Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Cell Stress Chaperones ; 29(2): 272-284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485044

RESUMO

Long-term hyperglycemia can lead to diabetic cardiomyopathy (DCM), a main lethal complication of diabetes. However, the mechanisms underlying DCM development have not been fully elucidated. Heat shock protein A12A (HSPA12A) is the atypic member of the Heat shock 70kDa protein family. In the present study, we found that the expression of HSPA12A was upregulated in the hearts of mice with streptozotocin-induced diabetes, while ablation of HSPA12A improved cardiac systolic and diastolic dysfunction and increased cumulative survival of diabetic mice. An increased expression of HSPA12A was also found in H9c2 cardiac cells following treatment with high glucose (HG), while overexpression of HSPA12A-enhanced the HG-induced cardiac cell death, as reflected by higher levels of propidium iodide cells, lactate dehydrogenase leakage, and caspase 3 cleavage. Moreover, the HG-induced increase of oxidative stress, as indicated by dihydroethidium staining, was exaggerated by HSPA12A overexpression. Further studies demonstrated that the HG-induced increases of protein kinase B and forkhead box transcription factors 1 phosphorylation were diminished by HSPA12A overexpression, while pharmacologically inhibition of protein kinase B further enhanced the HG-induced lactate dehydrogenase leakage in HSPA12A overexpressed cardiac cells. Together, the results suggest that hyperglycemia upregulated HSPA12A expression in cardiac cells, by which induced cell death to promote DCM development. Targeting HSPA12A may serve as a potential approach for DCM management.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Hiperglicemia , Animais , Camundongos , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/complicações , Cardiomiopatias Diabéticas/metabolismo , Proteínas de Choque Térmico/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Lactato Desidrogenases/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
2.
Surgery ; 175(5): 1346-1351, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342730

RESUMO

BACKGROUND: Gut ischemia/reperfusion causes the release of damage-associated molecular patterns, leading to acute lung injury and high mortality. Cold-inducible ribonucleic acid-binding protein is a ribonucleic acid chaperon that binds the polyadenylation tail of messenger ribonucleic acid intracellularly. Upon cell stress, cold-inducible ribonucleic acid-binding protein is released, and extracellular cold-inducible ribonucleic acid-binding protein acts as a damage-associated molecular pattern, worsening inflammation. To inhibit extracellular cold-inducible ribonucleic acid-binding protein, we have recently developed an engineered polyadenylation tail named A12. Here, we sought to investigate the therapeutic potential of A12 in gut ischemia/reperfusion-induced acute lung injury. METHODS: Male C57BL6/J mice underwent superior mesenteric artery occlusion and were treated with intraperitoneal A12 (0.5 nmol/g body weight) or vehicle at the time of reperfusion. Blood and lungs were collected 4 hours after gut ischemia/reperfusion. Systemic levels of extracellular cold-inducible ribonucleic acid-binding protein, interleukin-6, aspartate transaminase, alanine transaminase, and lactate dehydrogenase were determined. The pulmonary gene expression of cytokines (interleukin-6, interleukin-1ß) and chemokines (macrophage-inflammatory protein-2, keratinocyte-derived chemokine) was also assessed. In addition, lung myeloperoxidase, injury score, and cell death were determined. Mice were monitored for 48 hours after gut ischemia/reperfusion for survival assessment. RESULTS: Gut ischemia/reperfusion significantly increased the serum extracellular cold-inducible ribonucleic acid-binding protein levels. A12 treatment markedly reduced the elevated serum interleukin-6, alanine transaminase, aspartate transaminase, and lactate dehydrogenase by 53%, 23%, 23%, and 24%, respectively, in gut ischemia/reperfusion mice. A12 also significantly decreased cytokine and chemokine messenger ribonucleic acids and myeloperoxidase activity in the lungs of gut ischemia/reperfusion mice. Histological analysis revealed that A12 attenuated tissue injury and cell death in the lungs of gut ischemia/reperfusion mice. Finally, administration of A12 markedly improved the survival of gut ischemia/reperfusion mice. CONCLUSION: A12, a novel extracellular cold-inducible ribonucleic acid-binding protein inhibitor, diminishes inflammation and mitigates acute lung injury when employed as a treatment during gut ischemia/reperfusion. Hence, the targeted approach toward extracellular cold-inducible ribonucleic acid-binding protein emerges as a promising therapeutic strategy for alleviating gut ischemia/reperfusion-induced acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Traumatismo por Reperfusão , Camundongos , Masculino , Animais , Interleucina-6/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/prevenção & controle , Pulmão/metabolismo , Isquemia/metabolismo , Reperfusão/efeitos adversos , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/tratamento farmacológico , Citocinas/metabolismo , RNA Mensageiro/metabolismo , RNA/metabolismo , RNA/uso terapêutico , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Peroxidase/metabolismo , Lactato Desidrogenases/metabolismo
3.
Medicine (Baltimore) ; 103(6): e36269, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335426

RESUMO

Sequence studies of the entire exome and transcriptome of lymphoma tissues have identified MYD88 and PIM1 as involved in the development and oncogenic signaling. We aimed to determine the frequency of MYD88 and PIM1 mutations, as well as their expressions in conjunction with the clinicopathological parameters identified in mature large B-cell non-Hodgkin lymphomas. The ten-year retrospective study included 50 cases of mature large B-cell lymphoma, diagnosed at the Pathology Department of the Emergency County Hospital of Constanta and Sacele County Hospital of Brasov. They were statistically analyzed by demographic, clinicopathological, and morphogenetic characteristics. We used a real-time polymerase chain reaction technique to identify PIM1 and MYD88 mutations as well as an immunohistochemical technique to evaluate the expressions of the 2 genes. Patients with lymphoma in the small bowel, spleen, brain, and testis had a low-performance status Eastern Cooperative Oncology Group (P = .001). The Eastern Cooperative Oncology Group performance status represented an independent risk factor predicting mortality (HR = 9.372, P < .001). An increased lactate dehydrogenase value was associated with a low survival (P = .002). The international prognostic index score represents a negative risk factor in terms of patient survival (HR = 4.654, P < .001). In cases of diffuse large B-cell lymphoma (DLBCL), immunopositivity of MYD88 is associated with non-germinal center B-cell origin (P < .001). The multivariate analysis observed the association between high lactate dehydrogenase value and the immunohistochemical expression of PIM1 or with the mutant status of the PIM1 gene representing negative prognostic factors (HR = 2.066, P = .042, respectively HR = 3.100, P = .004). In conclusion, our preliminary data suggest that the oncogenic mutations of PIM1 and MYD88 in our DLBCL cohort may improve the diagnosis and prognosis of DLBCL patients in an advanced stage.


Assuntos
Linfoma Difuso de Grandes Células B , Fator 88 de Diferenciação Mieloide , Masculino , Humanos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Estudos Retrospectivos , Prognóstico , Linfoma Difuso de Grandes Células B/patologia , Lactato Desidrogenases/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
4.
J Sci Food Agric ; 104(2): 727-736, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37658680

RESUMO

BACKGROUND: Water-free transportation (WFT), as a novel strategy for express delivery of live shrimp (Litopenaeus vannamei), was developed recently. However, air exposure during this transportation arouses a series of abiotic stress to the shrimp. In the present study, the influences of WFT stress on glycolysis and lipolysis metabolism and meat quality (umami flavor and drip loss) were investigated in comparison with conventional water transportation (WT). RESULTS: The results showed that type II muscle fibers with the feature of anaerobic metabolism were dominated in shrimp flesh. In addition, the increments of intracellular Ca2+ was detected in WFT and WT, which then activated the AMP-activated protein kinase pathway and promoted the consumption of glycogen, as well as the accumulation of lactate and lipolysis, under the enzymolysis of hexokinase, pyruvate kinase, lactate dehydrogenase and adipose triglyceride lipase. Glycogen glycolyzed to latate. Meanwhile, ATP degraded along with glycolysis resulting in the generation of ATP-related adenosine phosphates such as inosine monophosphate with umami flavor and phosphoric acid. More remarkable (P < 0.05) physiological changes (except lactate dehydrogenase and lactate) were observed in WFT compared to WT. Additionally, the fatty acid profile also slightly changed. CONCLUSION: The transport stress induced significant energy metabolism changes of shrimp flesh and therefore effected the flesh quality. The intensifications of freshness (K-value) of shrimp flesh were detected as a result of ATP degradation, which were more pronounced after WFT. However, the drip loss of shrimp flesh was more significantly increased (P < 0.05) after WFT compared to WT. © 2023 Society of Chemical Industry.


Assuntos
Proteínas Quinases Ativadas por AMP , Penaeidae , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Glicogênio/metabolismo , Lactatos/metabolismo , Lactato Desidrogenases/metabolismo , Trifosfato de Adenosina , Penaeidae/metabolismo
5.
Shock ; 60(5): 713-723, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37752084

RESUMO

ABSTRACT: Hypertension seems to inevitably cause cardiac remodeling, increasing the mortality of patients. This study aimed to explore the molecular mechanism of CCAAT/enhancer-binding protein delta (CEBPD)-mediated oxidative stress and inflammation in hypertensive cardiac remodeling. The hypertensive murine model was established through angiotensin-II injection, and hypertensive mice underwent overexpressed CEBPD vector injection, cardiac function evaluation, and observation of histological changes. The cell model was established by angiotensin-II treatment and transfected with overexpressed CEBPD vector. Cell viability and surface area and oxidative stress (reactive oxygen species/superoxide dismutase/lactate dehydrogenase/malondialdehyde) were assessed, and inflammatory factors (TNF-α/IL-1ß/IL-6/IL-10) were determined both in vivo and in vitro . The levels of CEBPD, miR-96-5p, inositol 1,4,5-trisphosphate receptor 1 (IP3R), natriuretic peptide B, and natriuretic peptide A, collagen I, and collagen III in tissues and cells were determined. The binding relationships of CEBPD/miR-96-5p/IP3R 3' untranslated region were validated. CEBPD was reduced in cardiac tissue of hypertensive mice, and CEBPD upregulation improved cardiac function and attenuated fibrosis and hypertrophy, along with reductions of reactive oxygen species/lactate dehydrogenase/malondialdehyde/TNF-α/IL-1ß/IL-6 and increases in superoxide dismutase/IL-10. CEBPD enriched on the miR-96-5p promoter to promote miR-96-5p expression, whereas CEBPD and miR-96-5p negatively regulated IP3R. miR-96-5p silencing/IP3R overexpression reversed the alleviative role of CEBPD overexpression in hypertensive mice. In summary, CEBPD promoted miR-96-5p to negatively regulate IP3R expression to inhibit oxidative stress and inflammation, thereby alleviating hypertensive cardiac remodeling.


Assuntos
Hipertensão , MicroRNAs , Humanos , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Interleucina-10/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Remodelação Ventricular/genética , Interleucina-6/metabolismo , Estresse Oxidativo , Inflamação/metabolismo , Hipertensão/genética , Peptídeos Natriuréticos/metabolismo , Colágeno/metabolismo , Superóxido Dismutase/metabolismo , Malondialdeído , Lactato Desidrogenases/metabolismo , Angiotensinas/metabolismo , Apoptose
6.
J Comp Physiol B ; 193(5): 479-493, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37500966

RESUMO

This study investigated the potential effects of exercise on the responses of energy metabolism, redox balance maintenance, and apoptosis regulation in Drosophila melanogaster to shed more light on the mechanisms underlying the increased performance that this emerging exercise model provides. Three groups were evaluated for seven days: the control (no exercise or locomotor limitations), movement-limited flies (MLF) (no exercise, with locomotor limitations), and EXE (with exercise, no locomotor limitations). The EXE flies demonstrated greater endurance-like tolerance in the swimming test, associated with increased citrate synthase activity, lactate dehydrogenase activity and lactate levels, and metabolic markers in exercise. Notably, the EXE protocol regulated the Akt/p38 MAPK/Nrf2 pathway, which was associated with decreased Hsp70 activation, culminating in glutathione turnover regulation. Moreover, reducing the locomotion environment in the MLF group decreased endurance-like tolerance and did not alter citrate synthase activity, lactate dehydrogenase activity, or lactate levels. The MLF treatment promoted a pro-oxidant effect, altering the Akt/p38 MAPK/Nrf2 pathway and increasing Hsp70 levels, leading to a poorly-regulated glutathione system. Lastly, we demonstrated that exercise could modulate major metabolic responses in Drosophila melanogaster aerobic and anaerobic metabolism, associated with apoptosis and cellular redox balance maintenance in an emergent exercise model.


Assuntos
Drosophila melanogaster , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Citrato (si)-Sintase/metabolismo , Oxirredução , Glutationa/metabolismo , Lactato Desidrogenases/metabolismo , Lactatos
7.
Cancer Med ; 12(13): 14293-14304, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212518

RESUMO

BACKGROUND: Mutations in the RAS-MAPK pathway, such as KRAS, NRAS, and BRAF, are known as high-risk factors associated with poor prognosis in patients with various cancers, but studies in myeloma have yielded mixed results. METHODS: We describe the clinicopathologic, cytogenetic, molecular features, and outcomes of 68 patients with RAS/BRAF-mutated myeloma, and compare with 79 patients without any mutations. RESULTS: We show that KRAS, NRAS, and BRAF were mutated in 16%, 11%, and 5% of cases, respectively. RAS/BRAF-mutated patients had lower hemoglobin and platelet counts, higher levels of serum lactate dehydrogenase and calcium, higher percentage of bone marrow plasma cells, and more advanced R-ISS stage. RAS/BRAF mutations were associated with complex karyotype and gain/amplification of CKS1B. The median overall survival and progression-free survival were significantly shorter for RAS/BRAF-mutated patients (69.0 vs. 220.7 months, p = 0.0023 and 46.0 vs. 60.6 months, p = 0.0311, respectively). Univariate analysis revealed that KRAS mutation, NRAS mutation, lower hemoglobin, elevated lactate dehydrogenase, higher R-ISS stage, complex karyotype, gain/amplification of CKS1B, monosomy 13/RB1 deletion and lack of autologous stem cell transplantation were associated with poorer prognosis. Multivariate analysis showed that KRAS mutation, lower hemoglobin level, higher level of serum calcium, higher ISS stage, and lack of autologous stem cell transplantation predict inferior outcome. CONCLUSIONS: RAS/BRAF mutations occur in 30%-40% of myeloma cases and are associated with higher tumor burden, higher R-ISS stage, complex karyotype, and shorter overall survival and progression-free survival. These findings support testing for RAS/BRAF mutations in myeloma patients and underscore the potential therapeutic benefits of RAS/BRAF inhibitors.


Assuntos
Neoplasias Colorretais , Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Cálcio/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Prognóstico , Transplante Autólogo , Mutação , Lactato Desidrogenases/genética , Lactato Desidrogenases/metabolismo , Cariótipo , Neoplasias Colorretais/patologia
8.
Cell Rep ; 42(4): 112394, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37058408

RESUMO

The ATP-sensitive K+ (KATP) channel is a key regulator of hormone secretion from pancreatic islet endocrine cells. Using direct measurements of KATP channel activity in pancreatic ß cells and the lesser-studied α cells, from both humans and mice, we provide evidence that a glycolytic metabolon locally controls KATP channels on the plasma membrane. The two ATP-consuming enzymes of upper glycolysis, glucokinase and phosphofructokinase, generate ADP that activates KATP. Substrate channeling of fructose 1,6-bisphosphate through the enzymes of lower glycolysis fuels pyruvate kinase, which directly consumes the ADP made by phosphofructokinase to raise ATP/ADP and close the channel. We further show the presence of a plasma membrane-associated NAD+/NADH cycle whereby lactate dehydrogenase is functionally coupled to glyceraldehyde-3-phosphate dehydrogenase. These studies provide direct electrophysiological evidence of a KATP-controlling glycolytic signaling complex and demonstrate its relevance to islet glucose sensing and excitability.


Assuntos
Membrana Celular , Células Secretoras de Glucagon , Glicólise , Células Secretoras de Insulina , Humanos , Animais , Camundongos , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Canais KATP/metabolismo , Técnicas de Patch-Clamp , Eletrofisiologia , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Lactato Desidrogenases/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Difosfato de Adenosina/metabolismo , Fosfofrutoquinases/metabolismo
9.
Horm Mol Biol Clin Investig ; 44(3): 285-293, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36867542

RESUMO

OBJECTIVES: To determine whether inhibition of kinase signaling will suppress resistin-induced liver cancer progression. Resistin is located in monocytes and macrophages of adipose tissue. This adipocytokine is an important link between obesity, inflammation, insulin resistance, and cancer risk. Pathways that resistin is known to be involved include but are not limited to mitogen-activated protein kinases (MAPKs) and extracellular signal-regulated kinases (ERK). The ERK pathway promotes cellular proliferation, migration, survival of cancer cells, and tumor progression. The Akt pathway is known to be up-regulated in many cancers including liver cancer. METHODS: Using an in vitro model, HepG2 and SNU-449 liver cancer cells were exposed to resistin ± ERK, Akt, or both inhibitors. The following physiological parameters were assessed: cellular proliferation, ROS, lipogenesis, invasion, MMP, and lactate dehydrogenase activity. RESULTS: The inhibition of kinase signaling suppressed resistin-induced invasion and lactate dehydrogenase in both cell lines. In addition, in SNU-449 cells, resistin increased proliferation, ROS, and MMP-9 activity. Inhibition of PI3K and ERK decreased phosphorylated Akt and ERK, and pyruvate dehydrogenase. CONCLUSIONS: In this study, we describe the effect of Akt and ERK inhibitors to determine if inhibition suppresses resistin-induced liver cancer progression. Resistin promotes cellular proliferation, ROS, MMP, invasion and LDH activity in SNU-449 liver cancer cells which is differentially mediated by Akt and ERK signaling pathways.


Assuntos
Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Resistina , Humanos , Linhagem Celular , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Lactato Desidrogenases/metabolismo , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio , Resistina/antagonistas & inibidores , Resistina/metabolismo
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(1): 120-124, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36765487

RESUMO

OBJECTIVE: To analyze the expression and correlation of microRNA-195 (miR-195), miR-125 and calreticulin in diffuse large B-cell lymphoma (DLBCL). METHODS: From April 2020 to April 2021, 80 DLBCL patients with complete data archived by the Pathology Department of Handan First Hospital and The Second Hospital of Hebei Medical University were selected as the study group, and 70 patients with reactive lymph node hyperplasia were selected as the control group. The expressions of miR-195 and miR-125 were detected by real-time fluorescence quantitative PCR, and the expression of calreticulin was detected by Western blot. Pearson correlation was used to analyze the correlation between miR-195, miR-125, calreticulin and DLBCL, and ROC curve was used to analyze the predictive value of miR-195, miR-125 and calreticulin for DLBCL. RESULTS: Compared with the control group, the expression of miR-195 decreased but miR-125 and calreticulin increased in the study group (P<0.001). The expression levels of miR-195, miR-125 and calreticulin were not related to sex, age, primary site and B symptoms of patients with DLBCL, but related to immunophenotype, Ann Arbor stage, lactate dehydrogenase, IPI score, nodule involvement and Ki-67 index. The expression of miR-195 decreased and the expression of miR-125 and calreticulin increased in DLBCL paitents with non-germinal center source, Ann Arbor stage III-IV, lactate dehydrogenase > 245 U/L, IPI score 3-5, nodule involvement≥2 and Ki-67 index≥75% (P<0.05). Pearson correlation analysis showed that miR-195 and miR-125 were negatively correlated (r=-0.536, P=0.001), miR-195 and calreticulin were negatively correlated (r=-0.545, P=0.001), while miR-125 and calreticulin were positively correlated (r=0.523, P=0.001). ROC curve showed that compared with the single diagnosis of miR-195, miR-125 and calreticulin, the combination of the three items had higher predictive value for DLBCL (P<0.001). CONCLUSION: The expression of miR-195 decreases and the expression of miR-125 and calreticulin increase in patients with DLBCL. Along with the increase of disease stage and IPI score, the decrease of miR-195 and the increase of miR-125 and calreticulin aggravate gradually. The three items may participate in the occurrence and progress of DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B , MicroRNAs , Humanos , MicroRNAs/genética , Antígeno Ki-67/metabolismo , Calreticulina/metabolismo , Prognóstico , Linfoma Difuso de Grandes Células B/genética , Lactato Desidrogenases/metabolismo
11.
Mol Vis ; 29: 274-288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38222448

RESUMO

Purpose: The cystine/glutamate antiporter is involved in the export of intracellular glutamate in exchange for extracellular cystine. Glutamate is the main neurotransmitter in the retina and plays a key metabolic role as a major anaplerotic substrate in the tricarboxylic acid cycle to generate adenosine triphosphate (ATP). In addition, glutamate is also involved in the outer plexiform glutamate-glutamine cycle, which links photoreceptors and supporting Müller cells and assists in maintaining photoreceptor neurotransmitter supply. In this study, we investigated the role of xCT, the light chain subunit responsible for antiporter function, in glutamate pathways in the mouse retina using an xCT knockout mouse. As xCT is a glutamate exporter, we hypothesized that loss of xCT function may influence the presynaptic metabolism of photoreceptors and postsynaptic levels of glutamate. Methods: Retinas of C57BL/6J wild-type (WT) and xCT knockout (KO) mice of either sex were analyzed from 6 weeks to 12 months of age. Biochemical assays were used to determine the effect of loss of xCT on glycolysis and energy metabolism by measuring lactate dehydrogenase activity and ATP levels. Next, biochemical assays were used to measure whole-tissue glutamate and glutamine levels, while silver-intensified immunogold labeling was performed on 6-week and 9-month-old retinas to visualize and quantify the distribution of glutamate, glutamine, and related neurochemical substrates gamma-aminobutyric acid (GABA) and glycine in the different layers of the retina. Results: Biochemical analysis revealed that loss of xCT function did not alter the lactate dehydrogenase activity, ATP levels, or glutamate and glutamine contents in whole retinas in any age group. However, at 6 weeks of age, the xCT KO retinas revealed altered glutamate distribution compared with the age-matched WT retinas, with accumulation of glutamate in the photoreceptors and outer plexiform layer. In addition, at 6 weeks and 9 months of age, the xCT KO retinas also showed altered glutamine distribution compared with the WT retinas, with glutamine labeling significantly decreased in Müller cell bodies. No significant difference in GABA or glycine distribution were found between the WT and xCT KO retinas at 6 weeks or 9 months of age. Conclusion: Loss of xCT function results in glutamate metabolic disruption through the accumulation of glutamate in photoreceptors and a reduced uptake of glutamate by Müller cells, which in turn decreases glutamine production. These findings support the idea that xCT plays a role in the presynaptic metabolism of photoreceptors and postsynaptic levels of glutamate and derived neurotransmitters in the retina.


Assuntos
Ácido Glutâmico , Glutamina , Camundongos , Animais , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Cistina/metabolismo , Cistina/farmacologia , Camundongos Knockout , Antiporters/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , Trifosfato de Adenosina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Glicina/metabolismo , Neurotransmissores , Lactato Desidrogenases/metabolismo
12.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232743

RESUMO

Glutamate-induced neural toxicity in autophagic neuron death is partially mediated by increased oxidative stress. Therefore, reducing oxidative stress in the brain is critical for treating or preventing neurodegenerative diseases. Selaginella tamariscina is a traditional medicinal plant for treating gastrointestinal bleeding, hematuria, leucorrhea, inflammation, chronic hepatitis, gout, and hyperuricemia. We investigate the inhibitory effects of Selaginella tamariscina ethanol extract (STE) on neurotoxicity and autophagic cell death in glutamate-exposed HT22 mouse hippocampal cells. STE significantly increased cell viability and mitochondrial membrane potential and decreased the expression of reactive oxygen species, lactate dehydrogenase release, and cell apoptosis in glutamate-exposed HT22 cells. In addition, while glutamate induced the excessive activation of mitophagy, STE attenuated glutamate-induced light chain (LC) 3 II and Beclin-1 expression and increased p62 expression. Furthermore, STE strongly enhanced the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) phosphorylation activation. STE strongly inhibited glutamate-induced autophagy by activating the PI3K/Akt/mTOR signaling pathway. In contrast, the addition of LY294002, a PI3K/Akt inhibitor, remarkably suppressed cell viability and p-Akt and p62 expression, while markedly increasing the expression of LC3 II and Beclin-1. Our findings indicate that autophagy inhibition by activating PI3K/Akt/mTOR phosphorylation levels could be responsible for the neuroprotective effects of STE on glutamate neuronal damage.


Assuntos
Morte Celular Autofágica , Fármacos Neuroprotetores , Selaginellaceae , Animais , Autofagia , Proteína Beclina-1/farmacologia , Etanol/farmacologia , Ácido Glutâmico/toxicidade , Lactato Desidrogenases/metabolismo , Mamíferos/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Selaginellaceae/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
13.
Arch Immunol Ther Exp (Warsz) ; 70(1): 25, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36219249

RESUMO

Interleukin (IL)-35 plays an immunosuppressive role in infectious diseases, autoimmune disorders, and cancers. However, IL-35 expression and its regulation of CD8+ T cells in infectious mononucleosis (IM) are not fully understood. In this study, three groups of participants were compared, including twenty-three patients of IM without liver inflammation, twenty-eight patients of IM with liver inflammation, and twenty-one controls. Plasma and peripheral blood mononuclear cells (PBMCs) were isolated. CD8+ T cells were purified. Plasma IL-35 was measured by ELISA. PBMCs and CD8+ T cells were stimulated with recombinant human IL-35 in vitro. Perforin and granzyme B secretion was assessed by ELISPOT. Immune checkpoint molecule expression was investigated by flow cytometry. CD8+ T cells were co-cultured with HepG2 cells in direct contact and indirect contact manner. The cytotoxicity of CD8+ T cells was calculated by measuring lactate dehydrogenase release and proinflammatory cytokine expression. There was no significant difference in plasma IL-35 levels between patients with IM without liver inflammation and the controls, but the IL-35 level was notably increased in patients with IM who presented with liver inflammation and negatively correlated with aminotransferase. CD8+ T cells in patients with IM with liver inflammation showed stronger cytotoxicity. IL-35 stimulation inhibited CD8+ T cell-induced target cell death in patients with IM, mainly through suppression of IFN-γ/TNF-α secretion and elevation of immune checkpoint molecule expression, but did not affect perforin or granzyme B secretion. The current data indicated that IL-35 dampened the cytotoxicity of CD8+ T cells in patients with IM probably via repression of cytokine secretion. Elevated IL-35 may protect against CD8+ T cell-induced liver inflammation in patients with IM.


Assuntos
Hepatite , Mononucleose Infecciosa , Linfócitos T CD8-Positivos , Citocinas/metabolismo , Granzimas/metabolismo , Hepatite/metabolismo , Humanos , Proteínas de Checkpoint Imunológico , Mononucleose Infecciosa/metabolismo , Inflamação/metabolismo , Interleucina-2/metabolismo , Interleucinas/metabolismo , Lactato Desidrogenases/metabolismo , Leucócitos Mononucleares , Perforina/metabolismo , Transaminases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Phytomedicine ; 107: 154484, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36215787

RESUMO

BACKGROUND: Translocator protein (TSPO) is an 18-kDa transmembrane protein found primarily in the mitochondrial outer membrane, and it is implicated in inflammatory responses, such as cytokine release. Koumine (KM) is an indole alkaloid extracted from Gelsemium elegans Benth. It has been reported to be a high-affinity ligand of TSPO and to exert anti-inflammatory and immunomodulatory effects in our recent studies. However, the protective effect of KM on sepsis-associated liver injury (SALI) and its mechanisms are unknown. PURPOSE: To explore the role of TSPO in SALI and then further explore the protective effect and mechanism of KM on SALI. METHODS: The effect of KM on the survival rate of septic mice was confirmed in mouse models of caecal ligation and puncture (CLP)-induced and lipopolysaccharide (LPS)-induced sepsis. The protective effect of KM on CLP-induced SALI was comprehensively evaluated by observing the morphology of the mouse liver and measuring liver injury markers. The serum cytokine content was detected in mice by flow cytometry. Macrophage polarization in the liver was examined using western blotting. TSPO knockout mice were used to explore the role of TSPO in sepsis liver injury and verify the protective effect of KM on sepsis liver injury through TSPO. RESULTS: KM significantly improved the survival rate of both LPS- and CLP-induced sepsis in mice. KM has a significant liver protective effect on CLP-induced sepsis in mice. KM treatment ameliorated liver ischaemia, improved liver pathological injuries, and decreased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and proinflammatory cytokines in serum. Western blotting results showed that KM inhibited M1 polarization of macrophages and promoted M2 polarization. In TSPO knockout mice, we found that TSPO knockout can improve the survival rate of septic mice, ameliorate liver ischaemia, improve liver pathological injuries, and decrease the levels of ALT, AST, and LDH. In addition, TSPO knockout inhibits the M1 polarization of macrophages in the liver of septic mice and promotes M2 polarization and the serum levels of proinflammatory cytokines. Interestingly, in TSPO knockout septic mice, these protective effects of KM were no longer effective. CONCLUSIONS: We report for the first time that TSPO plays a critical role in sepsis-associated liver injury by regulating the polarization of liver macrophages and reducing the inflammatory response. KM, a TSPO ligand, is a potentially desirable candidate for the treatment of SALI that may regulate macrophage M1/M2 polarization through TSPO in the liver.


Assuntos
Lipopolissacarídeos , Sepse , Alanina Transaminase/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Aspartato Aminotransferases/metabolismo , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Alcaloides Indólicos/farmacologia , Lactato Desidrogenases/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Macrófagos , Camundongos , Camundongos Knockout , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo
15.
J Neuroinflammation ; 19(1): 262, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289519

RESUMO

BACKGROUND: Glaucoma, the major cause of irreversible blindness worldwide, is characterized by progressive degeneration of retinal ganglion cells (RGCs). Current treatments for glaucoma only slow or partially prevent the disease progression, failing to prevent RGCs death and visual field defects completely. Glutamate excitotoxicity via N-methyl-D-aspartic acid (NMDA) receptors plays a vital role in RGCs death in glaucoma, which is often accompanied by oxidative stress and NLRP3 inflammasome activation. However, the exact mechanisms remain unclear. METHODS: The glutamate-induced R28 cell excitotoxicity model and NMDA-induced mouse glaucoma model were established in this study. Cell counting kit-8, Hoechst 33342/PI dual staining and lactate dehydrogenase release assay were performed to evaluate cell viability. Annexin V-FITC/PI double staining was used to detect apoptosis and necrosis rate. Reactive oxygen species (ROS) and glutathione (GSH) were used to detect oxidative stress in R28 cells. Levels of proinflammatory cytokines were measured by qRT-PCR. Transmission electron microscopy (TEM) was used to detect necroptotic morphological changes in RGCs. Retinal RGCs numbers were detected by immunofluorescence. Hematoxylin and eosin staining was used to detect retinal morphological changes. The expression levels of RIP1, RIP3, MLKL and NLRP3 inflammasome-related proteins were measured by immunofluorescence and western blotting. RESULTS: We found that glutamate excitotoxicity induced necroptosis in RGCs through activation of the RIP1/RIP3/MLKL pathway in vivo and in vitro. Administration of the RIP3 inhibitor GSK872 and RIP1 inhibitor necrostatin-1 (Nec-1) prevented glutamate-induced RGCs loss, retinal damage, neuroinflammation, overproduction of ROS and a decrease in GSH. Furthermore, after suppression of the RIP1/RIP3/MLKL pathway by GSK872 and Nec-1, glutamate-induced upregulation of key proteins involved in NLRP3 inflammasome activation, including NLRP3, pro-caspase-1, cleaved-caspase-1, and interleukin-1ß (IL-1ß), was markedly inhibited. CONCLUSIONS: Our findings suggest that the RIP1/RIP3/MLKL pathway mediates necroptosis of RGCs and regulates NLRP3 inflammasome activation induced by glutamate excitotoxicity. Moreover, GSK872 and Nec-1 can protect RGCs from necroptosis and suppress NLRP3 inflammasome activation through inhibition of RIP1/RIP3/MLKL pathway, conferring a novel neuroprotective treatment for glaucoma.


Assuntos
Glaucoma , Necroptose , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-1beta/metabolismo , N-Metilaspartato , Inflamassomos/metabolismo , Caspase 1/metabolismo , Células Ganglionares da Retina/metabolismo , Ácido Glutâmico/toxicidade , Hematoxilina , Amarelo de Eosina-(YS) , Apoptose , Glaucoma/induzido quimicamente , Glaucoma/tratamento farmacológico , Glutationa/metabolismo , Lactato Desidrogenases/metabolismo
16.
Oral Health Prev Dent ; 20(1): 355-362, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36259438

RESUMO

PURPOSE: To investigate the effects and mechanisms of lemon essential oil products on dental caries prevention. MATERIALS AND METHODS: Lemon essential oil microemulsions (LEOM) with concentrations of 1/8 minimum inhibitory concentration (MIC), 1/4 MIC, and 1/2 MIC were applied to S. mutans at concentrations of 0.2%, 1%, and 5% glucose, respectively. Changes in acid production capacity of S. mutans were measured based on changes in pH. The effect of the reductive coenzyme I oxidation method on LDH activity was examined. The effect of lemon essential oil microemulsion on the expression of the lactate dehydrogenase gene (ldh) was detected by a quantitative real-time polymerase chain reaction. RESULTS: Lemon essential oil microemulsion at 1/2 MIC concentration reduced the environmental pH value at different glucose concentrations, compared to those observed in the control group (p < 0.05). LDH activity of S. mutans was decreased at three subinhibitory concentrations of lemon essential oil microemulsions (p < 0.05). The effect of lemon essential oil microemulsions on S. mutans LDH activity and bacterial acid production were positively correlated (r = 0.825, p < 0.05). Lemon essential oil microemulsion at 1/2 MIC concentration downregulated the expression of the ldh gene of S. mutans at different glucose concentrations (p < 0.05). In different glucose environments, lemon essential oil microemulsions at subminimum inhibitory concentrations can inhibit the acid production of S. mutans by reducing ldh expression and LDH activity in the glycolytic pathway, proving its anti-caries potential. CONCLUSIONS: LEOM can effectively prevent dental caries and maintain the microecological balance of the oral environment.


Assuntos
Cárie Dentária , Óleos Voláteis , Humanos , Streptococcus mutans , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Fatores de Virulência/farmacologia , Cárie Dentária/prevenção & controle , Cárie Dentária/microbiologia , NAD/metabolismo , NAD/farmacologia , Cariostáticos/farmacologia , Lactato Desidrogenases/metabolismo , Glucose/farmacologia , Biofilmes
17.
Vet Res ; 53(1): 87, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273217

RESUMO

Muscle larvae of Trichinella spiralis parasitize the host intestinal epithelium. The mechanisms of exosomes participating in the invasion of T. spiralis muscle larvae are unclear. Hence, the purpose of this study was to explore the effect of exosomes derived from T. spiralis infective larvae (TsExos) on the barrier function of porcine small intestinal epithelial cells (IPEC-J2). First, TsExos were successfully obtained, and their ingestion by epithelial cells was validated. Furthermore, the optimal induction condition was determined by the CCK8 kit, and we found that exposure to 150 µg/mL TsExos for 12/24 h decreased the viability of IPEC-J2 cells by 30%. Based on this outcome, the effects of TsExos on cell biological processes and tight junctions were studied. After coincubation of TsExos and IPEC-J2 cells, the results showed a significant increase in the content of FITC-dextran and in the levels of lactate dehydrogenase (LDH) and reactive oxygen species (ROS). The rate of apoptosis increased by 12.57%, and nuclear pyknosis and nuclear rupture were observed. After the cells were induced by TsExos, the expression of IL-1 was upregulated, but the expression of IL-10, TGF-ß, TLR-5, MUC-1 and MUC-2 was downregulated. TsExo induction also led to a decrease in the levels of ZO-1, CLDN-3, and OCLN. In conclusion, TsExos are involved in several cellular biological processes, and they function by disrupting physiological and biochemical processes, hyperactivating innate immunity, and damaging tight junctions.


Assuntos
Exossomos , Trichinella spiralis , Suínos , Animais , Trichinella spiralis/fisiologia , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptor 5 Toll-Like/metabolismo , Mucosa Intestinal , Células Epiteliais/metabolismo , Larva/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Lactato Desidrogenases/metabolismo , Interleucina-1/metabolismo
18.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293129

RESUMO

We investigated the nephroprotective effect of D-panthenol in rhabdomyolysis-induced acute kidney injury (AKI). Adult male Wistar rats were injected with 50% glycerol solution to induce rhabdomyolysis. Animals with rhabdomyolysis were injected with D-panthenol (200 mg/kg) for 7 days. On day 8, we examined AKI markers, renal histology, antioxidant capacity, and protein glutathionylation in kidneys to uncover mechanisms of D-panthenol effects. Rhabdomyolysis kidneys were shown to have pathomorphological alterations (mononuclear infiltration, dilatation of tubules, and hyaline casts in Henle's loops and collecting ducts). Activities of skeletal muscle damage markers (creatine kinase and lactate dehydrogenase) increased, myoglobinuria was observed, and creatinine, BUN, and pantetheinase activity in serum and urine rose. Signs of oxidative stress in the kidney tissue of rhabdomyolysis rats, increased levels of lipid peroxidation products, and activities of antioxidant enzymes (SOD, catalase, and glutathione peroxidase) were all alleviated by administration of D-panthenol. Its application improved kidney morphology and decreased AKI markers. Mechanisms of D-panthenol's beneficial effects were associated with an increase in total coenzyme A levels, activity of Krebs cycle enzymes, and attenuation of protein glutathionylation. D-Panthenol protects kidneys from rhabdomyolysis-induced AKI through antioxidant effects, normalization of mitochondrial metabolism, and modulation of glutathione-dependent signaling.


Assuntos
Injúria Renal Aguda , Rabdomiólise , Masculino , Ratos , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Creatinina/metabolismo , Glutationa Peroxidase/metabolismo , Glicerol/metabolismo , Ratos Wistar , Rabdomiólise/complicações , Rabdomiólise/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/induzido quimicamente , Estresse Oxidativo , Rim/metabolismo , Glutationa/metabolismo , Creatina Quinase/metabolismo , Superóxido Dismutase/metabolismo , Coenzima A/metabolismo , Lactato Desidrogenases/metabolismo
19.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293342

RESUMO

Doxorubicin (DOXO) is an effective drug that is used in the treatment of a large number of cancers. Regardless of its important chemotherapeutic characteristics, its usage is restricted because of its serious side effects; the most obvious is cardiotoxicity, which can manifest acutely or years after completion of treatment, leading to left ventricular dysfunction, dilated cardiomyopathy, and heart failure. Galectin 3 (Gal-3) is a beta galactoside binding lectin that has different roles in normal and pathophysiological conditions. Gal-3 was found to be upregulated in animal models, correlating with heart failure, atherosclerosis, and myocardial infarction. Male C57B6/J and B6.Cg-Lgals3 /J Gal-3 knockout (KO) mice were used for a mouse model of acute DOXO-induced cardiotoxicity. Mice were given DOXO or vehicle (normal saline), after which the mice again had free access to food and water. Heart and plasma samples were collected 5 days after DOXO administration and were used for tissue processing, staining, electron microscopy, and enzyme-linked immunosorbent assay (ELISA). There was a significant increase in the heart concentration of Gal-3 in Gal-3 wild type DOXO-treated mice when compared with the sham control. There were significantly higher concentrations of heart cleaved caspase-3, plasma troponin I, plasma lactate dehydrogenase, and plasma creatine kinase in Gal-3 KO DOXO-treated mice than in Gal-3 wild type DOXO-treated mice. Moreover, there were significantly higher heart antioxidant proteins and lower oxidative stress in Gal-3 wild type DOXO-treated mice than in Gal-3 KO DOXO-treated mice. In conclusion, Gal-3 can affect the redox pathways and regulate cell survival and death of the myocardium following acute DOXO injury.


Assuntos
Galectina 3 , Insuficiência Cardíaca , Masculino , Camundongos , Animais , Galectina 3/genética , Galectina 3/metabolismo , Caspase 3/metabolismo , Cardiotoxicidade/etiologia , Troponina I/metabolismo , Miócitos Cardíacos/metabolismo , Antioxidantes/farmacologia , Solução Salina , Camundongos Endogâmicos C57BL , Doxorrubicina/efeitos adversos , Estresse Oxidativo , Camundongos Knockout , Insuficiência Cardíaca/metabolismo , Creatina Quinase/metabolismo , Água/metabolismo , Lactato Desidrogenases/metabolismo
20.
Biomed Res Int ; 2022: 6560693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277894

RESUMO

The objective of this research is to investigate the mediating impact of salvianolic acid B (SalB) on SIRT1 signaling pathway and the mechanism by which it inhibits Nod-like receptor protein 3 (NLRP3), as well as to examine how SalB affects myocardial injury brought on by tumor lesions at the junction of the tube and the stomach. Through the establishment of the integration of a stomach tube tumor lesion rats combined with the experimental rat model, this study establishes the normal group, model group, and different SalB dose groups. For each group of cells, cell activity and cell apoptosis were determined and compared using colorimetry and enzyme-linked immunosorbent method about lactate dehydrogenase (LDH). Interleukin-1 beta levels are measured. DCFH-DA fluorescent probe was applied to identify intracellular "reactive oxygen species" (ROS). "Western blot" was used to determine NLRP3, caspase-1, and apoptosis-related spotted protein (ASC) in each group of cells. And SIRT1 signaling pathway related to SIRT1, phosphorylated AMP protein-activated kinase α (P-AMPK α), AMP protein-activated kinase α (AMPKα), and "peroxisome-proliferator-activated receptor γ coactivator 1α (PGC-1α) protein expression" are used. According to the final findings, SalB mediated the SIRT1 signaling pathway and had a beneficial impact on the upregulation of SIRT1, P-AMPK/AMPK, and PGC-1 protein expressions. SalB positively affects the downregulation of NLRP3 inflammasome-related proteins. Caspase-1 and ASC protein expression suggesting that SalB may inhibit the activation of NLRP3 inflammasome induced by oxidative stress by activating SIRT1/AMPK/PGC-1α signaling pathway. This plays an antimyocardial injury effect.


Assuntos
Neoplasias , Sirtuína 1 , Ratos , Animais , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-1beta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas NLR/metabolismo , Inflamassomos/metabolismo , Corantes Fluorescentes , Imunoadsorventes , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Caspase 1/metabolismo , Oxigênio/metabolismo , Lactato Desidrogenases/metabolismo , Monofosfato de Adenosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA