Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
J Agric Food Chem ; 72(22): 12798-12809, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38772384

RESUMO

Patulin (PAT) is a mycotoxin produced by Penicillium species, which often contaminates fruit and fruit-derived products, posing a threat to human health and food safety. This work aims to investigate the detoxification of PAT by Kluyveromyces marxianus YG-4 (K. marxianus YG-4) and its application in apple juice. The results revealed that the detoxification effect of K. marxianus YG-4 on PAT includes adsorption and degradation. The adsorption binding sites were polysaccharides, proteins, and some lipids on the cell wall of K. marxianus YG-4, and the adsorption groups were hydroxyl groups, amino acid side chains, carboxyl groups, and ester groups, which were combined through strong forces (ion interactions, electrostatic interactions, and hydrogen bonding) and not easily eluted. The degradation active substance was an intracellular enzyme, and the degradation product was desoxypatulinic acid (DPA) without cytotoxicity. K. marxianus YG-4 can also effectively adsorb and degrade PAT in apple juice. The contents of organic acids and polyphenols significantly increased after detoxification, significantly improving the quality of apple juice. The detoxification ability of K. marxianus YG-4 toward PAT would be a novel approach for the elimination of PAT contamination.


Assuntos
Sucos de Frutas e Vegetais , Kluyveromyces , Malus , Patulina , Kluyveromyces/metabolismo , Kluyveromyces/química , Patulina/metabolismo , Patulina/química , Malus/química , Malus/metabolismo , Sucos de Frutas e Vegetais/análise , Contaminação de Alimentos/análise , Adsorção
2.
Bioresour Technol ; 403: 130832, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754558

RESUMO

This study focused on optimizing the production of fermented Spirulina (FS) products using a bioactivity-guided strategy with Lactobacillus helveticus B-4526 and Kluyveromyces marxianus Y-329 in a 3-L bioreactor. Various operating conditions, including aeration rates and pH modes, were tested. While both microorganisms thrived under all conditions, the "cascade" mode, controlling dissolved oxygen, enhanced protein hydrolysis and antioxidant activity, as confirmed by SDS-PAGE and DPPH/TEAC assays, respectively. Screening revealed that "cascade" FS significantly decreased viability of colon cancer cells (HT-29) in a dose-dependent manner, with up to a 72 % reduction. Doses ≤ 500 µg mL-1 of "cascade" FS proved safe and effective in suppressing NO release without compromising cellular viability. Additionally, "cascade" FS exhibited diverse volatile organic compounds and reducing the characteristic "seaweed" aroma. These findings highlight "cascade" FS as a promising alternative food source with improved bioactive properties, urging further exploration of its bioactive compounds, particularly bioactive peptides.


Assuntos
Reatores Biológicos , Fermentação , Kluyveromyces , Lactobacillus helveticus , Spirulina , Kluyveromyces/metabolismo , Lactobacillus helveticus/metabolismo , Spirulina/metabolismo , Humanos , Sobrevivência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Células HT29 , Concentração de Íons de Hidrogênio , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia
3.
Commun Biol ; 7(1): 627, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789513

RESUMO

In recombinant protein-producing yeast strains, cells experience high production-related stresses similar to high temperatures. It is possible to increase recombinant protein production by enhancing thermotolerance, but few studies have focused on this topic. Here we aim to identify cellular regulators that can simultaneously activate thermotolerance and high yield of recombinant protein. Through screening at 46 °C, a heat-resistant Kluyveromyces marxianus (K. marxianus) strain FDHY23 is isolated. It also exhibits enhanced recombinant protein productivity at both 30 °C and high temperatures. The CYR1N1546K mutation is identified as responsible for FDHY23's improved phenotype, characterized by weakened adenylate cyclase activity and reduced cAMP production. Introducing this mutation into the wild-type strain greatly enhances both thermotolerance and recombinant protein yields. RNA-seq analysis reveals that under high temperature and recombinant protein production conditions, CYR1 mutation-induced reduction in cAMP levels can stimulate cells to improve its energy supply system and optimize material synthesis, meanwhile enhance stress resistance, based on the altered cAMP signaling cascades. Our study provides CYR1 mutation as a novel target to overcome the bottleneck in achieving high production of recombinant proteins under high temperature conditions, and also offers a convenient approach for high-throughput screening of recombinant proteins with high yields.


Assuntos
AMP Cíclico , Kluyveromyces , Proteínas Recombinantes , Transdução de Sinais , AMP Cíclico/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Kluyveromyces/genética , Kluyveromyces/metabolismo , Termotolerância/genética , Mutação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Temperatura Alta
4.
G3 (Bethesda) ; 12(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34718545

RESUMO

The yeast Kluyveromyces marxianus SLP1 has the potential for application in biotechnological processes because it can metabolize several sugars and produce high-value metabolites. K. marxianus SLP1 is a thermotolerant yeast isolated from the mezcal process, and it is tolerant to several cell growth inhibitors such as saponins, furan aldehydes, weak acids, and phenolics compounds. The genomic differences between dairy and nondairy strains related to K. marxianus variability are a focus of research attention, particularly the pathways leading this species toward polyploidy. We report the diploid genome assembly of K. marxianus SLP1 nonlactide strain into 32 contigs to reach a size of ∼12 Mb (N50 = 1.3 Mb) and a ∼39% GC content. Genome size is consistent with the k-mer frequency results. Genome annotation by Funannotate estimated 5000 genes in haplotype A and 4910 in haplotype B. The enriched annotated genes by ontology show differences between alleles in biological processes and cellular component. The analysis of variants related to DMKU3 and between haplotypes shows changes in LAC12 and INU1, which we hypothesize can impact carbon source performance. This report presents the first polyploid K. marxianus strain recovered from nonlactic fermenting medium.


Assuntos
Diploide , Kluyveromyces , Biotecnologia , Genoma Fúngico , Kluyveromyces/genética , Kluyveromyces/metabolismo , Saccharomyces cerevisiae/genética
5.
Biomolecules ; 11(7)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206397

RESUMO

Nutraceutical formulations based on probiotic microorganisms have gained significant attention over the past decade due to their beneficial properties on human health. Yeasts offer some advantages over other probiotic organisms, such as immunomodulatory properties, anticancer effects and effective suppression of pathogens. However, one of the main challenges for their oral administration is ensuring that cell viability remains high enough for a sustained therapeutic effect while avoiding possible substrate inhibition issues as they transit through the gastrointestinal (GI) tract. Here, we propose addressing these issues using a probiotic yeast encapsulation strategy, Kluyveromyces lactis, based on gelatin hydrogels doubly cross-linked with graphene oxide (GO) and glutaraldehyde to form highly resistant nanocomposite encapsulates. GO was selected here as a reinforcement agent due to its unique properties, including superior solubility and dispersibility in water and other solvents, high biocompatibility, antimicrobial activity, and response to electrical fields in its reduced form. Finally, GO has been reported to enhance the mechanical properties of several materials, including natural and synthetic polymers and ceramics. The synthesized GO-gelatin nanocomposite hydrogels were characterized in morphological, swelling, mechanical, thermal, and rheological properties and their ability to maintain probiotic cell viability. The obtained nanocomposites exhibited larger pore sizes for successful cell entrapment and proliferation, tunable degradation rates, pH-dependent swelling ratio, and higher mechanical stability and integrity in simulated GI media and during bioreactor operation. These results encourage us to consider the application of the obtained nanocomposites to not only formulate high-performance nutraceuticals but to extend it to tissue engineering, bioadhesives, smart coatings, controlled release systems, and bioproduction of highly added value metabolites.


Assuntos
Reatores Biológicos , Células Imobilizadas/metabolismo , Gelatina/química , Grafite/química , Hidrogéis/química , Kluyveromyces/metabolismo , Nanocompostos/química , Probióticos/metabolismo , Células Imobilizadas/citologia , Kluyveromyces/citologia
6.
Biomolecules ; 11(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065948

RESUMO

The pentose phosphate pathway (PPP) is a route that can work in parallel to glycolysis in glucose degradation in most living cells. It has a unidirectional oxidative part with glucose-6-phosphate dehydrogenase as a key enzyme generating NADPH, and a non-oxidative part involving the reversible transketolase and transaldolase reactions, which interchange PPP metabolites with glycolysis. While the oxidative branch is vital to cope with oxidative stress, the non-oxidative branch provides precursors for the synthesis of nucleic, fatty and aromatic amino acids. For glucose catabolism in the baker's yeast Saccharomyces cerevisiae, where its components were first discovered and extensively studied, the PPP plays only a minor role. In contrast, PPP and glycolysis contribute almost equally to glucose degradation in other yeasts. We here summarize the data available for the PPP enzymes focusing on S. cerevisiae and Kluyveromyces lactis, and describe the phenotypes of gene deletions and the benefits of their overproduction and modification. Reference to other yeasts and to the importance of the PPP in their biotechnological and medical applications is briefly being included. We propose future studies on the PPP in K. lactis to be of special interest for basic science and as a host for the expression of human disease genes.


Assuntos
Glucose/metabolismo , Kluyveromyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Animais , Glicólise , Humanos , Oxirredução , Estresse Oxidativo , Via de Pentose Fosfato
7.
Biochem Biophys Res Commun ; 545: 138-144, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33548627

RESUMO

The mRNA export flux through nuclear pore complexes (NPC) changes under DNA manipulation and hence affects protein translation. However, monitoring the flux of a specific mRNA in single live cell is beyond reach of traditional techniques. We developed a fluorescence-based detection method for measuring the export flux of mRNA through NPC in single live cell using a snapshot image, which had been tested on exogenous genes' expression in HeLa cells, with transfection or infection, and endogenous genes' expression in yeast cells, during incubation and carbon catabolite repression. With its speediness, explicitness and noninvasiveness, we believe that it would be valuable in direct monitoring of gene behavior, and the understanding of gene regulation at a single cell level.


Assuntos
Transporte Ativo do Núcleo Celular , Poro Nuclear/metabolismo , RNA Mensageiro/metabolismo , Repressão Catabólica , Dependovirus/genética , Dependovirus/metabolismo , Expressão Gênica , Genes Fúngicos , Células HeLa , Humanos , Kluyveromyces/genética , Kluyveromyces/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Biológicos , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Viral/genética , RNA Viral/metabolismo , Análise de Célula Única , Transfecção , Proteína Vermelha Fluorescente
8.
J Food Sci ; 86(2): 454-462, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33438241

RESUMO

This study was intended to investigate physico-chemical, rheological, and emulsifying properties of oil-in-water emulsions prepared from the Kluyveromyces marxianus mannoprotein (KMM). Also, the stress-response function of the KMM emulsions was compared with that of the whey protein concentrate (WPC) emulsions in terms of zeta potential, size, and rheology. The stress experiments were conducted at different pH (3 to 9), ionic composition (0 to 500 mM NaCl), and temperatures (30 to 90 °C). The extracted KMM with a molecular weight of 107.2 kDa had 28.8% proteins and 68.22% carbohydrates. With increasing the KMM concentration to 1.5% (w/w), the zeta potential, droplet size, and apparent viscosity of the emulsions reached -35 mV, ∼1 µ, and ∼9 mPa·s, respectively. After applying pH, ionic composition, and temperature, the KMM emulsions were more stable than the WPC emulsions. In conclusion, KMM can be used as a bioemulsifier and be more effective in stabilizing emulsions than WPC. PRACTICAL APPLICATION: Yeasts are a rich source of natural materials. In this study, we extracted mannoproteins from the yeast cell wall and evaluated their functional properties to be used as an emulsifier in oil-in-water emulsions. The results of this study confirm that the yeast-derived mannoproteins are good at stabilizing these emulsions either in the presence or absence of different environmental conditions.


Assuntos
Emulsificantes/química , Kluyveromyces/metabolismo , Glicoproteínas de Membrana/química , Proteínas do Soro do Leite/química , Emulsões/química , Glicoproteínas de Membrana/metabolismo , Peso Molecular , Tamanho da Partícula , Reologia , Cloreto de Sódio/química , Temperatura , Viscosidade , Água/química
9.
Yeast ; 37(9-10): 403-412, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32678933

RESUMO

The yeast species Saccharomyces cerevisiae and Kluyveromyces marxianus are associated with fermentation of West African indigenous foods. The aim of this study was to characterize potential probiotic properties of S. cerevisiae and K. marxianus isolates from the West African milk products lait caillé and nunu and a cereal-based product mawè. The strains (14 in total) were identified by 26S rRNA gene sequencing and characterized for survival at gastrointestinal stress (bile salts and low pH) and adhesion to Caco-2 intestinal epithelial cells. Selected yeast isolates were tested for their effect on the transepithelial electrical resistance (TEER), using the intestinal epithelial cell line Caco-2 and for maintenance of intracellular pH (pHi ) during perfusion with gastrointestinal pH (3.5 and 6.5). All tested yeasts were able to grow in bile salts in a strain-dependent manner, exhibiting a maximum specific growth rate (µmax ) of 0.58-1.50 h-1 . At pH 2.5, slow growth was observed for the isolates from mawè (µmax of 0.06-0.80 h-1 ), whereas growth of yeasts from other sources was mostly inhibited. Yeast adhesion to Caco-2 cells was strain specific and varied between 8.0% and 36.2%. Selected strains of S. cerevisiae and K. marxianus were able to maintain the pHi homeostasis at gastrointestinal pH and to increase TEER across the Caco-2 monolayers, indicating their potential to improve intestinal barrier functions. Based on overall results, strains of K. marxianus and S. cerevisiae from mawè exhibited the highest probiotic potential and might be recommended for further development as starter cultures in West African fermented products.


Assuntos
Grão Comestível/microbiologia , Fermentação , Alimentos Fermentados/microbiologia , Kluyveromyces/metabolismo , Leite/microbiologia , Probióticos/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , África Ocidental , Animais , Células CACO-2 , Técnicas de Cultura de Células , Meios de Cultura/química , Células Epiteliais/microbiologia , Microbiologia de Alimentos , Humanos , Concentração de Íons de Hidrogênio , Kluyveromyces/genética , Probióticos/análise , Saccharomyces cerevisiae/genética
10.
Food Chem Toxicol ; 135: 110993, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31765702

RESUMO

3S, 3'S-Astaxanthin is the most powerful antioxidant to scavenge free radicals in the world. In this study, a 3S, 3'S-astaxanthin biosynthesis pathway was constructed in a probiotic yeast, Kluveromyces marxianus, denoted YEAST, and its bioactive metabolites were extracted for biofunctional assessments. The bio-safety examination was achieved by two animal models as following: First, no significant toxic effects on YEAST groups were found in zebrafish; Second, after feeding YEAST for 4 weeks, the rat-groups showed no visible abnormality, and no significant change of the body weight and blood biochemistry tests. The inhibition of lung metastasis of melanoma cells and the increment of the survival rate were demonstrated by feeding YEAST and injecting the intravenous commercial astaxanthin in vivo rodent model. Based on in vitro assays of 1,1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging analysis, ferrous ion chelating ability, reducing power assessment, and mushroom tyrosinase inhibition evaluation, YEAST-astaxanthin showed anti-oxidative and tyrosinase suppressive properties. Taken together, the 3S, 3'S-astaxanthin producing probiotic yeast is safe to be used in the bio-synthesis of functional and pharmaceutical compounds, which have broad industrial applications on cosmetic, food and feed additive and healthcare.


Assuntos
Kluyveromyces/metabolismo , Melanoma Experimental/patologia , Engenharia Metabólica , Metástase Neoplásica/prevenção & controle , Probióticos , Animais , Antioxidantes/farmacologia , Feminino , Masculino , Melanoma Experimental/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Monofenol Mono-Oxigenase/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Xantofilas/química , Xantofilas/metabolismo , Xantofilas/farmacologia , Peixe-Zebra
11.
Int J Mol Sci ; 20(19)2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31569356

RESUMO

Glucose phosphorylating enzymes are crucial in the regulation of basic cellular processes, including metabolism and gene expression. Glucokinases and hexokinases provide a pool of phosphorylated glucose in an adenosine diphosphate (ADP)- and ATP-dependent manner to shape the cell metabolism. The glucose processing enzymes from Kluyveromyces lactis are poorly characterized despite the emerging contribution of this yeast strain to industrial and laboratory scale biotechnology. The first reports on K. lactis glucokinase (KlGlk1) positioned the enzyme as an essential component required for glucose signaling. Nevertheless, no biochemical and structural information was available until now. Here, we present the first crystal structure of KlGlk1 together with biochemical characterization, including substrate specificity and enzyme kinetics. Additionally, comparative analysis of the presented structure and the prior structures of lactis hexokinase (KlHxk1) demonstrates the potential transitions between open and closed enzyme conformations upon ligand binding.


Assuntos
Glucoquinase/química , Kluyveromyces/enzimologia , Modelos Moleculares , Conformação Proteica , Glucoquinase/genética , Glucoquinase/metabolismo , Glucose/metabolismo , Cinética , Kluyveromyces/genética , Kluyveromyces/metabolismo , Especificidade por Substrato
12.
Braz. j. microbiol ; 49(3): 647-655, July-Sept. 2018. graf
Artigo em Inglês | LILACS | ID: biblio-951810

RESUMO

Abstract An intronless endoglucanase from thermotolerant Aspergillus fumigatus DBINU-1 was cloned, characterized and expressed in the yeast Kluyveromyces lactis. The full-length open reading frame of the endoglucanase gene from A. fumigatus DBiNU-1, designated Cel7, was 1383 nucleotides in length and encoded a protein of 460 amino acid residues. The predicted molecular weight and the isoelectric point of the A. fumigatus Cel7 gene product were 48.19 kDa and 5.03, respectively. A catalytic domain in the N-terminal region and a fungal type cellulose-binding domain/module in the C-terminal region were detected in the predicted polypeptide sequences. Furthermore, a signal peptide with 20 amino acid residues at the N-terminus was also detected in the deduced amino acid sequences of the endoglucanase from A. fumigatus DBiNU-1. The endoglucanase from A. fumigatus DBiNU-1 was successfully expressed in K. lactis, and the purified recombinant enzyme exhibited its maximum activity at pH 5.0 and 60 °C. The enzyme was very stable in a pH range from 4.0 to 8.0 and a temperature range from 30 to 60 °C. These features make it suitable for application in the paper, biofuel, and other chemical production industries that use cellulosic materials.


Assuntos
Aspergillus fumigatus/enzimologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Expressão Gênica , Celulase/genética , Celulase/química , Clonagem Molecular , Aspergillus fumigatus/genética , Especificidade por Substrato , Estabilidade Enzimática , Kluyveromyces/genética , Kluyveromyces/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Fúngicas/metabolismo , Celulase/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio
13.
J Food Drug Anal ; 26(2): 696-705, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29567240

RESUMO

Kluyveromyces marxianus protein hydrolysates were prepared by two different sonicated-enzymatic (trypsin and chymotrypsin) hydrolysis treatments to obtain antioxidant and ACE-inhibitory peptides. Trypsin and chymotrypsin hydrolysates obtained by 5 h, exhibited the highest antioxidant and ACE-inhibitory activities. After fractionation using ultrafiltration and reverse phase high performance liquid chromatography (RP-HPLC) techniques, two new peptides were identified. One fragment (LL-9, MW = 1180 Da) with the amino acid sequence of Leu-Pro-Glu-Ser-Val-His-Leu-Asp-Lys showed significant ACE inhibitory activity (IC50 = 22.88 µM) while another peptide fragment (VL-9, MW = 1118 Da) with the amino acid sequence of Val-Leu-Ser-Thr-Ser-Phe-Pro-Pro-Lys showed the highest antioxidant and ACE inhibitory properties (IC50 = 15.20 µM, 5568 µM TE/mg protein). The molecular docking studies revealed that the ACE inhibitory activities of VL-9 is due to interaction with the S2 (His513, His353, Glu281) and S'1 (Glu162) pockets of ACE and LL-9 can fit perfectly into the S1 (Thr345) and S2 (Tyr520, Lys511, Gln281) pockets of ACE.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Kluyveromyces/metabolismo , Peptídeos/química , Peptídeos/isolamento & purificação , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Antioxidantes/metabolismo , Humanos , Kluyveromyces/química , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mapeamento de Peptídeos , Peptídeos/metabolismo , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/isolamento & purificação , Hidrolisados de Proteína/metabolismo
14.
Braz J Microbiol ; 49(3): 647-655, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29449177

RESUMO

An intronless endoglucanase from thermotolerant Aspergillus fumigatus DBINU-1 was cloned, characterized and expressed in the yeast Kluyveromyces lactis. The full-length open reading frame of the endoglucanase gene from A. fumigatus DBiNU-1, designated Cel7, was 1383 nucleotides in length and encoded a protein of 460 amino acid residues. The predicted molecular weight and the isoelectric point of the A. fumigatus Cel7 gene product were 48.19kDa and 5.03, respectively. A catalytic domain in the N-terminal region and a fungal type cellulose-binding domain/module in the C-terminal region were detected in the predicted polypeptide sequences. Furthermore, a signal peptide with 20 amino acid residues at the N-terminus was also detected in the deduced amino acid sequences of the endoglucanase from A. fumigatus DBiNU-1. The endoglucanase from A. fumigatus DBiNU-1 was successfully expressed in K. lactis, and the purified recombinant enzyme exhibited its maximum activity at pH 5.0 and 60°C. The enzyme was very stable in a pH range from 4.0 to 8.0 and a temperature range from 30 to 60°C. These features make it suitable for application in the paper, biofuel, and other chemical production industries that use cellulosic materials.


Assuntos
Aspergillus fumigatus/enzimologia , Celulase/química , Celulase/genética , Clonagem Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Expressão Gênica , Aspergillus fumigatus/genética , Celulase/metabolismo , Estabilidade Enzimática , Proteínas Fúngicas/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Kluyveromyces/genética , Kluyveromyces/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
15.
PLoS One ; 13(1): e0191391, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29351565

RESUMO

SUMO proteases of the SENP/Ulp family are master regulators of both sumoylation and desumoylation and regulate SUMO homeostasis in eukaryotic cells. SUMO conjugates rapidly increase in response to cellular stress, including nutrient starvation, hypoxia, osmotic stress, DNA damage, heat shock, and other proteotoxic stressors. Nevertheless, little is known about the regulation and targeting of SUMO proteases during stress. To this end we have undertaken a detailed comparison of the SUMO-binding activity of the budding yeast protein Ulp1 (ScUlp1) and its ortholog in the thermotolerant yeast Kluyveromyces marxianus, KmUlp1. We find that the catalytic UD domains of both ScUlp1 and KmUlp1 show a high degree of sequence conservation, complement a ulp1Δ mutant in vivo, and process a SUMO precursor in vitro. Next, to compare the SUMO-trapping features of both SUMO proteases we produced catalytically inactive recombinant fragments of the UD domains of ScUlp1 and KmUlp1, termed ScUTAG and KmUTAG respectively. Both ScUTAG and KmUTAG were able to efficiently bind a variety of purified SUMO isoforms and bound immobilized SUMO1 with nanomolar affinity. However, KmUTAG showed a greatly enhanced ability to bind SUMO and SUMO-modified proteins in the presence of oxidative, temperature and other stressors that induce protein misfolding. We also investigated whether a SUMO-interacting motif (SIM) in the UD domain of KmULP1 that is not conserved in ScUlp1 may contribute to the SUMO-binding properties of KmUTAG. In summary, our data reveal important details about how SUMO proteases target and bind their sumoylated substrates, especially under stress conditions. We also show that the robust pan-SUMO binding features of KmUTAG can be exploited to detect and study SUMO-modified proteins in cell culture systems.


Assuntos
Cisteína Endopeptidases/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico/genética , Sequência Conservada , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Teste de Complementação Genética , Kluyveromyces/genética , Kluyveromyces/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Estresse Fisiológico , Sumoilação , Temperatura
16.
J Biosci ; 42(4): 585-601, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29229877

RESUMO

Tumour cells distinguish from normal cells by fermenting glucose to lactate in presence of sufficient oxygen and functional mitochondria (Warburg effect). Crabtree effect was invoked to explain the biochemical basis of Warburg effect by suggesting that excess glucose suppresses mitochondrial respiration. It is known that the Warburg effect and Crabtree effect are displayed by Saccharomyces cerevisiae, during growth on abundant glucose. Beyond this similarity, it was also demonstrated that expression of human pro-apoptotic proteins in S. cerevisiae such as Bax and p53 caused apoptosis. Here, we demonstrate that p53 expression in S. cerevisiae (Crabtree-positive yeast) causes increase in ROS levels and apoptosis when cells are growing on non-fermentable carbon sources but not on fermentable carbon sources, a feature similar to tumour cells. In contrast, in Kluyveromyces lactis (Crabtree-negative yeast) p53 causes increase in ROS levels and apoptosis regardless of the carbon source. Interestingly, the increased ROS levels and apoptosis are correlated to increased oxygen uptake in both S. cerevisiae and K. lactis. Based on these results, we suggest that at least in yeast, fermentation per se does not prevent the escape from apoptosis. Rather, the Crabtree effect plays a crucial role in determining whether the cells should undergo apoptosis or not.


Assuntos
Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Kluyveromyces/genética , Saccharomyces cerevisiae/genética , Proteína Supressora de Tumor p53/genética , Proteína X Associada a bcl-2/genética , Apoptose/genética , Carbono/metabolismo , Etanol/metabolismo , Etanol/farmacologia , Fermentação , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Kluyveromyces/efeitos dos fármacos , Kluyveromyces/metabolismo , Engenharia Metabólica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Oxigênio/metabolismo , Oxigênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Transgenes , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
17.
An. acad. bras. ciênc ; 89(3): 1403-1415, July-Sept. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886744

RESUMO

ABSTRACT This study presents the bioreduction of six β-ketoesters by whole cells of Kluyveromyces marxianus and molecular investigation of a series of 13 β-ketoesters by hologram quantitative structure-activity relationship (HQSAR) in order to relate with conversion and enantiomeric excess of β-stereogenic-hydroxyesters obtained by the same methodology. Four of these were obtained as (R)-configuration and two (S)-configuration, among them four compounds exhibited >99% enantiomeric excess. The β-ketoesters series LUMO maps showed that the β-carbon of the ketoester scaffold are exposed to undergo nucleophilic attack, suggesting a more favorable β-carbon side to enzymatic reduction based on adopted molecular conformation at the reaction moment. The HQSAR method was performed on the β-ketoesters derivatives separating them into those provided predominantly (R)- or (S)-β-hydroxyesters. The HQSAR models for both (R)- and (S)-configuration showed high predictive capacity. The HQSAR contribution maps suggest the importance of β-ketoesters scaffold as well as the substituents attached therein to asymmetric reduction, showing a possible influence of the ester group carbonyl position on the molecular conformation in the enzyme catalytic site, exposing a β-carbon side to the bioconversion to (S)- and (R)-enantiomers.


Assuntos
Kluyveromyces/metabolismo , Ésteres/química , Cetonas/química , Oxirredução , Biotransformação , Estrutura Molecular
18.
Appl Biochem Biotechnol ; 183(1): 348-361, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28281180

RESUMO

During the aging of yeast culture, Kluyveromyces marxianus undergoes a number of changes in physiology and these changes play a significant role during fermentation. Aged stationary phase cells were found to contain more reactive oxygen species. Additionally, the level of oxidant is counteracted by the antioxidant defense system of the cells. Comparison of 3-day-old culture of K. marxianus with 45-day stationary phase culture represents an increased level of ROS inside the cells. Moreover, a decrease in glutathione content was observed over the set of the incubation period. The increased level of superoxide dismutase (SOD) and catalase also revealed that there is oxidative stress during the long period incubation of the stationary phase cells of K. marxianus. The actual phenomenon of aging in dairy yeast K. marxianus is a complex process, but the present study signifies that role of antioxidant defense system during aging in stationary phase cells of K. marxianus.


Assuntos
Meios de Cultura/química , Kluyveromyces/metabolismo , Estresse Oxidativo , Soro do Leite/química , Proteínas Fúngicas/metabolismo , Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
19.
Braz. j. microbiol ; 47(4): 965-972, Oct.-Dec. 2016. tab
Artigo em Inglês | LILACS | ID: biblio-828203

RESUMO

Abstract The aim of this study was to evaluate the effects of alginate entrapment on fermentation metabolites of Kluyveromyces marxianus grown in agrowastes that served as the liquid culture media. K. marxianus cells entrapped in Na-alginate were prepared using the traditional liquid-droplet-forming method. Whey and pomaces from processed tomatoes, peppers, and grapes were used as the culture media. The changes in the concentrations of sugar, alcohol, organic acids, and flavor compounds were analyzed using gas chromatography-mass spectrometry (GC-MS) and high pressure liquid chromatography (HPLC). Both free and entrapped, K. marxianus were used individually to metabolize sugars, organic acids, alcohols, and flavor compounds in the tomato, pepper, grape, and acid whey based media. Marked changes in the fermentation behaviors of entrapped and free K. marxianus were observed in each culture. A 1.45-log increase was observed in the cell numbers of free K. marxianus during fermentation. On the contrary, the cell numbers of entrapped K. marxianus remained the same. Both free and entrapped K. marxianus brought about the fermentation of sugars such as glucose, fructose, and lactose in the agrowaste cultures. The highest volume of ethanol was produced by K. marxianus in the whey based media. The concentrations of flavor compounds such as ethyl acetate, isoamyl alcohol, isoamyl acetate, 2-phenylethyl isobutyrate, phenylethyl acetate, and phenylethyl alcohol were higher in fermented agrowaste based media compared to the control.


Assuntos
Resíduos , Kluyveromyces/metabolismo , Alginatos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Fermentação , Biodegradação Ambiental , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Resíduos Industriais
20.
Mikrobiologiia ; 85(4): 393-402, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28853771

RESUMO

Protective effect of the extracellular peptide fraction (reactivating factors, RF) produced by yeasts of various taxonomic groups (Saccharomyces cerevisiae, Kluyveromyces lactis, Candida utilis, and Yarrowia li- polytica) on probiotic lactic acid bacteria (LAB) Lactobacillus casei, L. acidophilus,'and L. reuteri under bile salt (BS)-induced stress was shown. RF of all yeasts were shown to be of peptide nature; the active component of the S. cerevisiae RF was identified as a combination of low-molecular polypeptides with molecular masses of 0.6 to 1.5 kDa. The protective and reactivating effects of the yeast factors were not species-specific and were similar to those of the Luteococcusjaponicus subsp. casei R. In BS-treated cells of the tester bacteria, a pro- tective effect was observed after 10-min preincubation of the LAB cell suspension with yeast RE: the number of surviving cells (CFU) was 2 to 4.5 times higher than in the control. The reactivating effect was observed when RF was added to LAB cell suspensions not later than 15 min after stress treatment. It was less pro- nounced than the protector effect, with the CFU number I to 3 times that of the control. Both the protector and the reactivating effects were most pronounced in the S. cerevisiae and decreased in the row: C. utilis > K. lactis > Y lipolytica. The efficiency of protective action of yeast RF was found to depend on the properties of recepient LAB cells, with the L. casei strain being most sensitive to BS treatment. In both variants, the highest protective effect of RF (increase in the CFU number) was observed for L. acidophilus, while the least pronounced one, for L. casei. The reasons for application of the LAB strains combining high stress resistance and high response to stress-protecting metabolites, including RF factors, as probiotics, is discussed.


Assuntos
Ácidos e Sais Biliares/antagonistas & inibidores , Proteínas Fúngicas/farmacologia , Lacticaseibacillus casei/efeitos dos fármacos , Lactobacillus acidophilus/efeitos dos fármacos , Limosilactobacillus reuteri/efeitos dos fármacos , Peptídeos/farmacologia , Ácidos e Sais Biliares/farmacologia , Candida/química , Candida/metabolismo , Contagem de Colônia Microbiana , Proteínas Fúngicas/isolamento & purificação , Kluyveromyces/química , Kluyveromyces/metabolismo , Lactobacillus acidophilus/crescimento & desenvolvimento , Lacticaseibacillus casei/crescimento & desenvolvimento , Limosilactobacillus reuteri/crescimento & desenvolvimento , Viabilidade Microbiana , Peso Molecular , Peptídeos/isolamento & purificação , Fatores de Proteção , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Estresse Fisiológico , Yarrowia/química , Yarrowia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA