RESUMO
BACKGROUND: Cells can die through a process called apoptosis in both pathological and healthy conditions. Cancer development and progression may result from abnormal apoptosis. The 78-kDa glucose-regulated protein (GRP78) is increased on the surface of cancer cells. Kringle 5, a cell apoptosis agent, is bound to GRP78 to induce cancer cell apoptosis. Kringle 5 was docked to GRP78 using ClusPro 2.0. The interaction between Kringle 5 and GRP78 was investigated. RESULTS: The interacting amino acids were found to be localized in three areas of Kringle 5. The proposed peptide is made up of secondary structure amino acids that contain Kringle 5 interaction residues. The 3D structure of the peptide model amino acids was created using the PEP-FOLD3 web tool. CONCLUSIONS: The proposed peptide completely binds to the GRP78 binding site on the Kringle 5, signaling that it might be effective in the apoptosis of cancer cells.
Assuntos
Chaperona BiP do Retículo Endoplasmático , Neoplasias , Proteínas de Choque Térmico/metabolismo , Kringles , Peptídeos/farmacologia , Apoptose , AminoácidosRESUMO
Hepatocyte growth factor/scatter factor (HGF/SF) and its cognate receptor MET play several essential roles in embryogenesis and regeneration in postnatal life of epithelial organs such as the liver, kidney, lung, and pancreas, prompting a strong interest in harnessing HGF/SF-MET signalling for regeneration of epithelial organs after acute or chronic damage. The limited stability and tissue diffusion of native HGF/SF, however, which reflect the tightly controlled, local mechanism of action of the morphogen, have led to a major search of HGF/SF mimics for therapy. In this work, we describe the rational design, production, and characterization of K1K1, a novel minimal MET agonist consisting of two copies of the kringle 1 domain of HGF/SF in tandem orientation. K1K1 is highly stable and displays biological activities equivalent or superior to native HGF/SF in a variety of in vitro assay systems and in a mouse model of liver disease. These data suggest that this engineered ligand may find wide applications in acute and chronic diseases of the liver and other epithelial organs dependent of MET activation.
Assuntos
Fator de Crescimento de Hepatócito , Kringles , Animais , Dimerização , Fator de Crescimento de Hepatócito/metabolismo , Fígado/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-met/agonistas , Proteínas Proto-Oncogênicas c-met/metabolismoRESUMO
Receptor tyrosine kinase-like orphan receptors (RORs) are monotopic membrane proteins belonging to the receptor tyrosine kinase (RTK) family. RTKs play a role in the control of most basic cellular processes, including cell proliferation, differentiation, migration and metabolism. New emerging roles for RORs in cancer progression have recently been proposed: RORs have been shown to be overexpressed in various malignancies but not in normal tissues, and moreover an abnormal expression level of RORs on the cellular surface is correlated with high levels of cytotoxicity in primary cancer cells. Monoclonal antibodies against the extracellular part of RTKs might be of importance to prevent tumor cell growth: targeting extracellular kringle domain molecules induces the internalization of RORs and decreases cell toxicity. Here, the recombinant production and crystallization of the isolated KRD of ROR1 and its high-resolution X-ray crystal structure in a P3121 crystal form at 1.4â Å resolution are reported. The crystal structure is compared with previously solved three-dimensional structures of kringle domains of human ROR1 and ROR2, their complexes with antibody fragments and structures of other kringle domains from homologous proteins.
Assuntos
Kringles , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Anticorpos Monoclonais , Proliferação de Células , Cristalografia por Raios X , Humanos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/química , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genéticaRESUMO
BACKGROUND: Elevated plasma Lp(a) (lipoprotein(a)) levels are associated with increased risk for atherosclerotic cardiovascular disease and aortic valve stenosis. However, the cell biology of Lp(a) biosynthesis remains poorly understood, with the locations of the noncovalent and covalent steps of Lp(a) assembly unclear and the nature of the apoB-containing particle destined for Lp(a) unknown. We, therefore, asked if apo(a) and apoB interact noncovalently within hepatocytes and if this impacts Lp(a) biosynthesis. METHODS: Using human hepatocellular carcinoma cells expressing 17K (17 kringle) apo(a), or a 17KΔLBS7,8 variant with a reduced ability to bind noncovalently to apoB, we performed coimmunoprecipitation, coimmunofluorescence, and proximity ligation assays to document intracellular apo(a):apoB interactions. We used a pulse-chase metabolic labeling approach to measure apo(a) and apoB secretion rates. RESULTS: Noncovalent complexes containing apo(a)/apoB are present in lysates from cells expressing 17K but not 17KΔLBS7,8, whereas covalent apo(a)/apoB complexes are absent from lysates. 17K and apoB colocalized intracellularly, overlapping with staining for markers of endoplasmic reticulum trans-Golgi, and early endosomes, and less so with lysosomes. The 17KΔLBS7,8 had lower colocalization with apoB. Proximity ligation assays directly documented intracellular 17K/apoB interactions, which were dramatically reduced for 17KΔLBS7,8. Treatment of cells with PCSK9 (proprotein convertase subtilisin/kexin type 9) enhanced, and lomitapide reduced, apo(a) secretion in a manner dependent on the noncovalent interaction between apo(a) and apoB. Apo(a) secretion was also reduced by siRNA-mediated knockdown of APOB. CONCLUSIONS: Our findings explain the coupling of apo(a) and Lp(a)-apoB production observed in human metabolic studies using stable isotopes as well as the ability of agents that inhibit apoB biosynthesis to lower Lp(a) levels.
Assuntos
Apolipoproteína B-100/metabolismo , Apolipoproteínas A/metabolismo , Hepatócitos/metabolismo , Lipoproteína(a)/metabolismo , Apolipoproteína B-100/química , Apolipoproteínas A/química , Apolipoproteínas A/genética , Sítios de Ligação/genética , Células Hep G2 , Humanos , Kringles/genética , Lipoproteína(a)/química , Lisina/química , Redes e Vias Metabólicas , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
INTRODUCTION: Chronic kidney disease (CKD) is a prevalent complication of sickle cell anemia (SCA). Hyperfiltration that delayed detection of CKD is common in SCA patients. Identification of novel urinary biomarkers correlating with glomerular filtration rates may help to detect and predict progression of renal disease. METHODS: Reanalysis of mass spectra of urinary samples obtained from University of Illinois at Chicago identified kringle domain-containing protein HGFL. RESULTS: HGFL levels correlated with hyperfiltration, were significantly reduced at CKD stage 1 compared to stage 0, negatively correlated with progression of CKD and were suitable for differentiation of stage 1. Better prediction of CKD progression to stage 2 was observed for HGFL-based risk prediction compared to the estimated glomerular filtration rate (eGFR)-based prediction. Results from a Howard University patient cohort supported the utility of HGFL-based test for the differentiation of stage 1 of CKD. CONCLUSION: Urinary HGFL may contribute additional information beyond eGFR and improve diagnosis of early-stage CKD in SCA patients.
Assuntos
Anemia Falciforme/complicações , Fator de Crescimento de Hepatócito/urina , Proteínas Proto-Oncogênicas/urina , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/urina , Adolescente , Adulto , Idoso , Biomarcadores/urina , Progressão da Doença , Diagnóstico Precoce , Feminino , Taxa de Filtração Glomerular , Fator de Crescimento de Hepatócito/química , Humanos , Kringles , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteínas Proto-Oncogênicas/química , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/fisiopatologia , Adulto JovemRESUMO
Purpose: To assess the anti-neovascularization effect of a novel peptide NT/K-CFY derived from the kringle domain of neurotrypsin.Materials and Methods: Cell migration, lumen formation and cell proliferation assays were performed to determine the anti-neovascularization effect of NT/K-CFY in primary human umbilical vein endothelial cells (HUVECs). Chick chorioallantoic membrane (CAM) and oxygen-induced retinopathy (OIR) models were established to assess the anti-angiogenic role of NT/K-CFY in vivo. The retinal expression of vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) was examined by western blot and real-time PCR in OIR model.Results: The in vitro results showed that NT/K-CFY effectively and safely decreased VEGF-induced cell migration, cell proliferation and tube formation in HUVECs. In addition, NT/K-CFY showed certain efficacy in angiogenesis inhibition in chicken embryos and oxygen-treated mouse pups. Moreover, the CFY peptide also improved retinal blood perfusion and reversed the abnormal expression of VEGF and PEDF in OIR mouse model.Conclusion: NT/K-CFY peptide strongly inhibits neovascularization in vitro and vivo. This novel peptide may become a promising therapeutic agent for ocular angiogenesis-related diseases.
Assuntos
Inibidores da Angiogênese/farmacologia , Kringles , Peptídeos/farmacologia , Neovascularização Retiniana/tratamento farmacológico , Serina Endopeptidases/química , Inibidores da Angiogênese/química , Animais , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Galinhas , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/fisiologia , Modelos Animais de Doenças , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Oxigênio/toxicidade , Peptídeos/química , Reação em Cadeia da Polimerase em Tempo Real , Neovascularização Retiniana/patologia , Serpinas/genética , Serpinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
The present study investigated expression of endogenous interleukin-13 (IL-13) and its possible function in the hippocampus of prothrombin kringle-2 (pKr-2)-lesioned rats. Here we report that intrahippocampal injection of pKr-2 revealed a significant loss of NeuN-immunopositive (NeuN+) and Nissl+ cells in the hippocampus at 7 days after pKr-2. In parallel, pKr-2 increased IL-13 levels, which reached a peak at 3 days post pKr-2 and sustained up to 7 days post pKr-2. IL-13 immunoreactivity was seen exclusively in activated microglia/macrophages and neutrophils, but not in neurons or astrocytes. In experiments designed to explore the involvement of IL-13 in neurodegeneration, IL-13 neutralizing antibody (IL-13Nab) significantly increased survival of NeuN+ and Nissl+ cells. Accompanying neuroprotection, immunohistochemical analysis indicated that IL-13Nab inhibited pKr-2-induced expression of inducible nitric oxide synthase and myeloperoxidase within activated microglia/macrophages and neutrophils, possibly resulting in attenuation of reactive oxygen species (ROS) generation and oxidative damage of DNA and protein. The current findings suggest that the endogenous IL-13 expressed in pKr-2 activated microglia/macrophages and neutrophils might be harmful to hippocampal neurons via oxidative stress.
Assuntos
Hipocampo/metabolismo , Interleucina-13/fisiologia , Estresse Oxidativo , Protrombina/química , Animais , Astrócitos/metabolismo , Dano ao DNA , Feminino , Hipocampo/efeitos dos fármacos , Kringles , Macrófagos/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Neutrófilos/metabolismo , Oxigênio/química , Domínios Proteicos , Ratos , Ratos Sprague-DawleyRESUMO
Adipose tissue vasculature has been considered an attractive target for prevention and treatment of obesity. AARP (CTT peptide-endostatin mimic-kringle 5) is a novel multitarget fusion protein against tumor angiogenesis. This study aimed to examine the effects of AARP on diet-induced obesity and its possible molecular mechanism. Treatment with AARP markedly prevented weight gains, improved metabolic disturbances, and decreased adipose tissue angiogenesis in diet-induced obese mice without noticeable toxicities. In addition to its potent antiangiogenic and MMP-2/9 inhibitory activities, AARP administration also significantly increased energy expenditure, influenced the metabolic and angiogenic gene expression profiles, and attenuated obesity-induced inflammation, demonstrating its systemic beneficial effects. Importantly, AARP exhibited no effect on mice fed with standard normal mouse diet. Furthermore, the AARP-treated HFD-fed mice experienced a significant increase in lifespan during the posttreatment observation period, compared with untreated HFD-fed mice. Our results suggest that AARP might be pharmacologically useful for treatment of obesity or obesity-related metabolic disorders in humans. KEY MESSAGES: What is already known ⢠More effective and safe therapies for obesity are in urgent need. ⢠AARP is a novel multitarget fusion protein against tumor angiogenesis. What this study adds ⢠AARP prevents obesity, improves metabolic disorders in mice fed high-fat diet. ⢠AARP increases energy expenditure, decreases adipose tissue angiogenesis, and increases lifespan. ⢠AARP is well tolerated and exhibits no observable toxicity. Clinical significance ⢠AARP may be a promising therapeutic agent against obesity or obesity-related metabolic disturbances.
Assuntos
Inibidores da Angiogênese/farmacologia , Dieta Hiperlipídica/efeitos adversos , Obesidade/etiologia , Obesidade/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Modelos Animais de Doenças , Endostatinas , Metabolismo Energético/efeitos dos fármacos , Expressão Gênica , Kringles , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Obesidade/tratamento farmacológico , Obesidade/prevenção & controleRESUMO
Activation of a tyrosine kinase receptor Met by hepatocyte growth factor (HGF) requires binding of proteolytically activated, two-chain (tc) HGF, but the biochemical detail of this ligand-receptor interaction specificity remains elusive because biologically inactive single chain (sc) HGF can also bind to Met with high affinity. We found that this proteolysis-independent Met binding can be eliminated by mutagenesis introduced in the kringle domain without losing the ability to bind and activate cellular Met receptor after proteolytic activation, arguing against this site's involvement in the physiological signalling. This non-signal producing Met-HGF interaction can also be eliminated by addition of a heparin mimetic sucrose octasulphate (SOS). By including SOS in the running buffer, we succeeded in detecting cleavage-dependent tcHGF-Met complex formation by size exclusion chromatography.
Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Kringles/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/genética , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular/genética , Cães , Células HEK293 , Humanos , Ligantes , Células Madin Darby de Rim Canino , Camundongos , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-met/genética , TransfecçãoRESUMO
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) has been recently proposed as a potential target for cancer treatment. It was suggested that monoclonal antibodies (mAb) against the Kringle (KNG) domain of ROR1 could induce apoptosis of chronic lymphocytic leukemia cells. Here, we reported the determination of the solution structure of human ROR1-KNG (hROR1-KNG), investigation of its dynamic properties and potential binding interface by NMR spectroscopy. The obtained NMR structure of hROR1-KNG exhibits an open form at Asn47-His50 and shows obvious differences from other canonical KNGs at the corresponding lysine binding site, which implies that hROR1-KNG may interact with some non-canonical ligands. Dynamics analysis of hROR1-KNG reveal a faster local motion around the α-turn and 310-helix, which may provide flexibility to protect the proximal hydrophobic core in solution or facilitate the binding of other molecules. The intermediate-to-slow conformational exchange of Cys77-Ile79 may influence the conformation determination of disulfide bond Cys53-Cys77. Binding interface of hROR1-KNG for mAb R11 was analyzed and compared with the epitope for the functional mAbs. Previous study implies that hROR1-KNG may be involved in mediating the heterooligomerization between ROR1 and ROR2 in vivo. However, apparently, no direct interaction between hROR1-KNG and hROR2-KNG was observed from chemical shift perturbation experiment. Our work lays foundation to further functional study on interactions of hROR1-KNG with other biological relevant partners.Communicated by Ramaswamy H. Sarma.
Assuntos
Kringles , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/química , Anticorpos Monoclonais , Apoptose , Humanos , Leucemia Linfocítica Crônica de Células BRESUMO
BACKGROUND: Tumor targeting small molecular inhibitors are the most popular treatments for many malignant diseases, including cancer. However, the lower clinical response and drug resistance still limit their clinical efficacies. HGFK1, the first kringle domain of hepatocyte growth factor, has been defined as a potent anti-angiogenic factor. Here, we aimed to develop and identify novel nanoparticles-PH1/pHGFK1 as potential therapeutic agents for the treatment of renal cell carcinoma (RCC). METHODS: We produced a novel cationic polymer-PH1 and investigated the anti-tumor activity of PH1/pHGFK1 nanoparticle alone and its combination therapy with sorafenib in RCC cell line xenografted mice model. Then, we figured out its molecular mechanisms in human RCC cell lines in vitro. RESULTS: We firstly demonstrated that intravenous injection of PH1/pHGFK1 nanoparticles significantly inhibited tumor growth and prolonged the survival time of tumor-bearing mice, as well as synergistically enhanced anti-tumor activities of sorafenib. Furthermore, we elucidated that recombinant HGFK1 improved sorafenib-induced cell apoptosis and arrested cell cycle. In addition, HGFK1 could also decrease sorafenib-induced autophagy and stemness via blockading NF-κB signaling pathway in RCC both in vitro and in vivo. CONCLUSIONS: HGFK1 could inhibit tumor growth, synergistically enhance anti-tumor activities of sorafenib and reverse its drug resistance evolution in RCC. Our results provide rational basis for clinical application of sorafenib and HGFK1 combination therapy in RCC patients.
Assuntos
Autofagia , Carcinoma de Células Renais/patologia , Sinergismo Farmacológico , Fator de Crescimento de Hepatócito/administração & dosagem , Nanopartículas/administração & dosagem , Células-Tronco Neoplásicas/patologia , Sorafenibe/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/terapia , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Ácido Fólico/química , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Kringles , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Polietilenoglicóis/química , Polietilenoimina/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , beta-Ciclodextrinas/químicaRESUMO
Glycoprotein NMB (GPNMB) is highly expressed in many types of malignant tumors and thought to be a poor prognostic factor in those cancers, including breast cancer. Glycoprotein NMB is a type IA transmembrane protein that has a long extracellular domain (ECD) and a short intracellular domain (ICD). In general, the ECD of a protein is involved in protein-protein or protein-carbohydrate interactions, whereas the ICD is important for intracellular signaling. We previously reported that GPNMB contributes to the initiation and malignant progression of breast cancer through the hemi-immunoreceptor tyrosine-based activation motif (hemITAM) in its ICD. Furthermore, we showed that the tyrosine residue in hemITAM is involved in induction of the stem-like properties of breast cancer cells. However, the contribution of the ECD to its tumorigenic function has yet to be fully elucidated. In this study, we focused on the region, the so-called kringle-like domain (KLD), that is conserved among species, and made a deletion mutant, GPNMB(ΔKLD). Enhanced expression of WT GPNMB induced sphere and tumor formation in breast epithelial cells; in contrast, GPNMB(ΔKLD) lacked these activities without affecting its molecular properties, such as subcellular localization, Src-induced tyrosine phosphorylation at least in overexpression experiments, and homo-oligomerization. Additionally, GPNMB(ΔKLD) lost its cell migration promoting activity, even though it reduced E-cadherin expression. Although the interaction partner binding to KLD has not yet been identified, we found that the KLD of GPNMB plays an important role in its tumorigenic potential.
Assuntos
Neoplasias da Mama/patologia , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Mutação , Sequência de Aminoácidos , Animais , Antígenos CD/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Sequência Conservada , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Kringles , Glicoproteínas de Membrana/genética , Camundongos , Transplante de NeoplasiasRESUMO
BACKGROUND: Sucrose allyl ether (SAE) containing hemostatic drugs and a photoinitiator was established to treat mild postpartum hemorrhage or long-term continuous abnormal uterine bleeding in minimally invasive surgery (MIS) using a photopolymerization method. METHODS AND RESULTS: Real-time infrared spectroscopy and rheological experiments showed that the SAE monomer with shear-thinning characteristics could polymerize rapidly into a transparent membrane. Cytotoxicity experiments in vitro showed that this system could elicit a long-term hemostatic effect. Tissue adhesion was also evaluated. The photo-stability of four delivered antifibrinolytic drugs (6-aminocaproic acid, ethylenediaminediacetic acid, tranexamic acid and p-(aminomethyl) benzoic acid) was tested by ultraviolet-photolysis experiments and illustrated by time-dependent density functional theory. Sustained-release experiments revealed that the formed film could be used as a drug carrier. Molecular docking and molecular dynamics were done to investigate the binding mechanism between hemostatic drugs as ligands and the human plasminogen kringle-1 (1HPK) as a target. CONCLUSION: It has been suggested that SAE with tranexamic acid could be a drug-release system of microchannel transport used in MIS. This system could tackle the dilemma of fluidity and adhesion in MIS. The photo-stable tranexamic acid was the most suitable drug according to its satisfactory binding energy, good photo-stability, and sustained release.
Assuntos
Antifibrinolíticos/farmacologia , Liberação Controlada de Fármacos , Hemostasia , Kringles/efeitos dos fármacos , Procedimentos Cirúrgicos Minimamente Invasivos , Plasminogênio/efeitos dos fármacos , Teoria da Densidade Funcional , Portadores de Fármacos/química , Humanos , Ligantes , Modelos Moleculares , Fatores de TempoRESUMO
Parkinson's disease (PD) and Alzheimer's disease exhibit common features of neurodegenerative diseases and can be caused by numerous factors. A common feature of these diseases is neurotoxic inflammation by activated microglia, indicating that regulation of microglial activation is a potential mechanism for preserving neurons in the adult brain. Recently, we reported that upregulation of prothrombin kringle-2 (pKr-2), one of the domains that make up prothrombin and which is cleaved and generated by active thrombin, induces nigral dopaminergic (DA) neuronal death through neurotoxic microglial activation in the adult brain. In this study, we show that silibinin, a flavonoid found in milk thistle, can suppress the production of inducible nitric oxide synthase and neurotoxic inflammatory cytokines, such as interleukin-1ß and tumor necrosis factor-α, after pKr-2 treatment by downregulating the extracellular signal-regulated kinase signaling pathway in the mouse substantia nigra. Moreover, as demonstrated by immunohistochemical staining, measurements of the dopamine and metabolite levels, and open-field behavioral tests, silibinin treatment protected the nigrostriatal DA system resulting from the occurrence of pKr-2-triggered neurotoxic inflammation in vivo. Thus, we conclude that silibinin may be beneficial as a natural compound with anti-inflammatory effects against pKr-2-triggered neurotoxicity to protect the nigrostriatal DA pathway and its properties, and thus, may be applicable for PD therapy.
Assuntos
Dopamina/metabolismo , Doença de Parkinson/tratamento farmacológico , Protrombina/toxicidade , Silibina/administração & dosagem , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Kringles , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Protrombina/química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Hemodynamic valvular impairment is a frequent determinant of the natural history of bicuspid aortic valve (BAV). The role of elevated Lp(a) levels and LPA Kringle IV type 2 (KIV-2) size polymorphism in influencing aortic valve calcification and stenosis development in patients with tricuspid aortic valve was recognized. In this study, we investigate the association between Lp(a) and LPA KIV-2 repeat number, and the presence of calcification and stenosis in BAV patients. Sixty-nine patients [79.7% males; median age 45(30-53) yrs], consecutively referred to Center for Cardiovascular Diagnosis or Referral Center for Marfan syndrome or related disorders, AOU Careggi, from June to November 2014, were investigated. For each patient, clinical (ECG and echocardiography) and laboratory [Lp(a) (Immunoturbidimetric assay) and LPA KIV-2 repeat number (real-time PCR)] evaluation were performed. Patients were compared with 69 control subjects. No significant association between Lp(a) circulating levels and LPA KIV-2 repeat number and BAV was evidenced. Among BAV patients, significantly higher Lp(a) levels according to calcification degree were found [no calcifications:78(42-159) mg/L, mild/moderate: 134(69-189) mg/L; severe: 560(286-1511) mg/L, p = 0.008]. Conversely, lower LPA KIV-2 repeat numbers in subjects with more severe calcification degree were observed. Furthermore, higher Lp(a) levels in patients with aortic stenosis [214(67-501) mg/L vs 104(56-169) mg/L, p = 0.043] were also found. In conclusion, present data suggest the potential role for Lp(a) as a possible risk marker useful to stratify, among BAV patients, those with a higher chance to develop valvular calcifications and aortic stenosis.
Assuntos
Estenose da Valva Aórtica/genética , Valva Aórtica/anormalidades , Valva Aórtica/patologia , Calcinose/genética , Doenças das Valvas Cardíacas/genética , Kringles/genética , Lipoproteína(a)/sangue , Lipoproteína(a)/genética , Polimorfismo de Nucleotídeo Único , Adulto , Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/sangue , Estenose da Valva Aórtica/diagnóstico por imagem , Doença da Válvula Aórtica Bicúspide , Biomarcadores/sangue , Calcinose/sangue , Calcinose/diagnóstico por imagem , Estudos de Casos e Controles , Ecocardiografia , Feminino , Predisposição Genética para Doença , Genótipo , Doenças das Valvas Cardíacas/sangue , Doenças das Valvas Cardíacas/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Reação em Cadeia da Polimerase em Tempo Real , Fatores de RiscoRESUMO
Current clinical treatments for ocular neovascularization are characterized by high possibility of damaging healthy tissues and high recurrence rates. It is necessary to develop new treatment methods to control neovascularization with a stable and effective effect. Kringle1 domain of hepatocyte growth factor (HGFK1) has anti-angiogenesis activity. Here, we established oxygen-induced retinopathy (OIR) model to study if using adeno-associated virus (AAV) as a delivery system to overexpression HGFK1 in retinal cells could benefit retinal neovascularization. We show that, overexpressed exogenous gene was mainly expressed in the inner and outer nuclear layer of the retina. Compared with control mice, the mice pretreated with rAAV-HGFK1 at P3 showed relatively normal vascular branches examined by fluorescence fundus angiography. Subsequent H&E staining and immunohistochemical staining of CD31 of the eye tissue sections showed that the mice received rAAV-HGFK1 had a relatively normal distribution of vascular endothelial cells. Additionally, immunohistochemical staining indicated a lower expression of VEGF in the eye tissues of rAAV-HGFK1 treated OIR mice. Further in vitro studies showed that HGFK1 could inhibit the proliferation but promote the apoptosis of bovine retinal microvascular endothelial cells (BRECs) under the presence of VEGF. Moreover, HGFK1 could inhibit VEGF induced ERK activation but promote p38 activation in BRECs. Therefore, we propose that intravitreal injection of rAAV-HGFK1 might be used to improve the retinal neovascularization and HGFK1 may function through regulating VEGF signaling pathway to inhibit neovascularization.
Assuntos
Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Neovascularização Retiniana/prevenção & controle , Animais , Apoptose , Bovinos , Proliferação de Células , Células Cultivadas , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Fator de Crescimento de Hepatócito/química , Humanos , Kringles/genética , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/administração & dosagem , Retina/metabolismo , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Transfecção , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/administração & dosagemRESUMO
BACKGROUND: The therapeutic resistance to ionising radiation (IR) and anti-angiogenesis mainly impair the prognosis of patients with glioblastoma. The primary and secondary MET aberrant activation is one crucial factor for these resistances. The kringle 1 domain of hepatocyte growth factor (HGFK1), an angiogenic inhibitor, contains a high-affinity binding domain of MET; however, its effects on glioblastoma remain elusive. METHODS: We formed the nanoparticles consisting of a folate receptor-targeted nanoparticle-mediated HGFK1 gene (H1/pHGFK1) and studied its anti-tumoural and radiosensitive activities in both subcutaneous and orthotopic human glioma cell-xenografted mouse models. We then elucidated its molecular mechanisms in human glioblastoma cell lines in vitro. RESULTS: We demonstrated for the first time that peritumoural injection of H1/pHGFK1 nanoparticles significantly inhibited tumour growth and prolonged survival in tumour-bearing mice, as well as enhanced the anti-tumoural efficacies of IR in vivo by reducing Ki-67 expression, enhancing TUNEL staining-indicated apoptotic indexes, reducing microvascular intensity and reversing IR-induced MET overexpression in tumour tissues. Furthermore, we showed that HGFK1 suppressed the proliferation and induced cell apoptosis and enhanced sensitivity to IR in glioblastoma cell lines, mainly by suppressing the activities of MET receptor, down-regulating ATM-Chk2 axis but up-regulating Chk1. CONCLUSIONS: H1/pHGFK1 exerts anti-tumoural and radiosensitive activities mainly through the inhibition and reversal of IR-induced MET and ATM-Chk2 axis activities in glioblastoma. H1/pHGFK1 nanoparticles are a potential radiosensitiser and angiogenic inhibitor for glioblastoma treatment.
Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Fator de Crescimento de Hepatócito/genética , Plasmídeos/administração & dosagem , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Radiossensibilizantes/administração & dosagem , Animais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/genética , Fator de Crescimento de Hepatócito/química , Humanos , Kringles , Camundongos , Nanopartículas/administração & dosagem , Plasmídeos/genética , Radiossensibilizantes/farmacologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Many biologically important ligands of proteins are large, flexible, and in many cases charged molecules that bind to extended regions on the protein surface. It is infeasible or expensive to locate such ligands on proteins with standard methods such as docking or molecular dynamics (MD) simulation. The alternative approach proposed here is scanning of a spatial and angular grid around the protein with smaller fragments of the large ligand. Energy values for complete grids can be computed efficiently with a well-known fast Fourier transform-accelerated algorithm and a physically meaningful interaction model. We show that the approach can readily incorporate flexibility of the protein and ligand. The energy grids (EGs) resulting from the ligand fragment scans can be transformed into probability distributions and then directly compared to probability distributions estimated from MD simulations and experimental structural data. We test the approach on a diverse set of complexes between proteins and large, flexible ligands, including a complex of sonic hedgehog protein and heparin, three heparin sulfate substrates or nonsubstrates of an epimerase, a multibranched supramolecular ligand that stabilizes a protein-peptide complex, a flexible zwitterionic ligand that binds to a surface basin of a Kringle domain, and binding of ATP to a flexible site of an ion channel. In all cases, the EG approach gives results that are in good agreement with experimental data or MD simulations.
Assuntos
Biologia Computacional/métodos , Proteínas Hedgehog/química , Heparina/química , Proteínas/química , Proteínas 14-3-3/química , Trifosfato de Adenosina/química , Cátions , Cristalografia por Raios X , Kringles , Ligantes , Simulação de Dinâmica Molecular , Conformação Proteica , Racemases e Epimerases/química , Receptores Purinérgicos P2X4/química , Eletricidade EstáticaRESUMO
The recombinant protein TK1-2, which consists of two kringle domains of tissue-type plasminogen activator (t-PA), inhibits angiogenesis and tumor growth. ɪn this study, we examined the anti-angiogenic activities of peptides derived from kringle 2 domain of t-PA to identify the functional core sequence. Seven peptides were constructed from the kringle 2 sequence, based on the structure and characteristics of amino acid residues, and were analyzed for their inhibitory effects on endothelial cells (ECs). Among them, TP-7 (derived from a ß-sheet motif) potently inhibited proliferation, tube formation, and migration of ECs in a dose-dependent manner, whereas truncation of 3-9 amino acid residues from either N or C terminus of TP-7 abrogated its inhibitory effects on ECs. TP-7 also potently inhibited angiogenesis in a Matrigel plug assay in vivo. Moreover, TP-7 dose-dependently suppressed corneal neovascularization induced by an acute chemical burn in a rat model. At the molecular level, TP-7 inhibited VEGF- or bFGF-induced phosphorylation of FAK and ERK1/2 and drastically disrupted VEGF- or bFGF-induced formation of stress fibers and focal adhesion complexes. In addition, TP-7 markedly suppressed attachment and spreading of ECs on a collagen type I or fibronectin matrix. Adhesion of ECs to immobilized TP-7 increased dose-dependently, which was disrupted strongly by pretreatment with soluble TP-7 and slightly by an integrin α2ß1-blocking antibody. These results suggest that TP-7 is a potent anti-angiogenic peptide in part affecting the integrin α2ß1-dependent pathway and that it can be used for treatment of corneal neovascularization by targeting VEGF and non-VEGF pathways. J. Cell. Biochem. 118: 1132-1143, 2017. © 2016 Wiley Periodicals, Inc.
Assuntos
Neovascularização da Córnea/tratamento farmacológico , Células Endoteliais/citologia , Neovascularização Patológica/tratamento farmacológico , Peptídeos/administração & dosagem , Peptídeos/síntese química , Ativador de Plasminogênio Tecidual/química , Animais , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Kringles , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peptídeos/farmacologia , Ratos , Fator A de Crescimento do Endotélio Vascular/farmacologiaRESUMO
The formation of functional amyloid must be carefully regulated to prevent the accumulation of potentially toxic products. Premelanosome protein (PMEL) forms non-toxic functional amyloid fibrils that assemble into sheets upon which melanins ultimately are deposited within the melanosomes of pigment cells. PMEL is synthesized in the endoplasmic reticulum but forms amyloid only within post-Golgi melanosome precursors; thus, PMEL must traverse the secretory pathway in a non-amyloid form. Here, we identified two pre-amyloid PMEL intermediates that likely regulate the timing of fibril formation. Analyses by non-reducing SDS-PAGE, size exclusion chromatography, and sedimentation velocity revealed two native high Mr disulfide-bonded species that contain Golgi-modified forms of PMEL. These species correspond to disulfide bond-containing dimeric and monomeric PMEL isoforms that contain no other proteins as judged by two-dimensional PAGE of metabolically labeled/immunoprecipitated PMEL and by mass spectrometry of affinity-purified complexes. Metabolic pulse-chase analyses, small molecule inhibitor treatments, and evaluation of site-directed mutants suggest that the PMEL dimer forms around the time of endoplasmic reticulum exit and is resolved by disulfide bond rearrangement into a monomeric form within the late Golgi or a post-Golgi compartment. Mutagenesis of individual cysteine residues within the non-amyloid cysteine-rich Kringle-like domain stabilizes the disulfide-bonded dimer and impairs fibril formation as determined by electron microscopy. Our data show that the Kringle-like domain facilitates the resolution of disulfide-bonded PMEL dimers and promotes PMEL functional amyloid formation, thereby suggesting that PMEL dimers must be resolved to monomers to generate functional amyloid fibrils.