Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 879
Filtrar
1.
World J Microbiol Biotechnol ; 40(7): 199, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727988

RESUMO

Glucagon-like peptide-1(GLP-1) is an incretin hormone secreted primarily from the intestinal L-cells in response to meals. GLP-1 is a key regulator of energy metabolism and food intake. It has been proven that P9 protein from A. muciniphila could increase GLP-1 release and improve glucose homeostasis in HFD-induced mice. To obtain an engineered Lactococcus lactis which produced P9 protein, mature polypeptide chain of P9 was codon-optimized, fused with N-terminal signal peptide Usp45, and expressed in L. lactis NZ9000. Heterologous secretion of P9 by recombinant L. lactis NZP9 were successfully detected by SDS-PAGE and western blotting. Notably, the supernatant of L. lactis NZP9 stimulated GLP-1 production of NCI-H716 cells. The relative expression level of GLP-1 biosynthesis gene GCG and PCSK1 were upregulated by 1.63 and 1.53 folds, respectively. To our knowledge, this is the first report on the secretory expression of carboxyl-terminal processing protease P9 from A. muciniphila in L. lactis. Our results suggest that genetically engineered L. lactis which expressed P9 may have therapeutic potential for the treatment of diabetes, obesity and other metabolic disorders.


Assuntos
Akkermansia , Peptídeo 1 Semelhante ao Glucagon , Lactococcus lactis , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Akkermansia/genética , Akkermansia/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Humanos , Células L , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Animais , Camundongos , Linhagem Celular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Elife ; 122024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695350

RESUMO

Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Lactococcus lactis , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Betaína/metabolismo , Microscopia Crioeletrônica , Transferência Ressonante de Energia de Fluorescência , Lactococcus lactis/metabolismo , Concentração Osmolar , Osmorregulação , Ligação Proteica , Domínios Proteicos , Imagem Individual de Molécula
3.
Proc Natl Acad Sci U S A ; 121(21): e2401738121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743623

RESUMO

Studies have determined that nonredox enzymes that are cofactored with Fe(II) are the most oxidant-sensitive targets inside Escherichia coli. These enzymes use Fe(II) cofactors to bind and activate substrates. Because of their solvent exposure, the metal can be accessed and oxidized by reactive oxygen species, thereby inactivating the enzyme. Because these enzymes participate in key physiological processes, the consequences of stress can be severe. Accordingly, when E. coli senses elevated levels of H2O2, it induces both a miniferritin and a manganese importer, enabling the replacement of the iron atom in these enzymes with manganese. Manganese does not react with H2O2 and thereby preserves enzyme activity. In this study, we examined several diverse microbes to identify the metal that they customarily integrate into ribulose-5-phosphate 3-epimerase, a representative of this enzyme family. The anaerobe Bacteroides thetaiotaomicron, like E. coli, uses iron. In contrast, Bacillus subtilis and Lactococcus lactis use manganese, and Saccharomyces cerevisiae uses zinc. The latter organisms are therefore well suited to the oxidizing environments in which they dwell. Similar results were obtained with peptide deformylase, another essential enzyme of the mononuclear class. Strikingly, heterologous expression experiments show that it is the metal pool within the organism, rather than features of the protein itself, that determine which metal is incorporated. Further, regardless of the source organism, each enzyme exhibits highest turnover with iron and lowest turnover with zinc. We infer that the intrinsic catalytic properties of the metal cannot easily be retuned by evolution of the polypeptide.


Assuntos
Escherichia coli , Ferro , Manganês , Manganês/metabolismo , Ferro/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Peróxido de Hidrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Zinco/metabolismo , Lactococcus lactis/enzimologia , Lactococcus lactis/metabolismo , Oxirredução , Metais/metabolismo
4.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38618721

RESUMO

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Assuntos
Microbioma Gastrointestinal , Resistência a Inseticidas , Piretrinas , Espécies Reativas de Oxigênio , Tephritidae , Animais , Espécies Reativas de Oxigênio/metabolismo , Piretrinas/farmacologia , Piretrinas/metabolismo , Resistência a Inseticidas/genética , Tephritidae/microbiologia , Tephritidae/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Lactobacillales/efeitos dos fármacos , Lactobacillales/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Enterococcus/genética , Enterococcus/metabolismo , Enterococcus/efeitos dos fármacos , Glutationa Transferase/genética , Glutationa Transferase/metabolismo
5.
J Agric Food Chem ; 72(13): 7279-7290, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38519413

RESUMO

PepXLcMY-3, an X-prolyl dipeptidyl aminopeptidase derived from Lactobacillus lactis MY-3, was screened and recombinantly expressed in Escherichia coli. The enzyme could exhibit about 40% activity within the pH range of 6.0-10. To further improve the pH robustness, site E396 located in the active pocket was discovered through alanine scanning. The mutant E396I displayed both developed activity and kcat/Km. The optimal pH of E396I shifted from 6.0 to 10 compared to WT, with the relative activity within the pH range of 6.0-10 significantly increased. The site K648 was then proposed by semirational design. The activity of mutant E396I/K648D reached 4.03 U/mg. The optimal pH was restored to 6.0, and the pH stability was further improved. E396I/K648D could totally hydrolyze ß-casomorphin 7 within 30 min. The hydrolysate showed 64.5% inhibition on angiotensin I converting enzyme, which was more efficient than those produced by E396I and WT, 23.2 and 44.7%, respectively.


Assuntos
Lactococcus lactis , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Sequência de Aminoácidos , Dipeptidil Peptidases e Tripeptidil Peptidases , Peptídeos/genética , Hidrolases , Aminopeptidases/genética , Aminopeptidases/química , Aminopeptidases/metabolismo , Concentração de Íons de Hidrogênio
6.
Cancer Lett ; 588: 216777, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38432582

RESUMO

Intrapleural immunotherapies have emerged as a prominent field in treating malignant pleural effusion (MPE). Among these, bacteria-based intrapleural therapy has exerted an anti-MPE effect by immuno-stimulating or cytotoxic properties. We previously engineered a probiotic Lactococcus lactis (FOLactis) expressing a fusion protein of Fms-like tyrosine kinase 3 and co-stimulator OX40 ligands. FOLactis activates tumor antigen-specific immune responses and displays systemic antitumor efficacy via intratumoral delivery. However, no available lesions exist in the pleural cavity of patients with MPE for intratumoral administration. Therefore, we further optimize FOLactis to treat MPE through intrapleural injection. Intrapleural administration of FOLactis (I-Pl FOLactis) not only distinctly suppresses MPE and pleural tumor nodules, but also significantly extends noticeable survival in MPE-bearing murine models. The proportion of CD103+ dendritic cells (DCs) in tumor-draining lymph nodes increases three-fold in FOLactis group, compared to the wild-type bacteria group. The enhanced DCs recruitment promotes the infiltration of effector memory T and CD8+ T cells, as well as the activation of NK cells and the polarization of macrophages to M1. Programmed death 1 blockade antibody combination further enhances the antitumor efficacy of I-Pl FOLactis. In summary, we first develop an innovative intrapleural strategy based on FOLactis, exhibiting remarkable efficacy and favorable biosafety profiles. These findings suggest prospective clinical translation of engineered probiotics for managing MPE through direct administration into the pleural cavity.


Assuntos
Antineoplásicos , Lactococcus lactis , Derrame Pleural Maligno , Humanos , Animais , Camundongos , Derrame Pleural Maligno/terapia , Lactococcus lactis/genética , Linfócitos T CD8-Positivos/metabolismo , Estudos Prospectivos , Antineoplásicos/uso terapêutico
7.
Microbiol Spectr ; 12(4): e0392723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441470

RESUMO

Aeromonas hydrophila, an aquatic pathogenic bacterium, has been found to infect many fish species and cause huge aquaculture losses. Antibiotics are the most common drugs used to treat these infections. However, antibiotic abuse can lead to the development of antibiotic resistance. Probiotics have the potential to replace antibiotics for preventing infections. Zebrafish (Danio rerio) is a model organism used to study the innate immune system and host-pathogen interactions. Currently, there is little information on how the fish immune system responds to A. hydrophila and probiotic treatment. To increase the understanding of the molecular mechanisms behind the zebrafish defense against A. hydrophila and provide evidence that antibiotics can be replaced by probiotics, a transcriptome analysis of the zebrafish spleen was conducted 48 hours after infection by A. hydrophila, as well as after treatment using Lactococcus lactis KUST48 4 hours after infection. A total of 36,499 genes were obtained. There were 3,337 genes found to have significant differential expression between treatment and control groups. According to further annotation and enrichment analysis, differentially expressed genes (DEGs) were involved in signal transduction, endocrine system cancer, and the immune system. Insulin resistance disappeared in the zebrafish after treatment. Quantitative real-time PCR was performed to confirm the significant regulation of immune defense DEGs, the results of which were consistent with the RNA-sequencing data. These results could serve as a basis for future studies on the immune response to A. hydrophila and provide suggestions for probiotic alternatives to antibiotics, which will be of great significance to aquaculture and environmental protection.IMPORTANCEIn recent years, the unreasonable use of antibiotics has led to the emergence of drug-resistant pathogenic bacteria, antibiotic residues, cross infection, toxic side effects, and so on, which has caused a serious threat to human food safety and life health. In recent years, many studies have demonstrated the potential of probiotics as a substitute for antibiotics, but there is still a lack of understanding of the molecular mechanisms underlying probiotic therapy. We conduct a research on the impact of Lactococcus lactis KUST48 on the transcription profile of Aeromonas hydrophila-infected zebrafish spleen. Mortality of zebrafish infected with A. hydrophila was significantly reduced after treatment with L. lactis KUST48. Our results can help to strengthen our understanding of the pathogenic mechanisms of zebrafish and provide a valuable reference for the molecular mechanisms of probiotic therapy.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Lactococcus lactis , Animais , Humanos , Peixe-Zebra , Aeromonas hydrophila/genética , Lactococcus lactis/genética , Baço , Antibacterianos , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia , Doenças dos Peixes/microbiologia
8.
Biomed Pharmacother ; 173: 116384, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471270

RESUMO

Bone marrow has the capacity to produce different types of immune cells, such as natural killer cells, macrophages, dendritic cells (DCs) and T cells. Improving the activation of immune cells in the bone marrow can enhance the therapy of bone metastases. Previously, we designed an engineered probiotic Lactococcus lactis, capable of expressing a fusion protein of Fms-like tyrosine kinase 3 ligand and co-stimulator OX40 ligand (FOLactis), and proved that it can induce the activation and differentiation of several immune cells. In this research, we successfully establish mouse models of bone metastasis, lung metastasis and intraperitoneal dissemination, and we are the first to directly inject the probiotics into the bone marrow to inhibit tumor growth. We observe that injecting FOLactis into the bone marrow of mice can better regulate the immune microenvironment of tumor-bearing mice, resulting in a tumor-suppressive effect. Compared to subcutaneous (s.c.) injection, intra-bone marrow (IBM) injection is more effective in increasing mature DCs and CD8+ T cells and prolonging the survival of tumor-bearing mice. Our results confirm that IBM injection of FOLactis reprograms the immune microenvironment of bone marrow and has remarkable effectiveness in various metastatic tumor models.


Assuntos
Lactococcus lactis , Neoplasias Pulmonares , Camundongos , Animais , Medula Óssea , Lactococcus lactis/genética , Linfócitos T CD8-Positivos , Imunoterapia Adotiva/métodos , Neoplasias Pulmonares/secundário , Microambiente Tumoral
9.
Microb Cell Fact ; 23(1): 82, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38481270

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers, posing a serious public health challenge that necessitates the development of new therapeutics, therapies, and prevention methods. Among the various therapeutic approaches, interventions involving lactic acid bacteria (LAB) as probiotics and postbiotics have emerged as promising candidates for treating and preventing CRC. While human-isolated LAB strains are considered highly favorable, those sourced from environmental reservoirs such as dairy and fermented foods are also being recognized as potential sources for future therapeutics. RESULTS: In this study, we present a novel and therapeutically promising strain, Lactococcus lactis ssp. lactis Lc4, isolated from dairy sources. Lc4 demonstrated the ability to release the cytostatic agent - arginine deiminase (ADI) - into the post-cultivation supernatant when cultured under conditions mimicking the human gut environment. Released arginine deiminase was able to significantly reduce the growth of HT-29 and HCT116 cells due to the depletion of arginine, which led to decreased levels of c-Myc, reduced phosphorylation of p70-S6 kinase, and cell cycle arrest. The ADI release and cytostatic properties were strain-dependent, as was evident from comparison to other L. lactis ssp. lactis strains. CONCLUSION: For the first time, we unveil the anti-proliferative properties of the L. lactis cell-free supernatant (CFS), which are independent of bacteriocins or other small molecules. We demonstrate that ADI, derived from a dairy-Generally Recognized As Safe (GRAS) strain of L. lactis, exhibits anti-proliferative activity on cell lines with different levels of argininosuccinate synthetase 1 (ASS1) expression. A unique feature of the Lc4 strain is also its capability to release ADI into the extracellular space. Taken together, we showcase L. lactis ADI and the Lc4 strain as promising, potential therapeutic agents with broad applicability.


Assuntos
Citostáticos , Lactococcus lactis , Humanos , Citostáticos/metabolismo , Lactococcus lactis/metabolismo , Hidrolases/metabolismo , Linhagem Celular Tumoral , Arginina
10.
Plant Foods Hum Nutr ; 79(1): 219-224, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38345666

RESUMO

The industry has increasingly explored the development of foods with functional properties, where supplementation with probiotics and bioactive compounds has gained prominence. In this context, the study aimed to evaluate the influence of in vitro biological digestion on the content of phenolic compounds, antioxidant activity, and inhibition of α-amylase and α-glucosidase activities of probiotic yogurt supplemented with the lactic acid bacteria Lactococcus lactis R7 and red guava extract (Psidium cattleianum). A yogurt containing L. lactis R7 (0.1%) and red guava extract (4%) was characterized for the content of phenolic compounds, antioxidant activity, and potential for inhibition of digestive enzymes after a simulated in vitro digestion process. After digestion, the caffeic and hydroxybenzoic acids remained, and sinapic acid only in the last digestive phase. Antioxidant activity decreased during digestion by 28.93, 53.60, and 27.97% for DPPH, nitric oxide and hydroxyl radicals, respectively, and the inhibition of the α-amylase enzyme decreased only 4.01% after the digestion process. α-glucosidase was more efficient in intestinal digestion, demonstrating an increase of almost 50% in probiotic yogurt with red guava extract before digestion. Possibly, the phenolics change their conformation during digestion, generating new compounds, reducing antioxidant activity, and increasing the inhibitory activity of α-glucosidase digestive enzymes. It was concluded that the probiotic yogurt formulation supplemented with red guava extract could interfere with the concentration of phenolic compounds and the formation of new compounds, suggesting a positive and effective inhibition of the digestive enzymes, even after the digestive process.


Assuntos
Lactococcus lactis , Probióticos , Psidium , Antioxidantes/farmacologia , alfa-Amilases , alfa-Glucosidases , Psidium/química , Iogurte , Suplementos Nutricionais , Extratos Vegetais/farmacologia , Extratos Vegetais/química
11.
Artigo em Inglês | MEDLINE | ID: mdl-38299562

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis of sensitive cancer cells, including colorectal cancer (CRC). Due to its short biological half-life after intravenous administration and related clinical ineffectiveness, novel formulations of TRAIL need to be developed. Here we propose Lactococcus lactis bacteria as a vehicle for local delivery of human soluble TRAIL (hsTRAIL) in CRC. The use of common probiotics targeting guts as carriers for TRAIL could ensure its sustained release at the tumor site and extend the duration of its activity. We have already engineered hsTRAIL-secreting L.lactis bacteria and showed their effectiveness in elimination of human CRC cells in vitro and in vivo in a mouse subcutaneous model. Here, L.lactis(hsTRAIL+) were administered by gastric gavage to SCID mice with orthotopically developed HCT116 tumor in cecum, in monotherapy or in combination with metformin (MetF), already shown to enhance the hsTRAIL anti-tumor activity in subcutaneous CRC model. Oral administration of L.lactis(hsTRAIL+) resulted in significant progression of HCT116 tumors and shortening of the colon crypts. Secretion of hsTRAIL in the colon was accompanied by infiltration of the primary tumor with M2-macrophages, while MetF promoted transient colonization of the gut by L.lactis. Our study indicates that L.lactis bacteria after oral administration enable delivery of biologically active hsTRAIL to colon, however its potential therapeutic effect in CRC treatment is abolished by its pro-tumorigenic signalling, leading to the recruitment of M2-macrophages and tumor growth promotion.


Assuntos
Neoplasias Colorretais , Lactococcus lactis , Camundongos , Animais , Humanos , Camundongos SCID , Ligantes , Apoptose , Neoplasias Colorretais/terapia
12.
Probiotics Antimicrob Proteins ; 16(2): 352-366, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36746838

RESUMO

Target delivery of therapeutic agents with anti-inflammatory properties using probiotics as delivery and recombinant protein expression vehicles is a promising approach for the prevention and treatment of many diseases, such as cancer and intestinal immune disorders. Lactococcus lactis, a Lactic Acid Bacteria (LAB) widely used in the dairy industry, is one of the most important microorganisms with GRAS status for human consumption, for which biotechnological tools have already been developed to express and deliver recombinant biomolecules with anti-inflammatory properties. Cytokines, for  example, are immune system communication molecules present at virtually all levels of the immune response. They are essential in cellular and humoral processes, such as hampering inflammation or adjuvating in the adaptive immune response, making them good candidates for therapeutic approaches. This review discusses the advances in the development of new therapies and prophylactic approaches using LAB to deliver/express cytokines for the treatment of inflammatory and autoimmune diseases in the future.


Assuntos
Doenças Autoimunes , Lactococcus lactis , Humanos , Lactococcus lactis/metabolismo , Interleucinas/metabolismo , Citocinas/metabolismo , Doenças Autoimunes/tratamento farmacológico , Anti-Inflamatórios
13.
Sci Rep ; 13(1): 20362, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990119

RESUMO

Helicobacter pylori, linked to gastric diseases, is targeted for probiotic treatment through bacteriocin production. Bacteriocins have gained recognition for their non-toxic effects on host cells and their ability to combat a wide range of pathogens. This study aimed to taxonomically characterize and evaluate the safety and probiotic properties of the novel species of Lactococcus sp. NH2-7C isolated from fermented pork, as well as its bacteriocin NH2-7C, both in vitro and in silico. Comparative genotypic analysis revealed an average nucleotide identity of 94.96%, an average amino acid identity of 94.29%, and a digital DNA-DNA hybridization value of 63.80% when compared to Lactococcus lactis subsp. lactis JCM 5805T. These findings suggest that strain NH2-7C represents a novel species within the genus Lactococcus. In silico assessments confirmed the non-pathogenic nature of strain NH2-7C and the absence of genes associated with virulence and biogenic amine formation. Whole-genome analysis revealed the presence of the nisA gene responsible for nisin A production, indicating its potential as a beneficial compound with anti-Helicobacter pylori activity and non-toxic characteristics. Probiotic assessments indicated bile salt hydrolase and cholesterol assimilation activities, along with the modulation of interleukin-6 and tumour necrosis factor-α secretion. Strain NH2-7C demonstrated gastrointestinal tolerance and the ability to adhere to Caco-2 cells, affirming its safety and probiotic potential. Additionally, its ability to produce bacteriocins supports its suitability as a functional probiotic strain with therapeutic potential. However, further in vitro and in vivo investigations are crucial to ensure its safety and explore potential applications for Lactococcus sp. NH2-7C as a probiotic agent.


Assuntos
Bacteriocinas , Helicobacter pylori , Lactococcus lactis , Carne de Porco , Animais , Bacteriocinas/metabolismo , Células CACO-2 , DNA/metabolismo , Lactococcus lactis/genética , Carne de Porco/microbiologia , Suínos
14.
Sci Rep ; 13(1): 17888, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857676

RESUMO

Exopolysaccharides (EPSs) possess distinctive rheological and physicochemical properties and innovative functionality. This study aimed to investigate the physicochemical, bioactive, and rheological properties of an EPS secreted by Lactococcus lactis subsp. lactis C15. EPS-C15 was found to have an average molecular weight of 8.8 × 105 Da and was identified as a hetero-EPS composed of arabinose, xylose, mannose, and glucose with a molar ratio of 2.0:2.7:1.0:21.3, respectively. The particle size and zeta potential represented 311.2 nm and - 12.44 mV, respectively. FITR exhibited that EPS-C15 possessed a typical polysaccharide structure. NMR displayed that EPS-C15 structure is → 3)α-d-Glcvi (1 → 3)α-d-Xylv (1 → 6)α-d-Glciv(1 → 4)α-d-Glc(1 → 3)ß-d-Man(1 → 2)α-d-Glci(1 → . EPS-C15 scavenged DPPH and ABTS free radicals with 50.3% and 46.4% capacities, respectively. Results show that the antiproliferative activities of EPS-C15 revealed inhibitions of 49.7% and 88.1% against MCF-7 and Caco-2 cells, respectively. EPS-C15 has antibacterial properties that inhibited Staphylococcus aureus (29.45%), Salmonella typhimurium (29.83%), Listeria monocytogenes (30.33%), and E. coli O157:H7 (33.57%). The viscosity of EPS-C15 decreased as the shear rate increased. The rheological properties of the EPS-C15 were affected by changes in pH levels and the addition of salts. EPS-C15 is a promising biomaterial that has potential applications in various industries, such as food, pharmaceuticals, and healthcare.


Assuntos
Escherichia coli O157 , Lactococcus lactis , Probióticos , Humanos , Células CACO-2 , Polissacarídeos/química , Probióticos/química , Polissacarídeos Bacterianos/química
15.
Future Microbiol ; 18: 1197-1209, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37882738

RESUMO

It has been understood for nearly a century that patients with intestinal inflammatory disease (IBD) have a higher risk of developing colorectal cancer (CRC). Recently, two species of lactic acid bacteria, Lactobacillus plantarum and Lactococcus lactis, have been investigated as therapeutic agents for IBD. These bacteria have been shown to survive gastric transit, to adhere and colonize in the intestinal tract of humans and modulate the intestinal microbiota and immune response. L. plantarum and L. lactis might be used as multifunctional drugs for the treatment of IBD and the prevention or treatment of CRC. This article summarizes current knowledge of L. plantarum and L. lactis as therapeutic and preventative agents for IBD and CRC, respectively.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Lactobacillus plantarum , Lactococcus lactis , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Intestinos , Lactobacillus plantarum/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/prevenção & controle
16.
Front Immunol ; 14: 1208349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711617

RESUMO

Introduction: Lactococcus lactis (L.L) is safe and can be used as vehicle. In this study, the immunoregulatory effect of L.L on dendritic cell (DC) activation and mechanism were investigated. The immune responses and antigen cross-presentation mechanism of DC-based vaccine prepared with OVA recombinant L.L were explored. Methods: Confocal microscopy and flow cytometry were used to analyze the mechanism of L.L promoting DC maturation, phagosome membrane rupture and antigen presentation. The antitumor effect of DC vaccine prepared with L.L-OVA was assessed in the B16-OVA tumor mouse model. Results: L.L significantly promoted DC maturation, which was partially dependent on TLR2 and downstream MAPK and NF-κB signaling pathways. L.L was internalized into DCs by endocytosis and did not co-localized with lysosome. OVA recombinant L.L enhanced antigen cross-presentation of DCs through the phagosome-to-cytosol pathway in a reactive oxygen species (ROS)- and proteasome-dependent manner. In mouse experiments, L.L increased the migration of DCs to draining lymph node and DC vaccine prepared with OVA recombinant L.L induced strong antigen-specific Th1 and cytotoxic T lymphocyte responses, which significantly inhibited B16-OVA tumor growth. Conclusion: This study demonstrated that recombinant L.L as an antigen delivery system prepared DC vaccine can enhance the antigen cross-presentation and antitumor efficacy.


Assuntos
Lactococcus lactis , Vacinas , Animais , Camundongos , Apresentação de Antígeno , Apresentação Cruzada , Lactococcus lactis/genética , Espécies Reativas de Oxigênio , Lisossomos , Células Dendríticas
17.
PLoS One ; 18(9): e0291162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37676892

RESUMO

Atopic dermatitis (AD) is a complex, chronic inflammatory skin disease. An estimated 57.5% of asthmatic patients and 50.7% of rhinitis patients are allergic to cockroaches in Taiwan. However, the role of cockroaches in the pathogenesis of AD is undetermined. Oral tolerance might be another strategy for protecting against AD and allergic inflammation by regulating T helper 2 (Th2) immune responses. Aim to examine the underlying immunologic mechanism, we developed an AD-like murine model by skin-brushing with cockroach Per a 2. We also investigated whether the systemic inflammation of AD in this murine model could be improved by specific tolerance to Lactococcus lactis-expressing Per a 2, which was administered orally. Repeated painting of Per a 2 without adjuvant to the skin of mice resulted in increased total IgE, Per a 2-specific IgE, and IgG1, but not IgG2a. In addition, epidermal thickening was significantly increased, there were more scratch episodes, and there were increases in total white blood cells (eosinophil, neutrophil, and lymphocyte) and Th2 cytokines (Interleukin (IL)-4, IL-5, IL-9, and IL-13) in a dose-dependent manner. The results revealed that oral administration of L. lactis-Per a 2 ameliorated Per a 2-induced scratch behavior and decreased the production of total IgE, Per a 2-specific IgE, and IgG1. Furthermore, L. lactis-Per a 2 treatment also suppressed inflammatory infiltration, expressions of thymic stromal lymphopoietin (TSLP) and IL-31 in skin lesions, and downregulated splenic IL-4 and IL-13 in Per a 2-induced AD mice. This study provides evidence supporting that repeated brushing of aeroallergens to the skin leads to atopic dermatitis phenotypes and oral allergen-specific immune tolerance can ameliorate AD-like symptoms and systemic inflammation and prevent progression of atopic march.


Assuntos
Baratas , Dermatite Atópica , Lactococcus lactis , Animais , Camundongos , Dermatite Atópica/terapia , Interleucina-13 , Modelos Animais de Doenças , Tolerância Imunológica , Inflamação , Citocinas , Imunoglobulina E
18.
Sci Rep ; 13(1): 13935, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626070

RESUMO

The aromatic fennel plant (Foeniculum vulgare Miller) is cultivated worldwide due to its high nutritional and medicinal values. The aim of the current study was to determine the effect of the application of bio-organic fertilization (BOF), farmyard manure (FM) or poultry manure (PM), either individually or combined with Lactobacillus plantarum (LP) and/or Lactococcus lactis (LL) on the yield, chemical composition, and antioxidative and antimicrobial activities of fennel seed essential oil (FSEO). In general, PM + LP + LL and FM + LP + LL showed the best results compared to any of the applications of BOF. Among the seventeen identified FSEO components, trans-anethole (78.90 and 91.4%), fenchone (3.35 and 10.10%), limonene (2.94 and 8.62%), and estragole (0.50 and 4.29%) were highly abundant in PM + LP + LL and FM + LP + LL, respectively. In addition, PM + LP + LL and FM + LP + LL exhibited the lowest half-maximal inhibitory concentration (IC50) values of 8.11 and 9.01 µg mL-1, respectively, compared to L-ascorbic acid (IC50 = 35.90 µg mL-1). We also observed a significant (P > 0.05) difference in the free radical scavenging activity of FSEO in the triple treatments. The in vitro study using FSEO obtained from PM + LP + LL or FM + LP + LL showed the largest inhibition zones against all tested Gram positive and Gram negative bacterial strains as well as pathogenic fungi. This suggests that the triple application has suppressive effects against a wide range of foodborne bacterial and fungal pathogens. This study provides the first in-depth analysis of Egyptian fennel seeds processed utilizing BOF treatments, yielding high-quality FSEO that could be used in industrial applications.


Assuntos
Anti-Infecciosos , Foeniculum , Lactobacillus plantarum , Lactococcus lactis , Óleos Voláteis , Antioxidantes/farmacologia , Óleos Voláteis/farmacologia , Fertilizantes , Esterco , Sementes , Anti-Infecciosos/farmacologia
19.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37445764

RESUMO

Lactococcus lactis displaying recombinant proteins on its surface can be used as a potential drug delivery vector in prophylactic medication and therapeutic treatments for many diseases. These applications enable live-cell mucosal and oral administration, providing painless, needle-free solutions and triggering robust immune response at the site of pathogen entry. Immunization requires quantitative control of antigens and, ideally, a complete understanding of the bacterial processing mechanism applied to the target proteins. In this study, we propose a double-labeling method based on a conjugated dye specific for a recombinantly introduced polyhistidine tag (to visualize surface-exposed proteins) and a membrane-permeable dye specific for a tetra-cysteine tag (to visualize cytoplasmic proteins), combined with a method to block the labeling of surface-exposed tetra-cysteine tags, to clearly obtain location-specific signals of the two dyes. This allows simultaneous detection and quantification of targeted proteins on the cell surface and in the cytoplasm. Using this method, we were able to detect full-length peptide chains for the model proteins HtrA and BmpA in L. lactis, which are associated with the cell membrane by two different attachment modes, and thus confirm that membrane-associated proteins in L. lactis are secreted using the Sec-dependent post-translational pathway. We were able to quantitatively follow cytoplasmic protein production and accumulation and subsequent export and surface attachment, which provides a convenient tool for monitoring these processes for cell surface display applications.


Assuntos
Proteínas de Bactérias , Lactococcus lactis , Proteínas de Membrana , Proteínas Recombinantes , Coloração e Rotulagem , Proteínas de Membrana/análise , Proteínas de Membrana/biossíntese , Proteínas de Bactérias/análise , Proteínas de Bactérias/biossíntese , Lactococcus lactis/química , Proteínas Recombinantes/análise , Proteínas Recombinantes/biossíntese , Coloração e Rotulagem/métodos , Histidina , Permeabilidade da Membrana Celular
20.
J Microbiol Biotechnol ; 33(8): 1039-1049, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37280776

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory disease caused by immune dysregulation. Meanwhile, the supernatant of lactic acid bacteria (SL) was recently reported to have anti-inflammatory effects. In addition, HaCaT keratinocytes stimulated by tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) are widely used for studying AD-like responses. In this study, we evaluated the anti-inflammatory effects of SL from lactic acid bacteria (LAB) on TNF-α/IFN-γ-induced HaCaT keratinocytes, and then we investigated the strains' probiotic properties. SL was noncytotoxic and regulated chemokines (macrophage-derived chemokine (MDC) and thymus and activation-regulated chemokine (TARC)) and cytokines (interleukin (IL)-4, IL-5, IL-25, and IL-33) in TNF-α/IFN-γ-induced HaCaT keratinocytes. SL from Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474 decreased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). Furthermore, the safety of the three strains was demonstrated via hemolysis, bile salt hydrolase (BSH) activity, and toxicity tests, and the stability was confirmed under simulated gastrointestinal conditions. Therefore, L. rhamnosus MG4644, L. paracasei MG4693, and Lc. lactis MG5474 have potential applications in functional food as they are stable and safe for intestinal epithelial cells and could improve atopic inflammation.


Assuntos
Dermatite Atópica , Lactococcus lactis , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Interferon gama/metabolismo , Lacticaseibacillus , Lactococcus lactis/metabolismo , Queratinócitos , NF-kappa B/metabolismo , Dermatite Atópica/tratamento farmacológico , Anti-Inflamatórios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA