environment, however, there is scarce information about antibiotics biodegradation under heavy metals stress. In this study, Klebsiella sp. Strain YB1 was isolated which is capable of biodegrading chloramphenicol (CAP) with a biodegradation efficiency of 22.41% at an initial CAP of 10 mg L-1 within 2 days. CAP biodegradation which fitted well with the first-order kinetics. YB1 still degrades CAP under Cd stress, however 10 mg L-1 Cd inhibited CAP biodegradation by 15.1%. Biotransformation pathways remained the same under Cd stress, but two new products (Cmpd 19 and Cmpd 20) were identified. Five parallel metabolism pathways of CAP were proposed with/without Cd stress, including one novel pathway (pathway 5) that has not been reported before. In pathway 5, the initial reaction was oxidation of CAP by disruption of C-C bond at the side chain of C1 and C2 with the formation of 4-nitrobenzyl alcohol and CY7, then these intermediates were oxidized into p-nitrobenzoic acid and CY1, respectively. CAP acetyltransferase and nitroreductase and 2,3/4,5-dioxygenase may play an important role in CAP biodegradation through genome analysis and prediction. This study deepens our understanding of mechanism of antibiotic degradation under heavy metal stress in the environment.


Assuntos
Cádmio , Metais Pesados , Antibacterianos/farmacologia , Biodegradação Ambiental , Biotransformação , Cádmio/metabolismo , Cloranfenicol/farmacologia , Klebsiella/genética , Klebsiella/metabolismo , Genoma Bacteriano
4.
Microb Genom ; 7(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34128785

RESUMO

The bacterial genotoxin colibactin interferes with the eukaryotic cell cycle by causing dsDNA breaks. It has been linked to bacterially induced colorectal cancer in humans. Colibactin is encoded by a 54 kb genomic region in Enterobacteriaceae. The colibactin genes commonly co-occur with the yersiniabactin biosynthetic determinant. Investigating the prevalence and sequence diversity of the colibactin determinant and its linkage to the yersiniabactin operon in prokaryotic genomes, we discovered mainly species-specific lineages of the colibactin determinant and classified three main structural settings of the colibactin-yersiniabactin genomic region in Enterobacteriaceae. The colibactin gene cluster has a similar but not identical evolutionary track to that of the yersiniabactin operon. Both determinants could have been acquired on several occasions and/or exchanged independently between enterobacteria by horizontal gene transfer. Integrative and conjugative elements play(ed) a central role in the evolution and structural diversity of the colibactin-yersiniabactin genomic region. Addition of an activating and regulating module (clbAR) to the biosynthesis and transport module (clbB-S) represents the most recent step in the evolution of the colibactin determinant. In a first attempt to correlate colibactin expression with individual lineages of colibactin determinants and different bacterial genetic backgrounds, we compared colibactin expression of selected enterobacterial isolates in vitro. Colibactin production in the tested Klebsiella species and Citrobacter koseri strains was more homogeneous and generally higher than that in most of the Escherichia coli isolates studied. Our results improve the understanding of the diversity of colibactin determinants and its expression level, and may contribute to risk assessment of colibactin-producing enterobacteria.


Assuntos
Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Peptídeos/metabolismo , Fenóis/metabolismo , Policetídeos/metabolismo , Metabolismo Secundário , Tiazóis/metabolismo , Citrobacter/genética , Citrobacter/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Humanos , Klebsiella/genética , Klebsiella/metabolismo , Mutagênicos/metabolismo , Metabolismo Secundário/genética , Metabolismo Secundário/fisiologia
5.
Molecules ; 27(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35011428

RESUMO

Caseinolytic proteins (Clp), which are present in both prokaryotes and eukaryotes, play a major role in cell protein quality control and survival of bacteria in harsh environmental conditions. Recently, a member of this protein family, ClpK was identified in a pathogenic strain of Klebsiella pneumoniae which was responsible for nosocomial infections. ClpK is linked to the thermal stress survival of this pathogen. The genome wide analysis of Clp proteins in Klebsiella spp. indicates that ClpK is present in only 34% of the investigated strains. This suggests that the uptake of the clpk gene is selective and may only be taken up by a pathogen that needs to survive harsh environmental conditions. In silico analyses and molecular dynamic simulations show that ClpK is mainly α-helical and is highly dynamic. ClpK was successfully expressed and purified to homogeneity using affinity and anion exchange chromatography. Biophysical characterization of ClpK showed that it is predominantly alpha-helical, and this is in agreement with in silico analysis of the protein structure. Furthermore, the purified protein is biologically active and hydrolyses ATP in a concentration- dependent manner.


Assuntos
Proteínas de Bactérias/metabolismo , Klebsiella/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Fenômenos Químicos , Klebsiella/classificação , Klebsiella/genética , Viabilidade Microbiana , Modelos Moleculares , Filogenia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Subunidades Proteicas , Estresse Fisiológico , Relação Estrutura-Atividade
6.
BMC Genet ; 21(Suppl 2): 138, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339499

RESUMO

BACKGROUND: Bactrocera dorsalis is a destructive polyphagous and highly invasive insect pest of tropical and subtropical species of fruit and vegetable crops. The sterile insect technique (SIT) has been used for decades to control insect pests of agricultural, veterinary, and human health importance. Irradiation of pupae in SIT can reduce the ecological fitness of the sterile insects. Our previous study has shown that a gut bacterial strain BD177 that could restore ecological fitness by promoting host food intake and metabolic activities. RESULTS: Using long-read sequence technologies, we assembled the complete genome of K. michiganensis BD177 strain. The complete genome of K. michiganensis BD177 comprises one circular chromosome and four plasmids with a GC content of 55.03%. The pan-genome analysis was performed on 119 genomes (strain BD177 genome and 118 out of 128 published Klebsiella sp. genomes since ten were discarded). The pan-genome includes a total of 49305 gene clusters, a small number of 858 core genes, and a high number of accessory (10566) genes. Pan-genome and average nucleotide identity (ANI) analysis showed that BD177 is more similar to the type strain K. michiganensis DSM2544, while away from the type strain K. oxytoca ATCC13182. Comparative genome analysis with 21 K. oxytoca and 12 K. michiganensis strains, identified 213 unique genes, several of them related to amino acid metabolism, metabolism of cofactors and vitamins, and xenobiotics biodegradation and metabolism in BD177 genome. CONCLUSIONS: Phylogenomics analysis reclassified strain BD177 as a member of the species K. michiganensis. Comparative genome analysis suggested that K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis. The clear classification status of BD177 strain and identification of unique genetic characteristics may contribute to expanding our understanding of the symbiotic relationship of gut microbiota and B. dorsalis.


Assuntos
Genoma Bacteriano , Klebsiella/genética , Simbiose , Tephritidae/microbiologia , Animais , Hibridização Genômica Comparativa , Microbioma Gastrointestinal , Fenótipo , Filogenia , RNA Ribossômico 16S/genética
7.
Sci Rep ; 10(1): 11042, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632181

RESUMO

The microbiota isolated from the urine of bladder carcinoma patients exhibits significantly increased compositional abundance of some bacterial genera compared to the urine of healthy patients. Our aim was to compare the microbiota composition of cancerous tissues and urine samples collected from the same set of patients in order to improve the accuracy of diagnostic measures. Tissue samples were collected from patients during cancer tissue removal by transurethral resection. In parallel, urine samples were obtained by transurethral resectoscopy from the same patients. The V3-V4 region of the bacterial 16S rRNA gene was sequenced and analyzed using the Kraken pipeline. In the case of four patients, duplicate microbiota analysis from distant parts of the cancerous tissues was highly reproducible, and independent of the site of tissue collection of any given patient. Akkermansia, Bacteroides, Clostridium sensu stricto, Enterobacter and Klebsiella, as "five suspect genera", were over-represented in tissue samples compared to the urine. To our knowledge, this is the first study comparing urinary and bladder mucosa-associated microbiota profiles in bladder cancer patients. More accurate characterization of changes in microbiota composition during bladder cancer progression could provide new opportunities in the development of appropriate screening or monitoring methods.


Assuntos
Microbiota , Neoplasias da Bexiga Urinária/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Akkermansia/genética , Akkermansia/isolamento & purificação , Bacteroides/genética , Bacteroides/isolamento & purificação , Clostridium/genética , Clostridium/isolamento & purificação , Enterobacter/genética , Enterobacter/isolamento & purificação , Feminino , Genes Bacterianos , Humanos , Klebsiella/genética , Klebsiella/isolamento & purificação , Masculino , Microbiota/genética , Pessoa de Meia-Idade , Mucosa/microbiologia , RNA Ribossômico 16S/genética , Especificidade da Espécie , Bexiga Urinária/microbiologia , Neoplasias da Bexiga Urinária/urina , Adulto Jovem
8.
Eur Urol Oncol ; 3(6): 784-788, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32345542

RESUMO

Comprehensive characterization of the urinary and urothelium-bound microbiomes in bladder cancer (BCa) and healthy state is essential to understand how these local microbiomes may play a role in BCa tumorigenesis and response to therapy, as well as to explain sex-based differences in BCa pathobiology. Performing 16 s rDNA microbiome analysis on 166 samples (urine and paired bladder tissues) from therapy-naïve BCa patients undergoing radical cystectomy and healthy controls, we defined (1) sex-specific microbiome differences in the urine and bladder tissue, and (2) representativeness of the tissue microenvironment by the voided urinary microbiome. The genus Klebsiella was more common in the urine of female BCa patients versus healthy controls, while no clinically relevant bacteria were found differently enriched in men. In tissues, the genus Burkholderia was more abundant in the neoplastic versus the non-neoplastic tissue in both sexes, suggesting a potential role in BCa pathobiology. Lastly, we found that the urinary microbiome shares >80% of the bacterial families present in the paired bladder tissue, making the urinary microbiome a fair proxy of the tissue bacterial environment. PATIENT SUMMARY: We identified specific bacteria present in the urine and tissues of male and female bladder cancer patients. These novel data represent a first step toward understanding the influence of the bladder microbiome on the development of bladder cancer and on the response to intravesical and systemic therapies.


Assuntos
Carcinoma de Células de Transição/microbiologia , Microbiota , Neoplasias da Bexiga Urinária/microbiologia , Bexiga Urinária/microbiologia , Urina/microbiologia , Idoso , Burkholderia/genética , Burkholderia/isolamento & purificação , Carcinoma de Células de Transição/patologia , Carcinoma de Células de Transição/cirurgia , Carcinoma de Células de Transição/urina , Estudos de Casos e Controles , Cistectomia , DNA Bacteriano/isolamento & purificação , Feminino , Voluntários Saudáveis , Humanos , Klebsiella/genética , Klebsiella/isolamento & purificação , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Fatores Sexuais , Bexiga Urinária/patologia , Bexiga Urinária/cirurgia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/cirurgia , Neoplasias da Bexiga Urinária/urina
9.
Microbiologyopen ; 9(6): 1128-1134, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32126585

RESUMO

A reusable water bottle was swabbed as part of the citizen science project "Swab and Send," and a Klebsiella grimontii isolate was recovered on chromogenic agar and designated SS141. Whole-genome sequencing of SS141 showed it has the potential to be a human pathogen as it contains the biosynthetic gene cluster for the potent cytotoxin, kleboxymycin, and genes for other virulence factors. The genome also contains the antibiotic-resistant genes, blaOXY-6-4 , and a variant of fosA, which is likely to explain the observed resistance to ampicillin, amoxicillin, and fosfomycin. We have also shown that SS141 forms biofilms on both polystyrene and polypropylene surfaces, providing a reasonable explanation for its ability to colonize a reusable water bottle. With the increasing use of reusable water bottles as an alternative to disposables and a strong forecast for growth in this industry over the next decade, this study highlights the need for cleanliness comparable to other reusable culinary items.


Assuntos
Biofilmes/crescimento & desenvolvimento , Água Potável/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Klebsiella/genética , Klebsiella/isolamento & purificação , Amoxicilina/farmacologia , Ampicilina/farmacologia , Antibacterianos/farmacologia , Fosfomicina/farmacologia , Genoma Bacteriano/genética , Humanos , Klebsiella/classificação , Testes de Sensibilidade Microbiana , Polipropilenos , Poliestirenos , Fatores de Virulência/genética , Microbiologia da Água , Sequenciamento Completo do Genoma , beta-Lactamases/genética
10.
Sex Transm Infect ; 96(8): 596-600, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32075875

RESUMO

OBJECTIVES: We used an in-house molecular assay for the detection of Klebsiella granulomatis in ulcer specimens collected over a 12-year surveillance period in order to determine whether a diagnosis of donovanosis could be ascribed to genital ulcer disease (GUD) of unknown aetiology in our setting. METHODS: Between 2007 and 2018, a total of 974 genital ulcer specimens with no previously identified sexually transmitted (STI) pathogens were selected from STI aetiological surveys conducted in all nine provinces of South Africa. Giemsa-stained ulcer smears from the same participants had previously been routinely analysed for the presence of typical Donovan bodies within large mononuclear cells. A Klebsiella screening assay targeting the phoE (phosphate porin) gene was used in combination with restriction digest analysis and sequencing to confirm the presence of K. granulomatis. RESULTS: The Klebsiella screening assay tested positive in 19/974 (2.0%) genital ulcer specimens. Restriction digest analysis and nucleotide sequencing of the phoE gene confirmed that none of these specimens was positive for K. granulomatis DNA. Similarly, Donovan bodies were not identified in the Giemsa stained ulcer smears of these specimens. CONCLUSIONS: This is the first study to assess K. granulomatis as a cause of genital ulceration in South Africa over a 12-year surveillance period using molecular methods. The results demonstrate that K. granulomatis is no longer a prevalent cause of GUD in our population.


Assuntos
Doenças dos Genitais Femininos/microbiologia , Doenças dos Genitais Masculinos/microbiologia , Granuloma Inguinal/microbiologia , Adulto , Erradicação de Doenças , Feminino , Doenças dos Genitais Femininos/diagnóstico , Doenças dos Genitais Femininos/epidemiologia , Doenças dos Genitais Masculinos/diagnóstico , Doenças dos Genitais Masculinos/epidemiologia , Granuloma Inguinal/diagnóstico , Granuloma Inguinal/epidemiologia , Humanos , Klebsiella/genética , Klebsiella/isolamento & purificação , Klebsiella/fisiologia , Masculino , África do Sul/epidemiologia , Úlcera , Adulto Jovem
11.
BMC Infect Dis ; 19(1): 946, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703559

RESUMO

BACKGROUND: Klebsiella variicola and K. quasipneumoniae are new species distinguishable from K. pneumoniae but they are often misidentified as K. pneumoniae in clinical settings. Several reports have demonstrated the possibility that the virulence factors and clinical features differ among these three phylogroups. In this study, we aimed to clarify whether there were differences in clinical and bacterial features between the three phylogroups isolated from patients with bloodstream infections (BSIs) in Japan. METHODS: Isolates from all patients with BSIs caused by K. pneumoniae admitted to two hospitals between 2014 and 2017 (n = 119) were included in the study. Bacterial species were identified via sequence analysis, and their virulence factors and serotypes were analyzed via multiplex PCR results. Clinical data were retrieved from medical records. RESULTS: Of the 119 isolates, 21 (17.7%) were identified as K. variicola and 11 (9.2%) as K. quasipneumoniae; K1 serotype was found in 16 (13.4%), and K2 serotype in 13 (10.9%). Significant differences in the prevalence of rmpA, iutA, ybtS, entB and kfu (p < 0.001), and allS genes (p < 0.05) were found between the three phylogroups. However, there were no significant differences in clinical features, including the 30-day mortality rate, between the three organisms, although K. variicola was more frequently detected in patients over 80 years old compared with other Klebsiella species (p < 0.005), and K. quasipneumoniae more frequently occurred in patients with malignancy (p < 0.05). CONCLUSIONS: Our findings demonstrated the differences in bacterial pathogenicity and clinical features among these three phylogroups. Further epidemiological studies into BSI caused by Klebsiella species are warranted.


Assuntos
Bacteriemia/microbiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/mortalidade , Klebsiella pneumoniae/genética , Klebsiella/genética , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Doença Iatrogênica , Japão , Klebsiella/isolamento & purificação , Klebsiella pneumoniae/isolamento & purificação , Masculino , Filogenia , Reação em Cadeia da Polimerase , Estudos Retrospectivos , Fatores de Risco , Sorogrupo , Fatores de Virulência/genética
12.
Arch Microbiol ; 201(8): 1061-1073, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31123792

RESUMO

Plants are colonized by diverse microorganisms that can substantially impact their health and growth. Understanding bacterial diversity and the relationships between bacteria and phytopathogens may be key to finding effective biocontrol agents. We evaluated the bacterial community associated with anthracnose symptomatic and asymptomatic leaves of guarana, a typical tropical crop. Bacterial communities were assessed through culture-independent techniques based on extensive 16S rRNA sequencing, and cultured bacterial strains were evaluated for their ability to inhibit the growth of Colletotrichum sp. as well as for enzyme and siderophore production. The culture-independent method revealed that Proteobacteria was the most abundant phylum, but many sequences were unclassified. The emergence of anthracnose disease did not significantly affect the bacterial community, but the abundance of the genera Acinetobacter, Pseudomonas and Klebsiella were significantly higher in the symptomatic leaves. In vitro growth of Colletotrichum sp. was inhibited by 11.38% of the cultured bacterial strains, and bacteria with the highest inhibition rates were isolated from symptomatic leaves, while asymptomatic leaves hosted significantly more bacteria that produced amylase and polygalacturonase. The bacterial isolate Bacillus sp. EpD2-5 demonstrated the highest inhibition rate against Colletotrichum sp., whereas the isolates EpD2-12 and FD5-12 from the same genus also had high inhibition rates. These isolates were also able to produce several hydrolytic enzymes and siderophores, indicating that they may be good candidates for the biocontrol of anthracnose. Our work demonstrated the importance of using a polyphasic approach to study microbial communities from plant diseases, and future work should focus on elucidating the roles of culture-independent bacterial communities in guarana anthracnose disease.


Assuntos
Antibiose/fisiologia , Agentes de Controle Biológico/isolamento & purificação , Colletotrichum/crescimento & desenvolvimento , Paullinia/microbiologia , Proteobactérias/isolamento & purificação , Acinetobacter/classificação , Acinetobacter/genética , Acinetobacter/isolamento & purificação , Amilases/metabolismo , Antracose/microbiologia , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Klebsiella/classificação , Klebsiella/genética , Klebsiella/isolamento & purificação , Microbiota , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Poligalacturonase/metabolismo , Proteobactérias/classificação , Proteobactérias/genética , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Floresta Úmida , Sideróforos/metabolismo
13.
World J Microbiol Biotechnol ; 35(3): 38, 2019 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-30739299

RESUMO

The present study investigated biodegradation and removal of Reactive Red 198 (RR198) dye from aqueous environments using a new bacterial consortium isolated from textile wastewater sludge on laboratory scale via batch study. Two bacterial species, Enterococcus faecalis (EF) and Klebsiella variicola (KV), were identified after isolation, through biochemical assays, Polymerase chain reaction (PCR), and 16S rRNA gene sequencing. To determine their ability to biodegrade RR198 dye, physicochemical parameters, including bacterial concentration, time, pH, and temperature, were tested; the results showed that the best conditions included a bacterial concentration of 3.5 mL × 105 cells/mL and incubation time of 72 h. Under such conditions, the removal efficiency of RR198 dye at an initial concentration of 10-25 mg/L was more than 98%; however, for concentrations of 50, 75, and 100 mg/L, removal efficiency was reduced to 55.62%, 25.82%, and 15.42%, respectively (p = 0.005). The highest removal efficiency occurred at pH 8.0, reaching 99.26% after 72 h of incubation. With increasing the incubation temperature from 25 °C to 37 °C, removal efficiency increased from 71.71 to 99.26% after 72 h of incubation, and increasing the temperature from 37 to 45 °C, the removal efficiency was reduced (p ≤ 0.001). Therefore, the EF-KV bacterial consortium can be used for efficient removal of RR198 dye from textile effluent.


Assuntos
Compostos Azo/metabolismo , Enterococcus faecalis/metabolismo , Klebsiella/metabolismo , Consórcios Microbianos , Naftalenossulfonatos/metabolismo , Esgotos/microbiologia , Têxteis/microbiologia , Triazinas/metabolismo , Águas Residuárias/microbiologia , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Corantes/metabolismo , DNA Bacteriano/análise , DNA Bacteriano/genética , Enterococcus faecalis/genética , Enterococcus faecalis/isolamento & purificação , Concentração de Íons de Hidrogênio , Resíduos Industriais , Klebsiella/genética , Klebsiella/isolamento & purificação , RNA Ribossômico 16S/genética , Esgotos/química , Temperatura , Indústria Têxtil , Fatores de Tempo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo
15.
PLoS One ; 14(1): e0210547, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30633761

RESUMO

New antibiotics are needed against antibiotic-resistant gram-negative bacteria. The repurposed antifungal drug, ciclopirox, equally blocks antibiotic-susceptible or multidrug-resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates, indicating that it is not affected by existing resistance mechanisms. Toward understanding how ciclopirox blocks growth, we screened E. coli mutant strains and found that disruption of genes encoding products involved in galactose salvage, enterobacterial common antigen synthesis, and transport of the iron binding siderophore, enterobactin, lowered the minimum inhibitory concentration of ciclopirox needed to block growth of the mutant compared to the isogenic parent strain. We found that ciclopirox induced enterobactin production and that this effect is strongly affected by the deletion of the galactose salvage genes encoding UDP-galactose 4-epimerase, galE, or galactose-1-phosphate uridylyltransferase, galT. As disruption of ECA synthesis activates the regulation of capsular synthesis (Rcs) phosphorelay, which inhibits bacterial swarming and promotes biofilm development, we test whether ciclopirox prevents activation of the Rcs pathway. Sub-inhibitory concentrations of ciclopirox increased swarming of the E. coli laboratory K12 strain BW25113 but had widely varying effects on swarming or surface motility of clinical isolate E. coli, A. baumannii, and K. pneumoniae. There was no effect of ciclopirox on biofilm production, suggesting it does not target Rcs. Altogether, our data suggest ciclopirox-mediated alteration of lipopolysaccharides stimulates enterobactin production and affects bacterial swarming.


Assuntos
Antibacterianos/farmacologia , Ciclopirox/farmacologia , Escherichia coli/efeitos dos fármacos , Ferro/metabolismo , Açúcares/análise , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Antifúngicos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Enterobactina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Galactose/metabolismo , Genes Bacterianos/genética , Klebsiella/efeitos dos fármacos , Klebsiella/genética , Klebsiella/metabolismo , Testes de Sensibilidade Microbiana , Mutação , Sideróforos/metabolismo
16.
Microb Pathog ; 127: 368-379, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30557584

RESUMO

Microbial studies on Catfish revealed that Klebsiella is the most common pathogen causing prevalence of ulcers, fin erosion, and other lesions. During this study, a new strain of bacteria was isolated from Channa punctatus, and molecular identification by 16srRNA revealed the strain was Klebsiella PKBSG14 (Accession no KJ162158). The strain was also PCR positive for two virulent gene wcaG (Accession no LN606595) and rmpA (Accession no LN606594) responsible for inflammatory reactions and induction of innate immune response in the host cell. To study innate immune response induced by pathogenic infection the phagocytic interactive process between the spleen macrophages and KlebsiellaPKBSG14 was investigated using optical microscopy. FACS of splenic macrophages revealed that the phagocytic interaction leads to the process of macrophage cell cycle progression. A detailed study on the macrophage DNA content by performing DNA fragmentation and comet allowed us to study simultaneously host cell division as a function of phagocytosis and the findings unveiled the fact that Phagocytosis of KlebsiellaPKBSG14 aided in macrophage cell cycle progression but was less likely to complete mitosis. Here we also report the cytotoxic effect linked to the infection with KlebsiellaPKBSG14 by performing Cell viability assay, intracellular production of ROS, and mitochondrial transmembrane potential where it manifested itself in impaired cellular function. So, in summary, we simultaneously discovered a new strain of bacteria ie. Klebsiella PKBSG14 as well as deliberately attempted to study the immunomodulatory effect of isolated new stain on Channa punctatus by performing host-pathogen phagocytic interactive experiments, the cell cycle state of the host cell and pathogen-mediated cytotoxicity along with genotoxicity, and our results evidence a new immunomodulatory effect of KlebsiellaPKBSG14 infection on fish splenic macrophages.


Assuntos
Doenças dos Peixes/microbiologia , Doenças dos Peixes/patologia , Imunidade Inata , Infecções por Klebsiella/veterinária , Klebsiella/imunologia , Fatores de Virulência/imunologia , Animais , Peixes-Gato , Membrana Celular/fisiologia , Sobrevivência Celular , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Klebsiella/classificação , Klebsiella/genética , Klebsiella/isolamento & purificação , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/patologia , Macrófagos/imunologia , Potenciais da Membrana , Fagocitose , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de DNA , Baço/imunologia , Baço/microbiologia , Fatores de Virulência/genética
17.
J Biol Chem ; 293(39): 14953-14961, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30108176

RESUMO

Invasive Gram-negative bacteria often express multiple virulence-associated metal ion chelators to combat host-mediated metal deficiencies. Escherichia coli, Klebsiella, and Yersinia pestis isolates encoding the Yersinia high pathogenicity island (HPI) secrete yersiniabactin (Ybt), a metallophore originally shown to chelate iron ions during infection. However, our recent demonstration that Ybt also scavenges copper ions during infection led us to question whether it might be capable of retrieving other metals as well. Here, we find that uropathogenic E. coli also use Ybt to bind extracellular nickel ions. Using quantitative MS, we show that the canonical metal-Ybt import pathway internalizes the resulting Ni-Ybt complexes, extracts the nickel, and releases metal-free Ybt back to the extracellular space. We find that E. coli and Klebsiella direct the nickel liberated from this pathway to intracellular nickel enzymes. Thus, Ybt may provide access to nickel that is inaccessible to the conserved NikABCDE permease system. Nickel should be considered alongside iron and copper as a plausible substrate for Ybt-mediated metal import by enterobacteria during human infections.


Assuntos
Cobre/metabolismo , Fenóis/metabolismo , Tiazóis/metabolismo , Infecções Urinárias/genética , Escherichia coli Uropatogênica/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Ilhas Genômicas/genética , Humanos , Ferro/metabolismo , Klebsiella/genética , Klebsiella/patogenicidade , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/patogenicidade , Yersinia pestis/genética , Yersinia pestis/patogenicidade
18.
Salud pública Méx ; 60(1): 29-40, Jan.-Feb. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-903844

RESUMO

Abstract: Objective: To compare the genetic determinants involved in plant colonization or virulence in the reported genomes of K. variicola, K. quasipneumoniae and K. pneumoniae. Materials and methods: In silico comparisons and Jaccard analysis of genomic data were used. Fimbrial genes were detected by PCR. Biological assays were performed with plant and clinical isolates. Results: Plant colonization genes such as cellulases, catalases and hemagglutinins were mainly present in K. variicola genomes. Chromosomal β-lactamases were characteristic of this species and had been previously misclassified. K. variicola and K. pneumoniae isolates produced plant hormones. Conclusions: A mosaic distribution of different virulence- and plant-associated genes was found in K. variicola and in K. quasipneumoniae genomes. Some plant colonizing genes were found mainly in K. variicola genomes. The term plantanosis is proposed for plant-borne human infections.


Resumen: Objetivo: Comparar genes de colonización de plantas o de virulencia en los genomas reportados de K. variicola, K. quasipneumoniae y K. pneumoniae. Material y métodos: Se utilizaron análisis in silico y de Jaccard. Por PCR se detectaron genes de fimbrias. Se realizaron ensayos biológicos con aislados de plantas y clínicos. Resultados: Los genes de colonización de plantas como celulasas, catalasas y hemaglutininas se encontraron principalmente en genomas de K. variicola. Las β-lactamasas cromosómicas son características de la especie y en algunos casos estaban mal clasificadas. K. variicola y K. pneumoniae producen hormonas vegetales. Conclusiones: Se encontró una distribución en mosaico de los genes de asociación con plantas y de virulencia en K. variicola y K. quasipneumoniae. Principalmente en K. variicola se encontraron algunos genes involucrados en la colonización de plantas. Se propone el término plantanosis para las infecciones humanas de origen vegetal.


Assuntos
Humanos , Plantas/microbiologia , Infecções por Klebsiella/microbiologia , Klebsiella/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas de Bactérias/genética , Virulência/genética , Simulação por Computador , Reservatórios de Doenças , Adaptação Biológica/genética , Genoma Bacteriano , Farmacorresistência Bacteriana Múltipla , Ontologia Genética , Genes Bacterianos , Klebsiella/enzimologia , Klebsiella/genética , Klebsiella/patogenicidade
19.
Chemosphere ; 196: 251-259, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29306197

RESUMO

The fate of antibiotic-resistant bacteria (ARB) and associated antibiotic-resistant gene (ARG) expression under electrolytic stimulation in bio-electrochemical reactors (BERs) was unknown. In this study, sulfadiazine resistant bacteria (Klebsiella spp.), which were isolated from a BER, were subjected to constant direct current (DC) stimulation in a simulated BER. With an increase of the current from 7 to 28 mA, it was found that lactic dehydrogenase (LDH) showed a 1.03-, 1.21-, 1.34-, and 1.46-fold value compared with the control at 48 h, indicating that the cell membrane permeability had increased. Since the adenosine triphosphate (ATP) concentration increased with the current, the specific growth rate of Klebsiella spp. increased (R = 0.98). The viable count of Klebsiella spp. reached a maximum at 19 mA and then decreased. The percentage of ARB lethality, which was reflected by flow cytometry analysis, increased from 18% (7 mA) to 37.8% (28 mA) at 48 h. Reactive oxygen species (ROS) produced from the electrolysis of water were greater with the increasing current (R = 0.94), which may be responsible for the high lethality rate of Klebsiella spp.. Scanning electronic microscope results showed that electrolytic stimulation changed the cell surface morphology with some cell disruption. An upregulation of sulII and int1 expression was observed. A significant correlation between int1 and the current (R = 0.97) were observed. Taken together, BERs possess potential risks in accelerating ARB multiplication and promoting ARG expression.


Assuntos
Reatores Biológicos/microbiologia , Farmacorresistência Bacteriana/genética , Klebsiella/metabolismo , Antibacterianos , Humanos , Klebsiella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA