Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 88(6): 2642-2654, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37070210

RESUMO

To decrease the climbing rate of alcoholic liver disease, the protective effect in subacute alcoholic liver injury of newly isolated Lactiplantibacillus pentosus CQZC01 has been investigated. Lactiplantibacillus pentosus CQZC01 (1 × 109 CFU/kgbw) administered orally could keep weight of mice at 30.54 ± 1.15 g; alleviate alcoholic damage on hepatic morphology; decrease the activities of hyaluronidase (147 ± 19 U/L), procollagen III (4.82 ± 0.54 ng/mL), alanine transaminase (10.66 ± 2.32 U/L), and aspartate aminotransferase (15.18 ± 1.98 U/L); enhance the activities of alcohol dehydrogenase (65.15 ± 3.2 U/mgprot), aldehyde dehydrogenase (16.50 ± 0.96 U/mgprot), superoxide dismutase (623 ± 39 U/mgprot), and glutathione (19.54 ± 2.46 µmol/gprot); and decrease liver total cholesterol (3.59 ± 0.50 mmol/gprot) and triglyceride (0.88 ± 0.24 mmol/gprot) (p < 0.05). Moreover, L. pentosus CQZC01 elevated the level of interleukin-10 (IL-10; 807 ± 44 pg/mL) but significantly decreased the levels of IL-1ß (29.75 ± 5.27pg/mL), IL-6 (58 ± 8 pg/mL), and tumor necrosis factor-α (TNF-α, 564 ± 13 pg/mL). Liver malondialdehyde was also significantly decreased by treatment with L. pentosus CQZC01 from 3.61 ± 0.14  to 2.03 ± 0.49 nmol/mgprot. The relative expression of C-Jun N-terminal kinase, extracellular regulated protein kinases, and cyclooxygenase-1 was downregulated, and the SOD1, SOD2, peroxisome proliferator-activated receptor-α, glutathione peroxidase, catalase, nuclear factor erythroid-2-related factor 2, heme oxygenase-1 and nicotinamide adenine dinucleotide phosphate were upregulated by L. pentosus CQZC01. The overall protective effect of L. pentosus CQZC01 was comparable to commercial Lactobacillus delbrueckii subsp. Bulgaricus. Lactobacillus pentosus CQZC01 might be a suitable hepatoprotective measure for people who frequently ingest alcoholic drinks. PRACTICAL APPLICATION: L. pentosus CQZC01 can alleviate subacute alcoholic liver injury by raising the antioxidant status and upregulating the antioxidant-related genes.


Assuntos
Antioxidantes , Lactobacillus pentosus , Camundongos , Animais , Antioxidantes/farmacologia , Lactobacillus pentosus/metabolismo , Fígado/metabolismo , Glutationa/metabolismo , Aspartato Aminotransferases/metabolismo , Alanina Transaminase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Estresse Oxidativo
2.
Nutrients ; 15(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904068

RESUMO

Porphyromonas gingivalis (PG) is closely involved in the outbreak of periodontitis and cognitive impairment (CI). Herein, we examined the effects of anti-inflammatory Lactobacillus pentosus NK357 and Bifidobacterium bifidum NK391 on PG- or its extracellular vesicles (pEVs)-induced periodontitis and CI in mice. Oral administration of NK357 or NK391 significantly decreased PG-induced tumor necrosis factor (TNF)-α, receptor activator of nuclear factors κB (RANK), and RANK ligand (RANKL) expression, gingipain (GP)+lipopolysaccharide (LPS)+ and NF-κB+CD11c+ populations, and PG 16S rDNA level in the periodontal tissue. Their treatments also suppressed PG-induced CI -like behaviors, TNF-α expression and NF-κB-positive immune cells in the hippocampus and colon, while PG-suppressed hippocampal BDNF and N-methyl-D-aspartate receptor (NMDAR) expression increased. The combination of NK357 and NK391 additively alleviated PG- or pEVs-induced periodontitis, neuroinflammation, CI-like behaviors, colitis, and gut microbiota dysbiosis and increased PG- or pEVs-suppressed BDNF and NMDAR expression in the hippocampus. In conclusion, NK357 and NK391 may alleviate periodontitis and dementia by regulating NF-κB, RANKL/RANK, and BDNF-NMDAR signaling and gut microbiota.


Assuntos
Bifidobacterium bifidum , Disfunção Cognitiva , Vesículas Extracelulares , Lactobacillus pentosus , Periodontite , Camundongos , Animais , NF-kappa B/metabolismo , Lactobacillus pentosus/metabolismo , Porphyromonas gingivalis/metabolismo , Bifidobacterium bifidum/metabolismo , Fator Neurotrófico Derivado do Encéfalo , Periodontite/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Receptor Ativador de Fator Nuclear kappa-B , Disfunção Cognitiva/metabolismo , Vesículas Extracelulares/metabolismo , Lipopolissacarídeos/metabolismo
3.
Food Microbiol ; 109: 104148, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309447

RESUMO

Despite increasing interest to investigate horizontal gene transfer as a leading cause of antibiotic resistance spread, the resistome is not only influenced by the influx and efflux of genes in different environments. Rather, the expression of existing genes under different stress conditions requires special attention. This study determined whether pre-adapting Lactiplantibacillus pentosus strains, isolated from Aloreña green table olives, to vegetable-based edible oils influence their phenotypic and genotypic responses to antibiotics. This has significant diet, food matrix, gut health, and food safety concerns. Pre-adapting L. pentosus strains to oils significantly changed their susceptibility profile to antibiotics. However, results generally differed among the three strains; although changes in the Minimum Inhibitory Concentration (MIC) of antibiotics occurred, it depended on the L. pentosus strain and the oil used for adaptation. The pre-adaptation of L. pentosus strains with olive, sunflower, argan and linseed oils induced gene expressions (e.g., rpsL, recA and uvrB) in several stress responses. Thus, to analyze this fact in-depth, transcriptional changes were reported in the selected potential probiotic L. pentosus CF2-10 adapted with olive or sunflower, rerouting its metabolic pathways to export toxic molecules through efflux pumps and ABC transporters. Pre-adaptation of some lactobacilli with olive or sunflower oils may represent a novel approach for manufacturing probiotic products with improved stability, functionality and robustness.


Assuntos
Lactobacillus pentosus , Olea , Probióticos , Microbiologia de Alimentos , Fermentação , Lactobacillus pentosus/metabolismo , Probióticos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Óleos
4.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915904

RESUMO

Particulate matter (PM) is a significant environmental pollutant that promotes respiratory diseases, including lung injury and inflammation, by inducing oxidative stress. Rhynchosia nulubilis (black soybean) is traditionally used to prevent chronic respiratory disease via inducing antioxidant and anti-inflammatory effects. To investigate the effects of Lactobacillus pentosus SC65 fermented GR (GR-SC65) and Pediococcus pentosaceus ON81A (GR-ON81A) against PM-induced oxidative stress and cell death in A549 cells, we performed the 2-7-dichlorodihydrofluorescein diacetate and cell counting kit-8 assays, as well as Hoechst 33342 and propidium iodide staining and western blotting. GR-SC65 showed the highest total polyphenolic contents and 1,1-diphenyl-2-picrylidrazil radical scavenging activity among lactic acid bacteria-fermented GRs (p < 0.001 vs. GR). Four soy peptides, ß-conglycinin breakdowns (INAENNQRNF, ISSEDKPFN, LAFPGSAQAVEK, and LAFPGSAKDIEN), were detected in GR-SC65, but not in GR. In GR-SC65, PM-induced A549 cell death was less than that observed in GR-ON81A and GR (p < 0.001 vs. PM-treated group). GR-SC65 significantly decreased intracellular reactive oxidative species (ROS) when compared with PM (*** p < 0.001 vs. PM). GR-SC65 decreased the levels of BAX, active caspase-9, -3, and poly ADP-ribose polymerase (PARP) proteins (#p < 0.01, ###p < 0.001 vs. PM), while increasing the level of BCL-2 protein, a mitochondrial anti-apoptotic protein (###p < 0.001 vs. PM). Our findings indicate that GR-SC65 inhibited PM-induced cell death by suppressing the levels of ROS, active caspase-9 and -3, and PARP proteins, while enhancing the level of BCL-2 protein in type II alveolar epithelial A549 cells. Therefore, GR-SC65 might be a potential therapeutic and preventive agent against PM-induced lung injury.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Glycine max/metabolismo , Lactobacillus pentosus/metabolismo , Pneumopatias/prevenção & controle , Extratos Vegetais/uso terapêutico , Células A549 , Apoptose/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Fermentação , Humanos , Pneumopatias/etiologia , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/efeitos adversos , Fitoterapia , Extratos Vegetais/farmacologia
5.
Genomics ; 112(5): 3142-3149, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32450257

RESUMO

Lactic acid bacteria have been attracting increased attentions recent years because of harboring probiotic properties. In present study, a Lactobacillus pentosus strain ZFM94 was screened from healthy infant feces and its probiotic characteristics were investigated. We found that ZFM94 was resistant to environmental stresses (temperature, pH and NaCl), tolerant to gastrointestinal juice and bile salts, with inhibitory action against pathogens and capacity of folate production etc. Additionally, complete genome sequence of the strain was analyzed to highlight the probiotic features at genetic level. Genomic characteristics along with the experimental studies is critically important for building an appropriate probiotic profile of novel strains. Genes that correspond to phenotypes mentioned above were identified. Moreover, genes potentially related to its adaptation, such as carbon metabolism and carbohydrate transporter, carbohydrate-active enzymes, and a novel gene cluster RaS-RiPPs, were also revealed. Together, ZFM94 could be considered as a potential probiotic candidate.


Assuntos
Genoma Bacteriano , Lactobacillus pentosus/genética , Probióticos , Antibacterianos/metabolismo , Aderência Bacteriana , Metabolismo dos Carboidratos/genética , Carbono/metabolismo , Ácido Fólico/biossíntese , Suco Gástrico , Genômica , Humanos , Lactente , Lactobacillus pentosus/enzimologia , Lactobacillus pentosus/isolamento & purificação , Lactobacillus pentosus/metabolismo , Proteínas de Membrana Transportadoras/genética , Peptídeos/genética , Filogenia , Estresse Fisiológico
6.
Probiotics Antimicrob Proteins ; 12(4): 1459-1470, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31970648

RESUMO

The aim of this study was to assess the protective effect of the intracellular content obtained from potential probiotic bacteria against acrylamide-induced oxidative damage in human erythrocytes. First, the antioxidant properties of 12 potential probiotic strains was evaluated. Two commercial probiotic bacteria were included as reference strains, namely, Lactobacillus casei Shirota and Lactobacillus paracasei 431. Data showed that the intracellular content from four strains, i.e., Lactobacillus fermentum J10, Lactobacillus pentosus J24 and J26, and Lactobacillus pentosus J27, showed higher (P < 0.05) antioxidant capacity in most methods used. Thereafter, the intracellular content of such pre-selected strains was able to prevent the disturbance of the antioxidant system of human erythrocytes exposed to acrylamide, thereby reducing cell disruption and eryptosis development (P < 0.05). Additionally, the degree of oxidative stress in erythrocytes exposed to acrylamide was significantly (P < 0.05) reduced to levels similar to the basal conditions when the intracellular content of Lact. fermentum J10, Lact. pentosus J27, and Lact. paracasei 431 were employed. Hence, our findings suggest that the intracellular contents of specific Lactobacillus strains represent a potential source of metabolites with antioxidant properties that may help reduce the oxidative stress induced by acrylamide in human erythrocytes.


Assuntos
Acrilamida/farmacologia , Antioxidantes/farmacologia , Misturas Complexas/farmacologia , Lacticaseibacillus casei/química , Lacticaseibacillus paracasei/química , Lactobacillus pentosus/química , Limosilactobacillus fermentum/química , Acrilamida/antagonistas & inibidores , Antioxidantes/química , Catalase/metabolismo , Células Cultivadas , Cromanos/farmacologia , Misturas Complexas/química , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Lacticaseibacillus casei/metabolismo , Limosilactobacillus fermentum/metabolismo , Lacticaseibacillus paracasei/metabolismo , Lactobacillus pentosus/metabolismo , Malondialdeído/antagonistas & inibidores , Malondialdeído/metabolismo , Oxirredução , Estresse Oxidativo , Probióticos/química , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA