Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
1.
World J Microbiol Biotechnol ; 40(7): 199, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727988

RESUMO

Glucagon-like peptide-1(GLP-1) is an incretin hormone secreted primarily from the intestinal L-cells in response to meals. GLP-1 is a key regulator of energy metabolism and food intake. It has been proven that P9 protein from A. muciniphila could increase GLP-1 release and improve glucose homeostasis in HFD-induced mice. To obtain an engineered Lactococcus lactis which produced P9 protein, mature polypeptide chain of P9 was codon-optimized, fused with N-terminal signal peptide Usp45, and expressed in L. lactis NZ9000. Heterologous secretion of P9 by recombinant L. lactis NZP9 were successfully detected by SDS-PAGE and western blotting. Notably, the supernatant of L. lactis NZP9 stimulated GLP-1 production of NCI-H716 cells. The relative expression level of GLP-1 biosynthesis gene GCG and PCSK1 were upregulated by 1.63 and 1.53 folds, respectively. To our knowledge, this is the first report on the secretory expression of carboxyl-terminal processing protease P9 from A. muciniphila in L. lactis. Our results suggest that genetically engineered L. lactis which expressed P9 may have therapeutic potential for the treatment of diabetes, obesity and other metabolic disorders.


Assuntos
Akkermansia , Peptídeo 1 Semelhante ao Glucagon , Lactococcus lactis , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Akkermansia/genética , Akkermansia/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Humanos , Células L , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Animais , Camundongos , Linhagem Celular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38618721

RESUMO

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Assuntos
Microbioma Gastrointestinal , Resistência a Inseticidas , Piretrinas , Espécies Reativas de Oxigênio , Tephritidae , Animais , Espécies Reativas de Oxigênio/metabolismo , Piretrinas/farmacologia , Piretrinas/metabolismo , Resistência a Inseticidas/genética , Tephritidae/microbiologia , Tephritidae/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Lactobacillales/efeitos dos fármacos , Lactobacillales/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Enterococcus/genética , Enterococcus/metabolismo , Enterococcus/efeitos dos fármacos , Glutationa Transferase/genética , Glutationa Transferase/metabolismo
3.
Microbiol Spectr ; 12(4): e0392723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441470

RESUMO

Aeromonas hydrophila, an aquatic pathogenic bacterium, has been found to infect many fish species and cause huge aquaculture losses. Antibiotics are the most common drugs used to treat these infections. However, antibiotic abuse can lead to the development of antibiotic resistance. Probiotics have the potential to replace antibiotics for preventing infections. Zebrafish (Danio rerio) is a model organism used to study the innate immune system and host-pathogen interactions. Currently, there is little information on how the fish immune system responds to A. hydrophila and probiotic treatment. To increase the understanding of the molecular mechanisms behind the zebrafish defense against A. hydrophila and provide evidence that antibiotics can be replaced by probiotics, a transcriptome analysis of the zebrafish spleen was conducted 48 hours after infection by A. hydrophila, as well as after treatment using Lactococcus lactis KUST48 4 hours after infection. A total of 36,499 genes were obtained. There were 3,337 genes found to have significant differential expression between treatment and control groups. According to further annotation and enrichment analysis, differentially expressed genes (DEGs) were involved in signal transduction, endocrine system cancer, and the immune system. Insulin resistance disappeared in the zebrafish after treatment. Quantitative real-time PCR was performed to confirm the significant regulation of immune defense DEGs, the results of which were consistent with the RNA-sequencing data. These results could serve as a basis for future studies on the immune response to A. hydrophila and provide suggestions for probiotic alternatives to antibiotics, which will be of great significance to aquaculture and environmental protection.IMPORTANCEIn recent years, the unreasonable use of antibiotics has led to the emergence of drug-resistant pathogenic bacteria, antibiotic residues, cross infection, toxic side effects, and so on, which has caused a serious threat to human food safety and life health. In recent years, many studies have demonstrated the potential of probiotics as a substitute for antibiotics, but there is still a lack of understanding of the molecular mechanisms underlying probiotic therapy. We conduct a research on the impact of Lactococcus lactis KUST48 on the transcription profile of Aeromonas hydrophila-infected zebrafish spleen. Mortality of zebrafish infected with A. hydrophila was significantly reduced after treatment with L. lactis KUST48. Our results can help to strengthen our understanding of the pathogenic mechanisms of zebrafish and provide a valuable reference for the molecular mechanisms of probiotic therapy.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Lactococcus lactis , Animais , Humanos , Peixe-Zebra , Aeromonas hydrophila/genética , Lactococcus lactis/genética , Baço , Antibacterianos , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia , Doenças dos Peixes/microbiologia
4.
Cancer Lett ; 588: 216777, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38432582

RESUMO

Intrapleural immunotherapies have emerged as a prominent field in treating malignant pleural effusion (MPE). Among these, bacteria-based intrapleural therapy has exerted an anti-MPE effect by immuno-stimulating or cytotoxic properties. We previously engineered a probiotic Lactococcus lactis (FOLactis) expressing a fusion protein of Fms-like tyrosine kinase 3 and co-stimulator OX40 ligands. FOLactis activates tumor antigen-specific immune responses and displays systemic antitumor efficacy via intratumoral delivery. However, no available lesions exist in the pleural cavity of patients with MPE for intratumoral administration. Therefore, we further optimize FOLactis to treat MPE through intrapleural injection. Intrapleural administration of FOLactis (I-Pl FOLactis) not only distinctly suppresses MPE and pleural tumor nodules, but also significantly extends noticeable survival in MPE-bearing murine models. The proportion of CD103+ dendritic cells (DCs) in tumor-draining lymph nodes increases three-fold in FOLactis group, compared to the wild-type bacteria group. The enhanced DCs recruitment promotes the infiltration of effector memory T and CD8+ T cells, as well as the activation of NK cells and the polarization of macrophages to M1. Programmed death 1 blockade antibody combination further enhances the antitumor efficacy of I-Pl FOLactis. In summary, we first develop an innovative intrapleural strategy based on FOLactis, exhibiting remarkable efficacy and favorable biosafety profiles. These findings suggest prospective clinical translation of engineered probiotics for managing MPE through direct administration into the pleural cavity.


Assuntos
Antineoplásicos , Lactococcus lactis , Derrame Pleural Maligno , Humanos , Animais , Camundongos , Derrame Pleural Maligno/terapia , Lactococcus lactis/genética , Linfócitos T CD8-Positivos/metabolismo , Estudos Prospectivos , Antineoplásicos/uso terapêutico
5.
J Agric Food Chem ; 72(13): 7279-7290, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38519413

RESUMO

PepXLcMY-3, an X-prolyl dipeptidyl aminopeptidase derived from Lactobacillus lactis MY-3, was screened and recombinantly expressed in Escherichia coli. The enzyme could exhibit about 40% activity within the pH range of 6.0-10. To further improve the pH robustness, site E396 located in the active pocket was discovered through alanine scanning. The mutant E396I displayed both developed activity and kcat/Km. The optimal pH of E396I shifted from 6.0 to 10 compared to WT, with the relative activity within the pH range of 6.0-10 significantly increased. The site K648 was then proposed by semirational design. The activity of mutant E396I/K648D reached 4.03 U/mg. The optimal pH was restored to 6.0, and the pH stability was further improved. E396I/K648D could totally hydrolyze ß-casomorphin 7 within 30 min. The hydrolysate showed 64.5% inhibition on angiotensin I converting enzyme, which was more efficient than those produced by E396I and WT, 23.2 and 44.7%, respectively.


Assuntos
Lactococcus lactis , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Sequência de Aminoácidos , Dipeptidil Peptidases e Tripeptidil Peptidases , Peptídeos/genética , Hidrolases , Aminopeptidases/genética , Aminopeptidases/química , Aminopeptidases/metabolismo , Concentração de Íons de Hidrogênio
6.
Biomed Pharmacother ; 173: 116384, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471270

RESUMO

Bone marrow has the capacity to produce different types of immune cells, such as natural killer cells, macrophages, dendritic cells (DCs) and T cells. Improving the activation of immune cells in the bone marrow can enhance the therapy of bone metastases. Previously, we designed an engineered probiotic Lactococcus lactis, capable of expressing a fusion protein of Fms-like tyrosine kinase 3 ligand and co-stimulator OX40 ligand (FOLactis), and proved that it can induce the activation and differentiation of several immune cells. In this research, we successfully establish mouse models of bone metastasis, lung metastasis and intraperitoneal dissemination, and we are the first to directly inject the probiotics into the bone marrow to inhibit tumor growth. We observe that injecting FOLactis into the bone marrow of mice can better regulate the immune microenvironment of tumor-bearing mice, resulting in a tumor-suppressive effect. Compared to subcutaneous (s.c.) injection, intra-bone marrow (IBM) injection is more effective in increasing mature DCs and CD8+ T cells and prolonging the survival of tumor-bearing mice. Our results confirm that IBM injection of FOLactis reprograms the immune microenvironment of bone marrow and has remarkable effectiveness in various metastatic tumor models.


Assuntos
Lactococcus lactis , Neoplasias Pulmonares , Camundongos , Animais , Medula Óssea , Lactococcus lactis/genética , Linfócitos T CD8-Positivos , Imunoterapia Adotiva/métodos , Neoplasias Pulmonares/secundário , Microambiente Tumoral
7.
Sci Rep ; 13(1): 20362, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990119

RESUMO

Helicobacter pylori, linked to gastric diseases, is targeted for probiotic treatment through bacteriocin production. Bacteriocins have gained recognition for their non-toxic effects on host cells and their ability to combat a wide range of pathogens. This study aimed to taxonomically characterize and evaluate the safety and probiotic properties of the novel species of Lactococcus sp. NH2-7C isolated from fermented pork, as well as its bacteriocin NH2-7C, both in vitro and in silico. Comparative genotypic analysis revealed an average nucleotide identity of 94.96%, an average amino acid identity of 94.29%, and a digital DNA-DNA hybridization value of 63.80% when compared to Lactococcus lactis subsp. lactis JCM 5805T. These findings suggest that strain NH2-7C represents a novel species within the genus Lactococcus. In silico assessments confirmed the non-pathogenic nature of strain NH2-7C and the absence of genes associated with virulence and biogenic amine formation. Whole-genome analysis revealed the presence of the nisA gene responsible for nisin A production, indicating its potential as a beneficial compound with anti-Helicobacter pylori activity and non-toxic characteristics. Probiotic assessments indicated bile salt hydrolase and cholesterol assimilation activities, along with the modulation of interleukin-6 and tumour necrosis factor-α secretion. Strain NH2-7C demonstrated gastrointestinal tolerance and the ability to adhere to Caco-2 cells, affirming its safety and probiotic potential. Additionally, its ability to produce bacteriocins supports its suitability as a functional probiotic strain with therapeutic potential. However, further in vitro and in vivo investigations are crucial to ensure its safety and explore potential applications for Lactococcus sp. NH2-7C as a probiotic agent.


Assuntos
Bacteriocinas , Helicobacter pylori , Lactococcus lactis , Carne de Porco , Animais , Bacteriocinas/metabolismo , Células CACO-2 , DNA/metabolismo , Lactococcus lactis/genética , Carne de Porco/microbiologia , Suínos
8.
Front Immunol ; 14: 1208349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711617

RESUMO

Introduction: Lactococcus lactis (L.L) is safe and can be used as vehicle. In this study, the immunoregulatory effect of L.L on dendritic cell (DC) activation and mechanism were investigated. The immune responses and antigen cross-presentation mechanism of DC-based vaccine prepared with OVA recombinant L.L were explored. Methods: Confocal microscopy and flow cytometry were used to analyze the mechanism of L.L promoting DC maturation, phagosome membrane rupture and antigen presentation. The antitumor effect of DC vaccine prepared with L.L-OVA was assessed in the B16-OVA tumor mouse model. Results: L.L significantly promoted DC maturation, which was partially dependent on TLR2 and downstream MAPK and NF-κB signaling pathways. L.L was internalized into DCs by endocytosis and did not co-localized with lysosome. OVA recombinant L.L enhanced antigen cross-presentation of DCs through the phagosome-to-cytosol pathway in a reactive oxygen species (ROS)- and proteasome-dependent manner. In mouse experiments, L.L increased the migration of DCs to draining lymph node and DC vaccine prepared with OVA recombinant L.L induced strong antigen-specific Th1 and cytotoxic T lymphocyte responses, which significantly inhibited B16-OVA tumor growth. Conclusion: This study demonstrated that recombinant L.L as an antigen delivery system prepared DC vaccine can enhance the antigen cross-presentation and antitumor efficacy.


Assuntos
Lactococcus lactis , Vacinas , Animais , Camundongos , Apresentação de Antígeno , Apresentação Cruzada , Lactococcus lactis/genética , Espécies Reativas de Oxigênio , Lisossomos , Células Dendríticas
9.
World J Microbiol Biotechnol ; 39(8): 197, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37183191

RESUMO

Our previous study indicated that ethanol-induced intracellular extracts (E-IEs) of Lactococcus lactis subsp. Lactis IL1403 (L. lactis IL1403) alleviated hangovers more effectively in mice than untreated intracellular extracts (U-IEs), but the material basis was unclear. Considering that stress-related proteins might play a significant role, the effects of ethanol induction on probiotic properties of L. lactis IL1403 and the associated stress response mechanism were initially explored in this study. E-IEs of L. lactis IL1403 showed better biological activities, significantly increased bacteria survival rates in oxidative stress environments, increased ADH activity, and enhanced proliferation in RAW264.7 and AML-12 cells. Proteomic analyses revealed that 414 proteins were significantly changed in response to ethanol induction. The expression of proteins involved in the universal stress response, DNA repair, oxidative stress response, and ethanol metabolism was rapidly upregulated under ethanol stress, and quantitative real-time PCR (qRT-PCR) results were consistent with proteomic data. KEGG pathway analysis indicated that citrate metabolism, starch and sucrose metabolism, and pyruvate metabolism were significantly enriched during ethanol stress to increase energy requirements and survival rates of stressed cells. Based on this observation, the active induction is an effective strategy for increasing the biological activity of L. lactis IL1403. Exploring the molecular mechanism and material basis of their functions in vivo can help us understand the adaptive regulatory mechanism of microorganisms.


Assuntos
Lactococcus lactis , Animais , Camundongos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Etanol/metabolismo , Proteômica
10.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240273

RESUMO

Colorectal cancer (CRC) is often caused by mutations in the KRAS oncogene, making KRAS neoantigens a promising vaccine candidate for immunotherapy. Secreting KRAS antigens using live Generally Recognized as Safe (GRAS) vaccine delivery hosts such as Lactococcus lactis is deemed to be an effective strategy in inducing specific desired responses. Recently, through the engineering of a novel signal peptide SPK1 from Pediococcus pentosaceus, an optimized secretion system was developed in the L. lactis NZ9000 host. In this study, the potential of the L. lactis NZ9000 as a vaccine delivery host for the production of two KRAS oncopeptides (mutant 68V-DT and wild-type KRAS) through the use of the signal peptide SPK1 and its mutated derivative (SPKM19) was investigated. The expression and secretion efficiency analyses of KRAS peptides from L. lactis were performed in vitro and in vivo in BALB/c mice. Contradictory to our previous study using the reporter staphylococcal nuclease (NUC), the yield of secreted KRAS antigens mediated by the target mutant signal peptide SPKM19 was significantly lower (by ~1.3-folds) compared to the wild-type SPK1. Consistently, a superior elevation of IgA response against KRAS aided by SPK1 rather than mutant SPKM19 was observed. Despite the lower specific IgA response for SPKM19, a positive IgA immune response from mice intestinal washes was successfully triggered following immunization. Size and secondary conformation of the mature proteins are suggested to be the contributing factors for these discrepancies. This study proves the potential of L. lactis NZ9000 as a host for oral vaccine delivery due to its ability to evoke the desired mucosal immune response in the gastrointestinal tract of mice.


Assuntos
Neoplasias Colorretais , Lactococcus lactis , Vacinas , Animais , Camundongos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Antígenos/metabolismo , Imunidade nas Mucosas , Vacinas/metabolismo , Sinais Direcionadores de Proteínas , Imunoglobulina A/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia
11.
J Sci Food Agric ; 103(9): 4413-4420, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36806249

RESUMO

BACKGROUND: Panax ginseng Meyer, a traditional herb in Asia, contains bioactive compounds such as polyphenolic compounds, flavonoids, and ginsenosides. Furthermore, fermentation with probiotics can promote the biofunctional activities of ginseng. This study's object was to investigate the neuroprotective effect of hydroponic ginseng against hydrogen peroxide (H2 O2 )-induced cytotoxicity and its effect on the fermentation time. RESULTS: Nonfermented hydroponic ginseng (HNF) was fermented with Lactococcus lactis KC24 at 37 °C for 12 h (H12F) or 24 h (H24F). As fermentation progressed, the content of ginsenosides Rd and F2 increased slightly. The viability of cells pretreated with H2 O2 -exposed nonfermented soil-cultivated ginseng (SNF), HNF, H12F, and H24F gradually improved. In addition, a similar cytotoxicity trend was observed for the level of lactate dehydrogenase released. Fermentation with L. lactis KC24 also enhanced the protective effect of HNF in all assays related to the neuroprotective pathway. In other words, superoxide dismutase and catalase messenger RNA (mRNA) expression levels were upregulated in H24F-treated cells. Similarly, H24F also upregulated the mRNA and protein expression of brain-derived neurotrophic factor to the highest observed concentration. Moreover, the Bax/Bcl-2 ratio was the lowest after H24F pretreatment in H2 O2 -induced SH-SY5Y cells. Attenuating the cytotoxicity in H2 O2 -induced SH-SY5Y cells, H24F markedly reduced caspase-3 and -9 mRNA expression and caspase-3 activity. CONCLUSION: These results suggest that HNF exhibited higher neuroprotection than SNF, which was enhanced after fermentation. This study demonstrates that H12F and H24F can be potential ingredients for developing healthy functional foods and pharmaceutical materials. © 2023 Society of Chemical Industry.


Assuntos
Ginsenosídeos , Lactococcus lactis , Neuroblastoma , Fármacos Neuroprotetores , Panax , Humanos , Ginsenosídeos/metabolismo , Fármacos Neuroprotetores/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Panax/química , Hidroponia , Neuroblastoma/metabolismo
12.
Curr Pharm Biotechnol ; 24(11): 1351-1364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36545730

RESUMO

Bacterial engineering modifies bacteria's genomic sequence using genetic engineering tools. These engineered bacteria can produce modified proteins, peptides, nucleic acids, and other biomolecules that can be used to treat various medical conditions. Engineered bacteria can target diseased tissues or organs, detect specific biomarkers in the diseased environment, and even induce specific conditions. Furthermore, a meticulously designed intracellular metabolic pathway can activate or inhibit the expression of related genes, synthesise biologically active therapeutic molecules, and precisely deliver drug payloads to diseased tissues or organs. Lactococcus (L. lactis), Salmonella (S. typhi), and E. coli (E. coli Nissle) are the most studied engineered microorganisms used as drug carriers. These have been used in vaccines to treat multifactorial diseases such as cancer, autoimmune diseases, metabolic diseases, and inflammatory conditions. Other promising strains include Bifidobacterium animalis, Listeria monocytogenes, Staphylococcus epidermidis, Staphylococcus lugdunensis, and Clostridium sporogenes. Despite the low reported risk, toxic effects associated with bacterial cells, limiting their efficacy and rapid clearance due to immune responses stimulated by high bacterial concentrations, remain major drawbacks. As a result, a better and more effective method of drug delivery must be developed by combining bacterial-based therapies with other available treatments, and more research in this area is also needed.


Assuntos
Lactococcus lactis , Listeria monocytogenes , Sistemas de Liberação de Medicamentos , Escherichia coli , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Listeria monocytogenes/genética
13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(6): 1154-1158, 2023 Nov 20.
Artigo em Chinês | MEDLINE | ID: mdl-38162084

RESUMO

Objective: To construct Lactococcus lactis (LL)-based recombinant LL-Eg95 (rLL-Eg95) vaccine for Echinococcus granulosus (Eg) and to examine its expression efficiency. Methods: Eg95 gene was obtained by PCR from the template of pCD-Eg95. Then, pMG36e was inserted in the Eg95 gene after double cleaving with restriction endonucleases XbaⅠ and HindⅢ to construct recombinant plasmid pMG36e-Eg95, which was transformed into E.coli BL2 (DE3) competent cells. The recombinant plasmid was extracted and identified by double restriction endonuclease digestion and was then electroporated into LL MG1363 to construct rLL-Eg95 vaccine. Then, the plamid was extracted and identified by PCR. Results: Examination of the recombinant plasmid by double restriction endonuclease digestion showed that the segment was of the expected length. PCR showed that 471 base pairs of Eg95 gene were amplified when the plasmid extracted from roxithromycin-resistant recombinant LL was used as the template. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the relative molecular mass of the Eg95 protein expressed was approximately 16.5×103 and that the amount of the expressed protein was 17% of the total bacterial proteins. Western blot findings suggested that the expressed protein could be recognized by mice serum infected with hydatid cyst. Conclusion: The rLL-Eg95 vaccine was successfully constructed, expressing Eg95 protein that has specific antigenicity.


Assuntos
Echinococcus granulosus , Lactococcus lactis , Animais , Camundongos , Echinococcus granulosus/genética , Lactococcus lactis/genética , Antígenos de Helmintos/genética , Proteínas de Helminto/genética , Vacinas Sintéticas/genética , Enzimas de Restrição do DNA , Proteínas Recombinantes/genética
14.
Nat Commun ; 13(1): 7466, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463242

RESUMO

In situ vaccination is a promising strategy to convert the immunosuppressive tumor microenvironment into an immunostimulatory one with limited systemic exposure and side effect. However, sustained clinical benefits require long-term and multidimensional immune activation including innate and adaptive immunity. Here, we develop a probiotic food-grade Lactococcus lactis-based in situ vaccination (FOLactis) expressing a fusion protein of Fms-like tyrosine kinase 3 ligand and co-stimulator OX40 ligand. Intratumoural delivery of FOLactis contributes to local retention and sustained release of therapeutics to thoroughly modulate key components of the antitumour immune response, such as activation of natural killer cells, cytotoxic T lymphocytes, and conventional-type-1-dendritic cells in the tumors and tumor-draining lymph nodes. In addition, intratumoural administration of FOLactis induces a more robust tumor antigen-specific immune response and superior systemic antitumour efficacy in multiple poorly immune cell-infiltrated and anti-PD1-resistant tumors. Specific depletion of different immune cells reveals that CD8+ T and natural killer cells are crucial to the in situ vaccine-elicited tumor regression. Our results confirm that FOLactis displays an enhanced antitumour immunity and successfully converts the 'cold' tumors to 'hot' tumors.


Assuntos
Carcinoma in Situ , Lactococcus lactis , Humanos , Ligante OX40 , Lactococcus lactis/genética , Imunoterapia , Fatores Imunológicos , Vacinação , Microambiente Tumoral
15.
ACS Synth Biol ; 11(11): 3644-3656, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36065829

RESUMO

Lactococcus lactis serves as the most extensively studied model organism and an important dairy species. Though CRISPR-Cas9 systems have been developed for robust genetic manipulations, simultaneously editing multiple endogenous loci in L. lactis is still challenging. Herein, we first report the development of a double-strand break-free, robust, multiloci editing system CRISPR-deaminase-assisted base editor (CRISPR-DBE), which comprises a cytidine (CRISPR-cDBE) and an adenosine deaminase-assisted base editor (CRISPR-aDBE). Specifically targeted by a sgRNA, CRISPR-cDBE can efficiently introduce a cytidine-to-thymidine mutation and CRISPR-aDBE can high-efficiently convert adenosine to guanosine within a 5 nt editing window. CRISPR-cDBE was validated and successfully applied to simultaneously inactivate multiple genes using a single plasmid in L. lactis strain NZ9000. Meanwhile, the temperature-sensitive plasmid of CRISPR-DBE can be cured quickly, and the continuous gene editing of L. lactis has been achieved. Furthermore, CRISPR-cDBE can also efficiently convert the targeted C to T in a nisin-producing, industrial L. lactis strain F44. Finally, we applied genome-wide bioinformatics analysis to determine the scope of gene inactivation for these base editors using different Cas9 variants and evaluated the preference of SpGn and SpRYn variants for the protospacer adjacent motif in L. lactis NZ9000. Taken together, our study provides a powerful tool for simultaneously editing multiple loci in L. lactis, which may have a wide range of industrial applications in the future.


Assuntos
Sistemas CRISPR-Cas , Lactococcus lactis , Sistemas CRISPR-Cas/genética , Lactococcus lactis/genética , Edição de Genes , Plasmídeos/genética , Citidina
16.
J Biotechnol ; 357: 9-17, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35963594

RESUMO

Acid stress caused by the accumulation of acidic metabolites severely affects the fermentation performance of lactic acid bacteria. In this study, to overcome the impact of acid stress during growth, nine membrane transporters were introduced in Lactococcus lactis NZ9000 to study their effects on acid tolerance. The engineered strains that overexpressed the metal ATP-binding cassette (ABC) transporters zitP (metal ABC transporter permease) and zitQ (metal ABC transporter ATP-binding protein) exhibited 14.5 and 9.5-fold higher survival rates, respectively, at pH 4.0 for 4 h than the control strain. During acid stress, the two recombinant strains maintained relatively higher ATP concentrations, i.e., 7.7- and 11.7-fold higher, respectively, than the control strain at pH 4.0 for 3 h. Subsequently, transcriptome analysis revealed that genes associated with ABC transporters, metal ion transport, transcriptional regulation, and stress response exhibited differentially expressed. The transcriptional level of ecfA2 gene (energy-coupling factor transporter ATPase) was substantially higher in L. lactis (ZitQ) during acid stress, and the ecfA2 gene was overexpressed in L. lactis. This recombinant strain L. lactis (EcfA2) exhibited a 598.7-fold higher survival rate than the control strain at pH 4.0 for 4 h. This study showed that the membrane transporters ZitP and ZitQ could increase acid tolerance and provided a strategy for constructing robust strains that can be used in food industry.


Assuntos
Lactococcus lactis , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos , Trifosfato de Adenosina/metabolismo , Perfilação da Expressão Gênica , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
17.
Microb Cell Fact ; 21(1): 143, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842694

RESUMO

BACKGROUND: Dysregulated production of interleukin (IL)-6 is implicated in the pathology of inflammatory bowel disease (IBD). Neutralization of IL-6 in the gut by safe probiotic bacteria may help alleviate intestinal inflammation. Here, we developed Lactococcus lactis with potent and selective IL-6 binding activity by displaying IL-6-specific affibody on its surface. RESULTS: Anti-IL-6 affibody (designated as ZIL) was expressed in fusion with lactococcal secretion peptide Usp45 and anchoring protein AcmA. A high amount of ZIL fusion protein was detected on bacterial surface, and its functionality was validated by confocal microscopy and flow cytometry. Removal of IL-6 from the surrounding medium by the engineered L. lactis was evaluated using enzyme-linked immunosorbent assay. ZIL-displaying L. lactis sequestered recombinant human IL-6 from the solution in a concentration-dependent manner by up to 99% and showed no binding to other pro-inflammatory cytokines, thus proving to be highly specific for IL-6. The removal was equally efficient across different IL-6 concentrations (150-1200 pg/mL) that were found to be clinically relevant in IBD patients. The ability of engineered bacteria to capture IL-6 from cell culture supernatant was assessed using immunostimulated human monocytic cell lines (THP-1 and U-937) differentiated into macrophage-like cells. ZIL-displaying L. lactis reduced the content of IL-6 in the supernatants of both cell lines in a concentration-dependent manner by up to 94%. Dose response analysis showed that bacterial cell concentrations of 107 and 109 CFU/mL (colony forming units per mL) were required for half-maximal removal of recombinant and macrophage-derived IL-6, respectively. CONCLUSION: The ability of ZIL-displaying L. lactis to bind pathological concentrations of IL-6 at common bacterial doses suggests physiological significance.


Assuntos
Doenças Inflamatórias Intestinais , Lactococcus lactis , Humanos , Interleucina-6 , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
ACS Synth Biol ; 11(4): 1568-1576, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289165

RESUMO

Lactococcus lactis is a food-grade chassis for delivery of bioactive molecules to the intestinal mucosa in situ, while its ability to produce lycopene for detoxification of reactive oxidative species (ROS) is not realized yet. Here, L. lactis NZ9000 was engineered to synthesize lycopene by heterologous expression of a gene cluster crtEBI in plasmids or chromosomes, yielding the recombinant strains NZ4 and NZ5 with 0.59 and 0.54 mg/L lycopene production, respectively. To reroute the pyruvate flux to lycopene, the main lactate dehydrogenase and α-acetolactate synthase pathways were sequentially disrupted. The resultant strains NZΔldh-1 and NZΔldhΔals-1 increased lycopene accumulation to 0.70 and 0.73 mg/L, respectively, while their biomasses were reduced by 12.42% and the intracellular NADH/NAD+ ratios increased by 3.05- and 2.10-fold. To increase the biomasses of these engineered strains, aerobic respiration was activated and tuned by the addition of exogenous heme and oxygen. As a result, the engineered L. lactis strains partly recovered the growth and redox balance, yielding the lycopene levels of 0.91-1.09 mg/L. The engineered L. lactis strain protected the intestinal epithelial cells NCM460 against H2O2 challenge, with a 30.09% increase of cell survival and a 29.2% decrease of the intracellular ROS level compared with strain NZ9000 treatment. In summary, this work established the use of the engineered probiotic L. lactis for lycopene production and prospected its potential in the prevention of intestinal oxidative damage.


Assuntos
Lactococcus lactis , Probióticos , Células Epiteliais , Peróxido de Hidrogênio/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Licopeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Commun Biol ; 5(1): 279, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351985

RESUMO

The small RNA-mediated immunity in bacteria depends on foreign RNA-activated and self RNA-inhibited enzymatic activities. The multi-subunit Type III-A CRISPR-Cas effector complex (Csm) exemplifies this principle and is in addition regulated by cellular metabolites such as divalent metals and ATP. Recognition of the foreign or cognate target RNA (CTR) triggers its single-stranded deoxyribonuclease (DNase) and cyclic oligoadenylate (cOA) synthesis activities. The same activities remain dormant in the presence of the self or non-cognate target RNA (NTR) that differs from CTR only in its 3'-protospacer flanking sequence (3'-PFS). Here we employ electron cryomicroscopy (cryoEM), functional assays, and comparative cross-linking to study in vivo assembled mesophilic Lactococcus lactis Csm (LlCsm) at the three functional states: apo, the CTR- and the NTR-bound. Unlike previously studied Csm complexes, we observed binding of 3'-PFS to Csm in absence of bound ATP and analyzed the structures of the four RNA cleavage sites. Interestingly, comparative crosslinking results indicate a tightening of the Csm3-Csm4 interface as a result of CTR but not NTR binding, reflecting a possible role of protein dynamics change during activation.


Assuntos
Proteínas Associadas a CRISPR , Lactococcus lactis , Trifosfato de Adenosina , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , RNA
20.
Food Chem ; 384: 132566, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35247774

RESUMO

Exopolysaccharides (EPSs) from lactic acid bacteria have special functions and complex structures, but the function and structure of EPSs of the important dairy starter, Lactococcus (L.) lactis subsp. lactis, are less known. This study investigated the cytotoxicity, antioxidant capacities, rheological characteristics, chemical structure and expression of biosynthetic genes of EPSs of the L. lactis subsp. lactis IMAU11823. The EPSs showed strong reducing power and no cytotoxicity. EPS-1 comprised glucose and mannose (molar ratio of 7.01: 1.00) and molecular weight was 6.10 × 105 Da, while EPS-2 comprised mannose, glucose and rhamnose (7.45: 1.00: 2.34) and molecular weight was 2.93 × 105 Da. EPS-1 was a linear structure comprised two sugar residues, while EPS-2 was more complex, non-linear, and comprised eight sugar residues. In additions, our study proposed an EPS biosynthesis model for the IMAU11823 strain. The current findings have broadened the understanding of the formation, structure and function of complex EPSs of IMAU11823.


Assuntos
Lactococcus lactis , Antioxidantes/metabolismo , Glucose/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Manose/metabolismo , Polissacarídeos Bacterianos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA