Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 732
Filtrar
1.
J Ethnopharmacol ; 330: 118202, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38641078

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Members of Plectranthus genus such as Plectranthus amboinicus (Lour.) Spreng is a well-known folkloric medicine around the globe in treating several human ailments such as cardiovascular, respiratory, digestive, urinary tract, skin and infective diseases. Its therapeutic value is primarily attributed to its essential oil. Although several properties of Plectranthus amboinicus essential oil have been documented, its mechanism of action and safety has not been completely elucidated. AIM OF THE STUDY: To investigate the anti-infective potential of Plectranthus amboinicus essential oil against Klebsiella pneumoniae using in vitro and in vivo bioassays and identify its mode of action. The study was conducted to scientifically validate the traditional usage of Plectranthus amboinicus oil and propose it as a complementary and alternative medication to combat Klebsiella pneumoniae infections due to emerging antibiotic resistance problem. MATERIALS AND METHODS: Plectranthus amboinicus essential oil was extracted through steam distillation and was chemically characterized using Gas Chromatography Mass Spectrometry (GC-MS). The antibacterial activity was assessed using microbroth dilution assay, metabolic viability assay and growth curve analysis. The mode of action was elucidated by the proteomics approach using Nano-LC-MS/MS followed by in silico analysis. The results of proteomic analysis were further validated through several in vitro assays. The cytotoxic nature of the essential oil was also confirmed using adenocarcinomic human alveolar basal epithelial (A549) cells. Furthermore, the safety and in vivo anti-infective efficacy of Plectranthus amboinicus essential oil was evaluated through survival assay, CFU assay and histopathological analysis of vital organs using zebrafish as a model organism. RESULTS: The chemical characterization of Plectranthus amboinicus essential oil revealed that it is predominantly composed of thymol. Thymol rich P. amboinicus essential oil demonstrated potent inhibitory effects on Klebsiella pneumoniae growth, achieving a significant reduction at a concentration of 400 µg/mL within 4 h of treatment The nano-LC-MS/MS approach unveiled that the essential oil exerted its impact by disrupting the antioxidant defense system and efflux pump system of the bacterium, resulting in elevated cellular oxidative stress and affect the biosynthesis of biofilm. The same was validated through several in vitro assays. Furthermore, the toxicity of Plectranthus amboinicus essential oil determined using A549 cells and zebrafish survival assay established a non-toxic concentration of 400 µg/mL and 12.5 µg/mL respectively. The results of anti-infective potential of the essential oil using Zebrafish as a model organism demonstrated significantly improved survival rates, reduced bacterial load, alleviated visible signs of inflammation and mitigated the adverse effects of infection on various organs, as evidenced by histopathological analysis ensuring its safety for potential therapeutic application. CONCLUSION: The executed in vitro and in vivo assays established the effectiveness of essential oil in inhibiting bacterial growth by targeting key proteins associated with the bacterial antioxidant defense system and disrupted the integrity of the cell membrane, highlighting its critical role in addressing the challenge posed by antibiotic-resistant Klebsiella pneumoniae.


Assuntos
Klebsiella pneumoniae , Óleos Voláteis , Folhas de Planta , Plectranthus , Proteômica , Klebsiella pneumoniae/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Animais , Plectranthus/química , Humanos , Folhas de Planta/química , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Testes de Sensibilidade Microbiana , Peixe-Zebra , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia
2.
Drug Resist Updat ; 74: 101083, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593500

RESUMO

AIMS: Carbapenem-resistant Klebsiella pneumonia (CRKP) is a global threat that varies by region. The global distribution, evolution, and clinical implications of the ST11 CRKP clone remain obscure. METHODS: We conducted a multicenter molecular epidemiological survey using isolates obtained from 28 provinces and municipalities across China between 2011 and 2021. We integrated sequences from public databases and performed genetic epidemiology analysis of ST11 CRKP. RESULTS: Among ST11 CRKP, KL64 serotypes exhibited considerable expansion, increasing from 1.54% to 46.08% between 2011 and 2021. Combining our data with public databases, the phylogenetic and phylogeography analyses indicated that ST11 CRKP appeared in the Americas in 1996 and spread worldwide, with key clones progressing from China's southeastern coast to the inland by 2010. Global phylogenetic analysis showed that ST11 KL64 CRKP has evolved to a virulent, resistant clade with notable regional spread. Single-nucleotide polymorphism (SNP) analysis identified BMPPS (bmr3, mltC, pyrB, ppsC, and sdaC) as a key marker for this clade. The BMPPS SNP clade is associated with high mortality and has strong anti-phagocytic and competitive traits in vitro. CONCLUSIONS: The high-risk ST11 KL64 CRKP subclone showed strong expansion potential and survival advantages, probably owing to genetic factors.


Assuntos
Antibacterianos , Infecções por Klebsiella , Klebsiella pneumoniae , Filogenia , Humanos , China/epidemiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/transmissão , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/farmacologia , Polimorfismo de Nucleotídeo Único , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Epidemiologia Molecular , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Filogeografia , Sorogrupo , Genômica/métodos
3.
Int Immunopharmacol ; 132: 111889, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531202

RESUMO

Host-directed therapy (HDT) is a new adjuvant strategy that interfere with host cell factors that are required by a pathogen for replication or persistence. In this study, we assessed the effect of dehydrozaluzanin C-derivative (DHZD), a modified compound from dehydrozaluzanin C (DHZC), as a potential HDT agent for severe infection. LPS-induced septic mouse model and Carbapenem resistant Klebsiella pneumoniae (CRKP) infection mouse model was used for testing in vivo. RAW264.7 cells, mouse primary macrophages, and DCs were used for in vitro experiments. Dexamethasone (DXM) was used as a positive control agent. DHZD ameliorated tissue damage (lung, kidney, and liver) and excessive inflammatory response induced by LPS or CRKP infection in mice. Also, DHZD improved the hypothermic symptoms of acute peritonitis induced by CRKP, inhibited heat-killed CRKP (HK-CRKP)-induced inflammatory response in macrophages, and upregulated the proportions of phagocytic cell types in lungs. In vitro data suggested that DHZD decreases LPS-stimulated expression of IL-6, TNF-α and MCP-1 via PI3K/Akt/p70S6K signaling pathway in macrophages. Interestingly, the combined treatment group of DXM and DHZD had a higher survival rate and lower level of IL-6 than those of the DXM-treated group; the combination of DHZD and DXM played a synergistic role in decreasing IL-6 secretion in sera. Moreover, the phagocytic receptor CD36 was increased by DHZD in macrophages, which was accompanied by increased bacterial phagocytosis in a clathrin- and actin-dependent manner. This data suggests that DHZD may be a potential drug candidate for treating bacterial infections.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Macrófagos , Fagocitose , Sepse , Animais , Camundongos , Fagocitose/efeitos dos fármacos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Células RAW 264.7 , Sepse/tratamento farmacológico , Sepse/imunologia , Masculino , Lipopolissacarídeos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
4.
Daru ; 32(1): 197-206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38366078

RESUMO

BACKGROUND: Recent research indicates a prevalence of typical lung infections, such as pneumonia, in lung cancer patients. Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii stand out as antibiotic-resistant pathogens. Given this, there is a growing interest in alternative therapeutic avenues. Boron and zinc derivatives exhibit antimicrobial, antiviral, and antifungal properties. OBJECTIVES: This research aimed to establish the effectiveness of ZnO and ZB NPs in combating bacterial infections in lung cancer cell lines. METHODS: Initially, this study determined the minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) of zinc oxide nanoparticles (ZnO NPs) and zinc borate (ZB) on chosen benchmark strains. Subsequent steps involved gauging treatment success through a lung cancer-bacteria combined culture and immunohistochemical analysis. RESULTS: The inhibitory impact of ZnO NPs on bacteria was charted as follows: 0.97 µg/mL for K. pneumoniae 700603, 1.95 µg/mL for P. aeruginosa 27853, and 7.81 µg/mL for Acinetobacter baumannii 19,606. In comparison, the antibacterial influence of zinc borate was measured as 7.81 µg/mL for Klebsiella pneumoniae 700603 and 500 µg/mL for both P. aeruginosa 27853 and A.baumannii 19606. After 24 h, the cytotoxicity of ZnO NPs and ZB was analyzed using the MTT technique. The lowest cell viability was marked in the 500 µg/mL ZB NPs group, with a viability rate of 48.83% (P < 0.001). However, marked deviations appeared at ZB concentrations of 61.5 µg/mL (P < 0.05) and ZnO NPs at 125 µg/mL. CONCLUSION: A synergistic microbial inhibitory effect was observed when ZnO NP and ZB were combined against the bacteria under investigation.


Assuntos
Acinetobacter baumannii , Antibacterianos , Boratos , Klebsiella pneumoniae , Neoplasias Pulmonares , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Óxido de Zinco/administração & dosagem , Klebsiella pneumoniae/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Boratos/farmacologia , Boratos/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Nanopartículas/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/administração & dosagem , Linhagem Celular Tumoral , Farmacorresistência Bacteriana/efeitos dos fármacos , Células A549 , Compostos de Zinco/farmacologia
5.
Clin Interv Aging ; 18: 1037-1045, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435410

RESUMO

Introduction: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infection has recently gained worldwide interest due to limited treatment options and high morbidity and mortality rates. The aim of this study was to determine the risk factors of carbapenem-resistant K. pneumoniae (CRKP) infection in older adult patients. Material and Methods: This retrospective, single-center study included 132 patients with healthcare-associated CRKP infection (case group) and 150 patients with healthcare-associated carbapenem-susceptible K. pneumoniae (CSKP) infection (control group), aged > 65 years. Results: In the CRKP and CSKP groups, 79 (59.8%) and 80 (53.3%) patients were males, and the mean ages were 77.8 ± 7.8 and 76.6 ± 7.7 years, respectively. Diabetes mellitus (DM), malignancy, cardiovascular diseases (CVDs), surgical intervention, invasive mechanical ventilation, central venous catheter insertion, parenteral nutrition, hospitalization in the previous 6 months, antibiotic use in the previous 3 months, and exposure to cephalosporins, fluoroquinolones, and carbapenems were significantly more common in the CRKP than the CSKP group (all p < 0.05). The multivariate logistic regression analysis identified malignancy, CVDs, DM, invasive mechanical ventilation, hospitalization in the previous 6 months, ICU admission, and exposure to cephalosporins, quinolones, and carbapenems as independent risk factors for CRKP infection in older adult patients. Conclusion: DM, malignancy, CVDs, ICU admission, invasive mechanical ventilation, and exposure to ceftriaxone, fluoroquinolones, and carbapenems were independent risk factors for CRKP infection in older adult patients. The identification of risk factors for CRKP infection can help to prevent and treat CRKP infection.


Assuntos
Carbapenêmicos , Infecção Hospitalar , Klebsiella pneumoniae , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/epidemiologia , Klebsiella pneumoniae/efeitos dos fármacos , Estudos Retrospectivos , Fatores de Risco , Farmacorresistência Bacteriana
6.
Infect Dis Now ; 52(6): 334-340, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35700962

RESUMO

OBJECTIVES: The emergence and spread of Carbapenem-Resistant Enterobacterales (CRE) has become a growing concern for health services, internationally, nationally, and regionally. In Morocco, the situation is more worrisome as studies on CRE are scarce and/or scattered and/or outdated. As a result, we carried out the present study to determine and update CRE prevalence at Mohammed VI University Hospital of Marrakech, Morocco. PATIENTS AND METHODS: A cross-sectional prospective study was carried out from March 2018 to March 2020 on 41161 clinical specimens of 23,469 patients suspected of bacterial infections. Enterobacterales strains were isolated following standard bacteriological procedures. Bacterial strains were identified using BD-Phoenix and MALDI-TOF-MS. Antibiotic susceptibility was determined for 14 antibiotics. Carbapenemase production and phenotypic detection were characterized using modified carbapenem inactivation phenotypic and immunochromatographic methods. RESULTS: All in all, 484 Enterobaterales resistant to at least one carbapenem were recovered. The majority was isolated from the neonatal unit (14%), followed by the urology-nephrology (11%), and plastic surgery departments (10%). K. pneumoniae (n=232) was the most isolated, followed by E. cloacae (n=148), E. coli (n=56), and S. marcescens (n=17). Antibiotic susceptibility profile showed high rates of resistance to ciprofloxacin (75.21%), gentamicin (84.50%), and cotrimoxazole (88.42%). Out of 484 CRE positive cultures, 388 (80.16%) were Carbapenemase-positive. Out of the latter, 170 were metallo-beta-lactamase producers (NDM), 162 OXA-48-like, and 56 both. CONCLUSION: These findings emphasize the urgent need for control precautions and strict measures to contain and mitigate this issue.


Assuntos
Antibacterianos , Proteínas de Bactérias , Enterobacteriáceas Resistentes a Carbapenêmicos , Carbapenêmicos , beta-Lactamases , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/enzimologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Estudos Transversais , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Hospitais , Hospitais Universitários , Humanos , Recém-Nascido , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Marrocos/epidemiologia , Estudos Prospectivos , beta-Lactamases/metabolismo
7.
BMC Microbiol ; 22(1): 47, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130831

RESUMO

BACKGROUND: The heteroresistance of polymyxin B, a last-resort antibiotic used to treat many serious bacterial infections, may lead to antibiotic treatment failure. However, polymyxin B-heteroresistant isolates are rare in individuals living in the community. We report a polymyxin B-heteroresistant hypervirulent Klebsiella pneumoniae (hvKP) isolate from an individual in the community with asymptomatic bacteriuria. RESULTS: The NYTJ35 isolate had multiple virulence genes that encoded a mucoid phenotype regulator (rmpA), aerobactin (iucABCD-iutA), salmochelin (iroBCDN), yersiniabactin (irp1-2 and ybtAEPQSTUX), and a truncated rmpA2. Infection of galleria mellonella larvae indicated the isolate was hypervirulent. Antimicrobial susceptibility testing showed it was susceptible to all tested antibiotics except polymyxin B. The proportion of surviving bacteria was 1.2 × 10- 7 based on the population analysis profile (PAP) method, suggesting the presence of polymyxin B heteroresistance. The isolate was not hypermucoviscous, but it was a strong biofilm producer. It had capsular serotype K1 and belonged to sequence type 23 (ST23). The isolate also had the D150G substitution in phoQ, which is known to confer polymyxin B resistance. CONCLUSIONS: We identified the co-occurrence of hypervirulence and polymyxin B heteroresistance in a K. pneumoniae isolate from an individual with asymptomatic bacteriuria. We suggest the use of increased screening for hvKP in individuals living in the community.


Assuntos
Infecções Assintomáticas/epidemiologia , Bacteriúria/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Klebsiella/urina , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Polimixina B/farmacologia , Animais , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/isolamento & purificação , Larva/microbiologia , Masculino , Testes de Sensibilidade Microbiana , Mariposas/microbiologia , Virulência/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
8.
J Antibiot (Tokyo) ; 75(3): 136-145, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34987187

RESUMO

UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) is an essential enzyme in the biosynthesis of Lipid A, an active component of lipopolysaccharide (LPS), from UDP-3-O-acyl-N-acetylglicosamine. LPS is a major component of the cell surface of Gram-negative bacteria. LPS is known to be one of causative factors of sepsis and has been associated with high mortality in septic shock. TP0586532 is a novel non-hydroxamate LpxC enzyme inhibitor. In this study, we examined the inhibitory effect of TP0586532 on the LPS release from Klebsiella pneumoniae both in vitro and in vivo. Our results confirmed the inhibitory effect of TP0586532 on LPS release from the pathogenic bacterial species. On the other hand, meropenem and ciprofloxacin increase the level of LPS release. Furthermore, the effects of TP0586532 on LPS release and interleukin (IL)-6 production in the lung were determined using a murine model of pneumonia caused by K. pneumoniae. As observed in the in vitro study, TP0586532 showed the marked inhibitory effect on LPS release in the lungs, whereas meropenem- and ciprofloxacin-treated mice showed higher levels of LPS release and IL-6 production in the lungs as compared to those in the lungs of vehicle-treated mice. Moreover, TP0586532 used in combination with meropenem and ciprofloxacin attenuated the LPS release and IL-6 production induced by meropenem and ciprofloxacin in the lung. These results indicate that the inhibitory effect of TP0586532 on LPS release from pathogenic bacteria might be of benefit in patients with sepsis.


Assuntos
Amidoidrolases/metabolismo , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Hidroxâmicos/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Animais , Ciprofloxacina/farmacologia , Feminino , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/metabolismo , Meropeném/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana/métodos
9.
Sci Rep ; 12(1): 285, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997203

RESUMO

Resistance to amikacin in Gram-negatives is usually mediated by the 6'-N-acetyltransferase type Ib [AAC(6')-Ib], which catalyzes the transfer of an acetyl group from acetyl CoA to the 6' position of the antibiotic molecule. A path to continue the effective use of amikacin against resistant infections is to combine it with inhibitors of the inactivating reaction. We have recently observed that addition of Zn2+ to in-vitro enzymatic reactions, obliterates acetylation of the acceptor antibiotic. Furthermore, when added to amikacin-containing culture medium in complex to ionophores such as pyrithione (ZnPT), it prevents the growth of resistant strains. An undesired property of ZnPT is its poor water-solubility, a problem that currently affects a large percentage of newly designed drugs. Water-solubility helps drugs to dissolve in body fluids and be transported to the target location. We tested a pyrithione derivative described previously (Magda et al. Cancer Res 68:5318-5325, 2008) that contains the amphoteric group di(ethyleneglycol)-methyl ether at position 5 (compound 5002), a modification that enhances the solubility. Compound 5002 in complex with zinc (Zn5002) was tested to assess growth inhibition of amikacin-resistant Acinetobacter baumannii and Klebsiella pneumoniae strains in the presence of the antibiotic. Zn5002 complexes in combination with amikacin at different concentrations completely inhibited growth of the tested strains. However, the concentrations needed to achieve growth inhibition were higher than those required to achieve the same results using ZnPT. Time-kill assays showed that the effect of the combination amikacin/Zn5002 was bactericidal. These results indicate that derivatives of pyrithione with enhanced water-solubility, a property that would make them drugs with better bioavailability and absorption, are a viable option for designing inhibitors of the resistance to amikacin mediated by AAC(6')-Ib, an enzyme commonly found in the clinics.


Assuntos
Acetiltransferases/antagonistas & inibidores , Acinetobacter baumannii/efeitos dos fármacos , Amicacina/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Piridinas/farmacologia , Acetiltransferases/metabolismo , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/crescimento & desenvolvimento , Amicacina/metabolismo , Antibacterianos/metabolismo , Inibidores Enzimáticos/química , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Viabilidade Microbiana , Compostos Organometálicos/química , Piridinas/química , Solubilidade , Fatores de Tempo
10.
Carbohydr Polym ; 278: 118944, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973762

RESUMO

Klebsiella pneumoniae serotype KN2 is a carbapenem-resistant strain and leads to the health care-associated infections, such as bloodstream infections. Its capsular polysaccharide (CPS) was isolated and cleaved by a specific enzyme from a bacteriophage into a hexasaccharide-repeating unit. With GC-MS, NMR, and Mass analyses, the structure of KN2 CPS was determined to be {→3)-ß-D-Glcp-(1→3)-[α-D-GlcpA-(1→4)-ß-D-Glcp-(1→6)]-α-D-Galp-(1→6)-ß-D-Galp-(1→3)-ß-D-Galp-(1→}n. We demonstrated that 1 µg/mL CPS could stimulate J774A.1 murine macrophages to release tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in vitro. Also, we proved that KN2 CPS induced the immune response through Toll-like receptor 4 (TLR4) in the human embryonic kidney (HEK)-293 cells. Strikingly, the hexasaccharide alone shows the same immune response as the CPS, suggesting that the hexasaccharide can shape the adaptive immunity to be a potential vaccine adjuvant. The glucuronic acid (GlcA) on other polysaccharides can affect the immune response, but the GlcA-reduced KN2 CPS and hexasaccharide still maintain their immunomodulatory activities.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Fatores Imunológicos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Polissacarídeos Bacterianos/farmacologia , Receptor 4 Toll-Like/imunologia , Antibacterianos/química , Carbapenêmicos/química , Células HEK293 , Humanos , Fatores Imunológicos/química , Ligantes , Testes de Sensibilidade Microbiana , Polissacarídeos Bacterianos/química
11.
J Microbiol Immunol Infect ; 55(5): 946-955, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34332892

RESUMO

BACKGROUND: The incidence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has rapidly increased. This study aimed to assess the effect of Coptis chinensis and its compounds on the minimal inhibitory concentrations (MICs) of eight antibiotics against CRKP. METHODS: Cell cultures were used to investigate the effects of C. chinensis and its compounds on the MICs of eight antibiotics against CRKP. The MICs for antibiotics alone and antibiotics with C. chinensis or compounds were measured and compared. Furthermore, the effects of C. chinensis on cell membrane injury and intracellular adenosine triphosphate (ATP) CRKP concentration were also measured. The Mann-Whitney rank-sum test was used to analyze the differences between means. RESULTS: C. chinensis exhibits a notable MIC bacteriostatic effect at 5 mg/mL on CRKP. A significant MIC reduction against CRKP exists when C. chinensis was added to colistin and colistin-containing two-antibiotic combinations. Moreover, C. chinensis could damage cell membrane integrity and decrease intracellular ATP concentration in CRKP. Thus, C. chinensis exhibits antimicrobial activity superiority with colistin against CRKP. Furthermore, the effects of identified compounds in C. chinensis on the MICs of colistin, four-to eight-, two-to four-, and one-to two-fold reductions were found in ferulic acid, magnoflorine, and jatrorrhizine hydrochloride, respectively. Among these compounds, ferulic acid destroys membrane integrity and decreases intracellular ATP concentration. CONCLUSION: C. chinensis and ferulic acid can potentiate the antimicrobial activity of colistin and may represent a promising component of combination therapy against CRKP infections in a clinical setting.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Coptis chinensis , Klebsiella pneumoniae , Trifosfato de Adenosina , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Carbapenêmicos/farmacologia , Colistina/farmacologia , Coptis chinensis/química , Klebsiella pneumoniae/efeitos dos fármacos
12.
Eur J Med Chem ; 228: 113977, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34772526

RESUMO

The increasingly growing epidemics of multidrug-resistant bacteria are becoming severe public health threat. There is in an urgent need to develop new antibacterial agents with broad-spectrum antibacterial activity and high selectivity. Here, a series of N-terminal dipeptide mimetics with an aromatic amide moiety were synthesized from amino acids. The effects of amino acid type and aromatic moiety on the biological activities of the mimetics were evaluated. The dipeptide mimetics not only showed significant broad-spectrum antibacterial activity against Gram-negative (Escherichia coli and Klebsiella pneumoniae), Gram-positive (Staphylococcus aureus) and drug-resistant bacterium MRSA (methicillin-resistant S. aureus) but also demonstrated high selectivity for S. aureus versus mammalian erythrocytes. The coupling product of L-valine with p-alkynylaniline (dipeptide mimetic 7) exhibited the best antibacterial activities with minimum inhibitory concentration (MIC) ranging from 2.5 to 5 µg/mL. Moreover, the bactericidal kinetics and multi-passage resistance tests indicated that the mimetic 7 both rapidly killed bacteria and had a low probability of emergence of antimalarial resistance. Meanwhile, the mimetic 7 possessed the ability to both inhibit bacterial biofilm formation and eradicate mature biofilm. The depolarization and destruction of the bacterial cell membrane is the main sterilization mechanism, which hinders the propensity to develop bacterial resistance. Furthermore, the mimetic 7 also showed good antineoplastic activity against gastric cancer cell (SGC 7901, IC50 = 70.8 µg/mL), while it had very low toxicity to mammalian cell (L929). The mimetics bear considerable potential to be used as antibacterial and anticancer agents to combat antibiotic resistance.


Assuntos
Amidas/farmacologia , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Dipeptídeos/farmacologia , Amidas/química , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dipeptídeos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/efeitos dos fármacos , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
13.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L116-L128, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850640

RESUMO

Obesity impairs host defense against Klebsiella pneumoniae, but responsible mechanisms are incompletely understood. To determine the impact of diet-induced obesity on pulmonary host defense against K. pneumoniae, we fed 6-wk-old male C57BL/6j mice a normal diet (ND) or high-fat diet (HFD) (13% vs. 60% fat, respectively) for 16 wk. Mice were intratracheally infected with Klebsiella, assayed at 24 or 48 h for bacterial colony-forming units, lung cytokines, and leukocytes from alveolar spaces, lung parenchyma, and gonadal adipose tissue were assessed using flow cytometry. Neutrophils from uninfected mice were cultured with and without 2-deoxy-d-glucose (2-DG) and assessed for phagocytosis, killing, reactive oxygen intermediates (ROI), transport of 2-DG, and glucose transporter (GLUT1-4) transcripts, and protein expression of GLUT1 and GLUT3. HFD mice had higher lung and splenic bacterial burdens. In HFD mice, baseline lung homogenate concentrations of IL-1ß, IL-6, IL-17, IFN-γ, CXCL2, and TNF-α were reduced relative to ND mice, but following infection were greater for IL-6, CCL2, CXCL2, and IL-1ß (24 h only). Despite equivalent lung homogenate leukocytes, HFD mice had fewer intraalveolar neutrophils. HFD neutrophils exhibited decreased Klebsiella phagocytosis and killing and reduced ROI to heat-killed Klebsiella in vitro. 2-DG transport was lower in HFD neutrophils, with reduced GLUT1 and GLUT3 transcripts and protein (GLUT3 only). Blocking glycolysis with 2-DG impaired bacterial killing and ROI production in neutrophils from mice fed ND but not HFD. Diet-induced obesity impairs pulmonary Klebsiella clearance and augments blood dissemination by reducing neutrophil killing and ROI due to impaired glucose transport.


Assuntos
Dieta , Glucose/metabolismo , Interações Hospedeiro-Patógeno , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/fisiologia , Neutrófilos/metabolismo , Obesidade/microbiologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Carga Bacteriana/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Medula Óssea/patologia , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Desoxiglucose/farmacologia , Dieta Hiperlipídica , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Glicólise/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Infecções por Klebsiella/sangue , Infecções por Klebsiella/complicações , Klebsiella pneumoniae/efeitos dos fármacos , Contagem de Leucócitos , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Obesidade/sangue , Obesidade/complicações , Fagocitose/efeitos dos fármacos , Pneumonia/microbiologia , Pneumonia/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Baço/microbiologia
14.
EBioMedicine ; 74: 103742, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34902789

RESUMO

BACKGROUND: Understanding drivers of antibiotic resistance evolution is fundamental for designing optimal treatment strategies and interventions to reduce the spread of antibiotic resistance. Various cytotoxic drugs used in cancer chemotherapy have antibacterial properties, but how bacterial populations are affected by these selective pressures is unknown. Here we test the hypothesis that the widely used cytotoxic drug methotrexate affects the evolution and selection of antibiotic resistance. METHODS: First, we determined methotrexate susceptibility (IC90) and selective abilities in a collection of Escherichia coli and Klebsiella pneumoniae strains with and without pre-existing trimethoprim resistance determinants. We constructed fluorescently labelled pairs of E. coli MG1655 differing only in trimethoprim resistance determinants and determined the minimum selective concentrations of methotrexate using flow-cytometry. We further used an experimental evolution approach to investigate the effects of methotrexate on de novo trimethoprim resistance evolution. FINDINGS: We show that methotrexate can select for acquired trimethoprim resistance determinants located on the chromosome or a plasmid. Additionally, methotrexate co-selects for genetically linked resistance determinants when present together with trimethoprim resistance on a multi-drug resistance plasmid. These selective effects occur at concentrations 40- to >320-fold below the methotrexate minimal inhibitory concentration. INTERPRETATION: Our results strongly suggest a selective role of methotrexate for virtually any antibiotic resistance determinant when present together with trimethoprim resistance on a multi-drug resistance plasmid. The presented results may have significant implications for patient groups strongly depending on effective antibiotic treatment. FUNDING: PJJ was supported by UiT The Arctic University of Norway and the Northern Norway Regional Health Authority (SFP1292-16/HNF1586-21) and JPI-EC-AMR (Project 271,176/H10). DIA was supported by the Swedish Research Council (grant 2017-01,527). The publication charges for this article have been funded by a grant from the publication fund of UiT The Arctic University of Norway.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Metotrexato/farmacologia , Cromossomos Bacterianos/genética , Escherichia coli/genética , Evolução Molecular , Citometria de Fluxo , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Noruega , Plasmídeos/genética , Resistência a Trimetoprima , Sequenciamento Completo do Genoma
15.
Sci Rep ; 11(1): 23447, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873199

RESUMO

The emergence of infections by carbapenem resistant Enterobacteriaceae (CRE) pathogens has created an urgent public health threat, as carbapenems are among the drugs of last resort for infections caused by a growing fraction of multi-drug resistant (MDR) bacteria. There is global consensus that new preventive and therapeutic strategies are urgently needed to combat the growing problem of MDR bacterial infections. Here, we report on the efficacy of a novel macrocyclic peptide, minimized theta-defensin (MTD)-12813 in CRE sepsis. MTD12813 is a theta-defensin inspired cyclic peptide that is highly effective against CRE pathogens K. pneumoniae and E. coli in vivo. In mouse septicemia models, single dose administration of MTD12813 significantly enhanced survival by promoting rapid host-mediated bacterial clearance and by modulating pathologic cytokine responses, restoring immune homeostasis, and preventing lethal septic shock. The peptide lacks direct antibacterial activity in the presence of mouse serum or in peritoneal fluid, further evidence for its indirect antibacterial mode of action. MTD12813 is highly stable in biological matrices, resistant to bacterial proteases, and nontoxic to mice at dose levels 100 times the therapeutic dose level, properties which support further development of the peptide as a first in class anti-infective therapeutic.


Assuntos
Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Animais , Infecções Bacterianas/tratamento farmacológico , Carbapenêmicos/farmacologia , Citocinas/metabolismo , Desenho de Fármacos , Feminino , Humanos , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Fagocitose , Sepse/sangue
16.
Sci Rep ; 11(1): 23798, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893661

RESUMO

Combining several innate immune peptides into a single recombinant antimicrobial and immunomodulatory polypeptide has been recently demonstrated. However, the versatility of the multidomain design, the role that each domain plays and how the sequence edition of the different domains affects their final protein activity is unknown. Parental multidomain antimicrobial and immunomodulatory protein JAMF1 and several protein variants (JAMF1.2, JAMF2 and AM2) have been designed and recombinantly produced to explore how the tuning of domain sequences affects their immunomodulatory potential in epithelial cells and their antimicrobial capacity against Gram-positive and Gram-negative bacteria. The replacement of the sequence of defensin HD5 and phospholipase sPLA2 by shorter active fragments of both peptides improves the final immunomodulatory (IL-8 secretion) and antimicrobial function of the multidomain protein against antimicrobial-resistant Klebsiella pneumoniae and Enterococcus spp. Further, the presence of Jun and Fos leucine zippers in multidomain proteins is crucial in preventing toxic effects on producer cells. The generation of antimicrobial proteins based on multidomain polypeptides allows specific immunomodulatory and antimicrobial functions, which can be easily edited by modifying of each domain sequence.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Imunomodulação/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Sequência de Aminoácidos , Animais , Citocinas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
17.
Bol. malariol. salud ambient ; 61(4): 633-641, dic. 2021. tab, graf
Artigo em Espanhol | LILACS, LIVECS | ID: biblio-1395694

RESUMO

La resistencia de antibióticos puede llegar a causar una amplia morbilidad y complicaciones. Objetivo: Determinar el perfil de resistencia antimicrobiana de Escherichia Coli y de Staphylococcus Saprophyticus, en pacientes con infección urinaria hospitalizados en el servicio de Medicina Interna del Hospital Municipal Los Olivos. Métodos: Estudio descriptivo, retrospectivo de corte transversal. Se realizó en el servicio de Medicina Interna del Hospital Municipal los Olivos (HMLO). Participantes: historia clínica de pacientes hospitalizados con infección urinaria en el servicio de Medicina Interna. Intervenciones: Según los criterios de inclusión y exclusión se obtuvieron, 96 historias clínicas (HC) del año 2013. Se utilizó un instrumento de recolección validado. Se realizó el análisis descriptivo con software estadístico STATA versión 25. Resultados: De las 96 HC, la edad promedio fue 55,04 años, los agentes microbianos más frecuentes fueron: la Escherichia coli con 85,3%, Staphylococcus saprophyticus 4.2% y Klebsiella pneumoniae 3,1%. La prevalencia de productores de betalactamasa espectro extendido (BLEE) fue 10,4%. Los antibióticos más resistentes fueron: trimetoprim/sulfametoxazol 89,6%, ampicilina 86%, piperacilina 84,6%, tetraciclina 79,2% y ciprofloxacino 70,8%. Los antibióticos más sensibles fueron: amikacina 100%, imipenem 100%, ertapenem 98%, meropenem 96% y piperacilina/tazobactam 96%. Conclusión: El uropatógeno más frecuente en pacientes con ITU hospitalizados fue la E. coli. Los antibióticos que presentaron resistencia a la E. coli fueron: trimetoprim/sulfametoxazol, ampicilina, piperacilina, tetraciclina y ciprofloxacino, y para el S. Saprophyticus fueron: amoxicilina/ ácido clavulánico, trimetoprim/sulfametoxazol, ceftriaxona y ciprofloxacino(AU)


Resistance to antibiotics may actually cause extensive morbidity and complications. Objective: To determine the antimicrobial resistance profile of Escherichia coli and Staphylococcus saprophyticus, in patients with urinary infection hospitalized in the Internal Medicine service of the Los Olivos Municipal Hospital. Methods: Descriptive, retrospective cross-sectional study. It was carried out in the Internal Medicine service of the Los Olivos Municipal Hospital (HMLO). Participants: clinical history of hospitalized patients with urinary infection in the Internal Medicine service. Interventions: According to the inclusion and exclusion criteria, 96 clinical records (HC) from 2013 were obtained. A validated collection instrument was used. Descriptive analysis was performed with STATA version 25 statistical software. Results: Of the 96 CHs, the average age was 55.04 years, the most frequent microbial agents were: Escherichia Coli with 85.3%, Staphylococcus saprophyticus 4.2% and Klebsiella pneumoniae 3.1%. The prevalence of extended spectrum beta-lactamase producers (ESBL) was 10.4%. The most resistant antibiotics were trimethoprim / sulfamethoxazole 89.6 %, ampicillin 86 %, piperacillin 84.6 %, tetracycline 79.2 % and ciprofloxacin 70.8 %. The most sensitive antibiotics were: amikacin 100%, imipenem 100%, ertapenem 98%, meropenem 96% and piperacillin / tazobactam 96%. Conclusion: The most common uropathogen in hospitalized UTI patients was E. coli. The antibiotics that showed resistance to E. coli were: trimethoprim/sulfamethoxazole, ampicillin, piperacillin, tetracycline, and ciprofloxacin, and for S. saprophyticus they were: amoxicillin/clavulanic acid, trimethoprim / sulfamethoxazole, ceftriaxone and ciprofloxacin(AU)


Assuntos
Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Infecções Urinárias/tratamento farmacológico , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Staphylococcus saprophyticus/efeitos dos fármacos , Peru/epidemiologia , Resistência Microbiana a Medicamentos/imunologia , Prontuários Médicos , Estudos Transversais , Hospitais Públicos , Klebsiella pneumoniae/efeitos dos fármacos , Anti-Infecciosos Urinários/uso terapêutico
18.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34768852

RESUMO

Given the rise of morbidity and mortality caused by Klebsiella pneumoniae (KP), the increasing number of strains resistant to antibiotics, and the emergence of hypervirulent Klebsiella pneumonia, treatment of KP infection becomes difficult; thus, novel drugs are necessary for treatment. Anthocyanins, or natural flavonoids, have an extensive effect against bacterial infection. However, few studies on anti-KP are identified. Here, we evaluated the therapeutic effect of purple sweet potato anthocyanins (PSPAs) on KP, containing 98.7% delphinidin 3-sambubioside. Results showed that KP-infected mice after PSPAs treatment manifested decreased mortality, weakened lung injury, dampened inflammatory responses, and reduced bacterial systemic dissemination in vivo. In Vitro, PSPAs significantly suppressed pyroptosis and restricted NLRP3 inflammasome activation in alveolar macrophages infected with KP. As for the mechanism, PSPAs promote mitophagy by recruiting Parkin to the mitochondria. PSPAs-conferred mitophagy increased mitochondrial membrane potential and decreased mitochondrial reactive oxygen species and mitochondrial DNA, resulting in impaired NLRP3 inflammasome activation. In addition, the promotion of mitophagy by PSPAs required the Nrf2 signaling pathway. Collectively, these findings suggest that PSPAs are a potential option for the treatment of KP infection.


Assuntos
Antocianinas/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Animais , Antocianinas/análise , Antocianinas/química , Linhagem Celular , DNA Mitocondrial/genética , Modelos Animais de Doenças , Feminino , Inflamação/tratamento farmacológico , Ipomoea batatas/química , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/patogenicidade , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/prevenção & controle , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo
19.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768992

RESUMO

Klebsiella pneumoniae is considered one of the most critical multidrug-resistant pathogens and urgently requires new therapeutic strategies. Capsular polysaccharides (CPS), lipopolysaccharides (LPS), and exopolysaccharides (EPS) are the major virulence factors protecting K. pneumoniae against the immune response and thus may be targeted by phage-based therapeutics such as polysaccharides-degrading enzymes. Since the emergence of resistance to antibacterials is generally considered undesirable, in this study, the genetic and phenotypic characteristics of resistance to the phage-borne CPS-degrading depolymerase and its effect on K. pneumoniae virulence were investigated. The K63 serotype targeting depolymerase (KP36gp50) derived from Klebsiella siphovirus KP36 was used as the selective agent during the treatment of K. pneumoniae 486 biofilm. Genome-driven examination combined with the surface polysaccharide structural analysis of resistant mutant showed the point mutation and frameshift in the wbaP gene located within the cps gene cluster, resulting in the loss of the capsule. The sharp decline in the yield of CPS was accompanied by the production of a larger amount of smooth LPS. The modification of the surface polysaccharide layers did not affect bacterial fitness nor the insensitivity to serum complement; however, it made bacteria more prone to phagocytosis combined with the higher adherence and internalization to human lung epithelial cells. In that context, it was showed that the emerging resistance to the antivirulence agent (phage-borne capsule depolymerase) results in beneficial consequences, i.e., the sensitization to the innate immune response.


Assuntos
Bacteriófagos/genética , Glicosídeo Hidrolases/genética , Klebsiella pneumoniae/genética , Família Multigênica/genética , Mutação/genética , Células A549 , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/microbiologia , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Sorogrupo , Virulência/genética , Fatores de Virulência/genética
20.
Infect Genet Evol ; 96: 105122, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34662743

RESUMO

Surgical site infections in instrumented posterior lumbar interbody fusion surgery are normally due to gram-positive bacteria, but gram-negative bacteria can cause infections in cases involving lower lumbar interventions as its closer to the perianal area. Here we report an uncommon fatal wound infection caused by a multidrug-resistant Klebsiella pneumoniae after an elective spine surgery. In silico analysis revealed that LWI_ST16 belonged to ST16, an emergent international clone notable for its increased virulence potential. We also observed that this strain carried a conjugative IncF plasmid encoding resistance genes to beta-lactams (blaKPC-2 and blaOXA-1), tetracycline (tetA), aminoglycosides and fluoroquinolones (aac(6')-Ib-cr). The carbapenemase encoding gene blaKPC-2 was located on a Tn4401e transposon previously characterized to increase blaKPC expression. LWI_ST16 is a strong biofilm producer on polystyrene and capable of forming tower-like structures on a titanium device like the one inserted in the patient's spine. Our findings strengthen the valuable contribution of continuous surveillance of multidrug-resistant and high-risk K. pneumoniae clones to avoid unfavourable clinical outcomes.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Coluna Vertebral/cirurgia , Infecção da Ferida Cirúrgica/microbiologia , Infecção dos Ferimentos/microbiologia , Idoso , Evolução Fatal , Feminino , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecção da Ferida Cirúrgica/tratamento farmacológico , Infecção dos Ferimentos/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA