Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 171, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443839

RESUMO

BACKGROUND: Lagerstroemia indica is a widely cultivated ornamental woody shrub/tree of the family Lythraceae that is used as a traditional medicinal plant in East Asia and Egypt. However, unlike other ornamental woody plants, its genome is not well-investigated, which hindered the discovery of the key genes that regulate important traits and the synthesis of bioactive compounds. RESULTS: In this study, the genomic sequences of L. indica were determined using several next-generation sequencing technologies. Altogether, 324.01 Mb sequences were assembled and 98.21% (318.21 Mb) of them were placed in 24 pseudo-chromosomes. The heterozygosity, repeated sequences, and GC residues occupied 1.65%, 29.17%, and 38.64% of the genome, respectively. In addition, 28,811 protein-coding gene models, 327 miRNAs, 552 tRNAs, 214 rRNAs, and 607 snRNAs were identified. The intra- and interspecies synteny and Ks analysis revealed that L. indica exhibits a hexaploidy. The co-expression profiles of the genes involved in the phenylpropanoid (PA) and flavonoid/anthocyanin (ABGs) pathways with the R2R3 MYB genes (137 members) showed that ten R2R3 MYB genes positively regulate flavonoid/anthocyanin biosynthesis. The colors of flowers with white, purple (PB), and deep purplish pink (DPB) petals were found to be determined by the levels of delphinidin-based (Dp) derivatives. However, the substrate specificities of LiDFR and LiOMT probably resulted in the different compositions of flavonoid/anthocyanin. In L. indica, two LiTTG1s (LiTTG1-1 and LiTTG1-2) were found to be the homologs of AtTTG1 (WD40). LiTTG1-1 was found to repress anthocyanin biosynthesis using the tobacco transient transfection assay. CONCLUSIONS: This study showed that the ancestor L. indica experienced genome triplication approximately 38.5 million years ago and that LiTTG1-1 represses anthocyanin biosynthesis. Furthermore, several genes such as LiDFR, LiOMTs, and R2R3 LiMYBs are related to anthocyanin biosynthesis. Further studies are required to clarify the mechanisms and alleles responsible for flower color development.


Assuntos
Lagerstroemia , Lagerstroemia/genética , Antocianinas , Perfilação da Expressão Gênica , Genômica , Flavonoides/genética
2.
Molecules ; 27(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431893

RESUMO

The present study aimed to analyze the in vitro antibacterial, antioxidant, larvicidal and cytotoxicity properties of green synthesized silver nanoparticles (Ag NPs) using aqueous extracts from fruits of Lagerstroemia speciosa and flowers of Couropita guinensis. Synthesized Ag NPs were characterized using UV-DRS, FTIR, XRD, DLS, and High-Resolution SEM and TEM analyses. Absorption wavelength was observed at 386 nm by UV-DRS analysis and energy band gap was calculated as 3.24 eV. FTIR analysis showed the existence of various functional groups in the aqueous extract and in the NPs. DLS analysis showed the stability and particle size of the synthesized Ag NPs. SEM analysis revealed that Ag NPs are in a face centered cubic symmetry and spherical shape with a size of 23.9 nm. TEM analysis showed particle size as 29.90 nm. Ag NPs showed antibacterial activity against both Gram-positive and Gram-negative bacteria. DPPH scavenging trait of Ag NPs was ranging from 20.0 ± 0.2% to 62.4 ± 0.3% and observed significant larvicidal activity (LC50 at 0.742 ppm and LC90 at 6.061 ppm) against Culex quinquefasciatus. In vitro cytotoxicity activity of Ag NPs was also tested against human breast cancer (MCF-7) and fibroblast cells (L-929) and found that cells viabilities are ranging (500 to 25 µg/mL) from 52.5 ± 0.4 to 94.0 ± 0.7% and 53.6 ± 0.5 to 90.1 ± 0.8%, respectively. The synthesized Ag NPs have the potential to be used in the various biomedical applications.


Assuntos
Lagerstroemia , Nanopartículas Metálicas , Humanos , Prata/química , Antioxidantes/farmacologia , Antioxidantes/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Frutas , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Flores
3.
Biomed Res Int ; 2022: 5894416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262977

RESUMO

Cardiovascular disease is the primary reason for chronic heart diseases and mortality worldwide. Hypertension (HTN) is the utmost dominant risk factor for the evolution of several diseases. Herbal medicines, traditional medicinal herbs, and their extracts are widely utilized to treat and monitor HTN. Herbal components have been shown to help relax arteries and lower oxidative stress. The current study assesses the probable role of herbal plant extract Lagerstroemia speciosa (LS) in the LNAME induced HTN in rats. LNAME (50 mg/100 mL) in drinkable water was given to rats for five weeks. There was a significant upsurge in LNAME-treated hypertensive rats' blood pressure (BP). On treatment with LS, it ameliorates blood pressure. Further, LS also improved body weight, reduced heart weight, and heart hypertrophy. The NO/cGMP concentration was lowered along with a substantial upsurge in the level of glutathione and a decline in MDA level. The LS extract also reduced the inflammatory cytokine markers in the systemic circulation. In conclusion, thus, the extract of LS treatment can efficiently alleviate the BP, oxidative stress markers, and inflammation and improve NO/cGMP concentration in LNAME induced HTN in rats.


Assuntos
Hipertensão , Lagerstroemia , Plantas Medicinais , Ratos , Animais , Pressão Sanguínea , Estresse Oxidativo , Extratos Vegetais/farmacologia , Glutationa , Citocinas , Água
4.
J Cosmet Dermatol ; 21(7): 2763-2773, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35596731

RESUMO

BACKGROUND: Lagerstroemia indica (L. indica) is reported to have diverse biological activities including anti-inflammatory, anti-cancer, neuro-regulatory, antidiabetic, and antioxidant activity. AIMS: The purpose of this study is to examine the potential of hair growth promotion and/or hair loss prevention by L. indica extract. PATIENTS/METHODS: The effects of L. indica on hair growth have been studied in human hair follicle dermal papillary (hHFDP) cells and follicular organ culture ex vivo by cell proliferation assay, PCR, western blot analysis, and reporter gene activity assay. Moreover, a clinical trial was conducted in healthy volunteers. RESULTS: Lagerstroemia indica significantly promoted the proliferation of hHFDP cells, which was associated with increased expression of TCF/LEF, VEGF, and Gli1 mRNA, and inhibition of STAT6 and Smad2 mRNA. Treatment with L. indica also increased the TCF/LEF reporter gene activity but downregulated the SBE- and STAT6-luciferase activities. The expression of total ß-catenin, CDK4, and CDK2 were elevated, while that of STAT6 and SMAD2/3 was suppressed upon treatment with L. indica. In human hair follicles organ culture, L. indica significantly inhibited hair follicular degeneration. The clinical trial showed a statistically significant rise in total hair count in test group (n = 24) after 24 weeks of applying the hair tonic enriched with L. indica (141.46 ± 21.27 number/cm2 , p < 0.05). CONCLUSION: We suggest that L. indica extract prevents hair loss as well as stimulate hair growth by regulating the Wnt-ß-catenin, JAK3-STAT6, and TGF-ß1-Smad signaling pathways, and may be further developed as a novel functional cosmetic for preventing hair loss.


Assuntos
Lagerstroemia , beta Catenina , Alopecia/metabolismo , Proliferação de Células , Células Cultivadas , Cabelo , Folículo Piloso , Humanos , Lagerstroemia/genética , Lagerstroemia/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , RNA Mensageiro/metabolismo , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/farmacologia , Via de Sinalização Wnt , beta Catenina/metabolismo
5.
Molecules ; 27(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209065

RESUMO

Striae distensae (SD) or stretch marks are common linear scars of atrophic skin with disintegrating extracellular matrix (ECM) structures. Although fibroblasts contribute to the construction of ECM structure in SD, some studies have reported that mast cell degranulation causes the disruption of ECM in early SD lesions. Lagerstroemia indica flower (LIF) has traditionally been used in India as a diuretic. However, little is known about the effect and molecular action of Lagerstroemia indica flower extract (LIFE) on alleviating SD. This study evaluated the effects of LIFE on mast cell degranulation and the synthesis of ECM components in fibroblasts. LIFE inhibits the adhesion of rat basophilic leukemia (RBL) cells, RBL-2H3 on fibronectin (FN) and the expression of integrin, a receptor for FN, thereby reducing focal adhesion kinase (FAK) phosphorylation. In addition, LIFE attenuated the allergen-induced granules and cytokine interleukin 3 (IL-3) through the adhesion with FN. Moreover, the conditioned medium (CM) of activated mast cells decreases the synthesis of ECM components, and LIFE restores the abnormal expressions induced by activated mast cells. These results demonstrate that LIFE suppresses FN-induced mast cell activation and promotes the synthesis of ECM components in fibroblast, which indicates that LIFE may be a useful cosmetic agent for SD treatment.


Assuntos
Flores/química , Lagerstroemia/química , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Biomarcadores , Adesão Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Linhagem Celular , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Expressão Gênica , Imunoglobulina E/imunologia , Cadeias alfa de Integrinas/genética , Cadeias beta de Integrinas/genética , Fosforilação , Ligação Proteica/efeitos dos fármacos , Estrias de Distensão
6.
Drug Chem Toxicol ; 45(5): 2361-2370, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34225555

RESUMO

Drug-induced liver injury is a common cause of acute liver failure. Dapsone is increasingly used in combination with rifampicin for the treatment of leprosy and also for several dermatological disorders. Clinically, abnormal liver function and focal bile duct destruction were reported after dapsone therapy. Lagerstroemia speciosa Pers., commonly known as Banaba has been traditionally used to treat various ailments including diabetes and obesity due to its antioxidant and anti-inflammatory efficacies. This study investigated the hepatoprotective effect of ethanolic banaba leaves extract (EBLE) against dapsone-induced hepatotoxicity in rats. Dapsone (30 mg/kg, i.p.) was administered twice daily for 30 days. In separate groups, rats were post-treated orally with EBLE (250 and 500 mg/kg) and silymarin (100 mg/kg) once daily for 30 days after dapsone administration. The marker enzymes of hepatotoxicity, oxidative stress markers, inflammatory markers and histopathology of liver were done. HPTLC analysis confirmed the presence of 12.87 µg of corosolic acid per mg of EBLE. Dapsone administration-induced significant (p < 0.001) elevation of marker enzymes of hepatotoxicity in serum. This treatment also increased lipid peroxidation (p < 0.001) and pro-inflammatory markers (tumor necrosis factor-alpha, transforming growth factor-beta, and nuclear factor kappa-B) expressions (p < 0.001) and decreased antioxidants (p < 0.001) such superoxide dismutase, catalase and glutathione in the liver tissue. All these abnormalities were significantly (p < 0.001) mitigated after EBLE (500 mg/kg) and silymarin post-treatments. The results of this study suggest that silymarin and EBLE can be used for dapsone-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Lagerstroemia , Silimarina , Animais , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Dapsona/toxicidade , Etanol/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Peroxidação de Lipídeos , Fígado , Estresse Oxidativo , Extratos Vegetais/farmacologia , Ratos , Silimarina/farmacologia
7.
Nat Prod Res ; 36(8): 2145-2148, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33146033

RESUMO

Compositions of volatile oil from Lagerstroemia indica L. were reported for the first time. Out of 114 components where 58, 63, 67 and 61 compounds were identified from the white, pink, mauve, carmine flower with yields of 0.92%, 1.15%, 1.12% and 1.08%, respectively. Main compounds of white flower were 2-methyl-cyclopentanone (9.41%), m-xylene (7.53%) while the pink, carmine flower contained octacosane (19.81% and 13.91%) and heneicosane (18.02% and 7.98%), respectively, and mauve flower contained cyclohexanone (8.13%), 1-octacosanol (7.87%). Only 23 components were common in four oils, representing 16.57-32.72% of the total oils. Composition classification of four oils included mainly alkanes, benzenes, ketones with 52.98-73.03% of the total oils. The results revealed the different characteristics in quality of these oils. The pink, mauve, carmine flower oils were found active against S. aureus and A. niger, P. aeruginosa and S. aureus, E. coli and B. subtilis with MIC value of 0.078 mg/mL.


Assuntos
Lagerstroemia , Óleos Voláteis , Antibacterianos/farmacologia , Cor , Escherichia coli , Flores , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Staphylococcus aureus
8.
J Microbiol Biotechnol ; 31(11): 1501-1507, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34489373

RESUMO

Lagerstroemia ovalifolia Teijsm. & Binn. (LO) (crape myrtle) has reportedly been used as traditional herbal medicine (THM) in Java, Indonesia. Our previous study revealed that the LO leaf extract (LOLE) exerted anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Based on this finding, the current study aimed to evaluate the protective effects of LOLE in a mouse model of LPS-induced acute lung injury (ALI). The results showed that treatment with LPS enhanced the inflammatory cell influx into the lungs and increased the number of macrophages and the secretion of the inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) of mice. However, these effects were notably abrogated with LOLE pretreatment. Furthermore, the increase of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and monocyte chemoattractant protein-1 (MCP-1) expression in the lung tissues of mice with ALI was also reversed by LOLE. In addition, LOLE significantly suppressed the LPS-induced activation of the MAPK/NF-κB signaling pathway and led to heme oxygenase-1 (HO-1) induction in the lungs. Additionally, in vitro experiments showed that LOLE enhanced the expression of HO-1 in RAW264.7 macrophages. The aforementioned findings collectively indicate that LOLE exerts an ameliorative effect on inflammatory response in the airway of ALI mice.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lagerstroemia/química , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Anti-Inflamatórios/farmacologia , Quimiocina CCL2 , Ciclo-Oxigenase 2 , Citocinas/metabolismo , Heme Oxigenase-1 , Indonésia , Macrófagos/efeitos dos fármacos , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II , Folhas de Planta/química , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
9.
Biomed Pharmacother ; 141: 111937, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34328120

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lagerstroemia speciosa (L.) Pers., commonly known as banaba and locally known as bungur, is widely used in Indonesia and other countries as a folk remedy for various chronic diseases such as diabetes mellitus and hypertension. L. speciosa (L.) Pers. has been used and evaluated on conditions associated to liver diseases by altering cholesterol absorption, lipid metabolism, as well as the related gene expressions. AIM OF THE STUDY: The aim of this study is to evaluate the effect of DLBS3733, a standardized bioactive fraction of Lagerstroemia speciosa (L.) Pers. leaves, on ameliorating hepatic steatosis induced by oleic acid, and elucidate its mechanism of action to ameliorate lipid accumulation in HepG2 cells. MATERIALS AND METHODS: Effects of DLBS3733 on expression of genes and proteins associated with lipid metabolism were evaluated in HepG2 cells in this study. Genes associated with lipid metabolism were evaluated using PCR, while the protein levels were revealed using western blot and ELISA. Cellular lipid accumulations and triglyceride (TG) synthesis were measured using ELISA, and antioxidant assay was conducted using DPPH assay. RESULTS: DLBS3733 significantly reduced lipid accumulation and TG synthesis by 51% and 32% (p < 0.01), respectively, through the significant increment of adiponectin expression by 58% (p < 0.01). Subsequently, adiponectin enhanced PPARα expression and AMPK phosphorylation which further regulate the downstream signaling pathway of lipogenesis and lipolysis. Moreover, 2.5 µg/mL DLBS3733 was found to significantly downregulate the expression of HMGCR, ACC and SREBP by 66%, 61% and 36%, respectively (p < 0.01), as well as significantly upregulate CPT-1 by 300% at the protein level (P < 0.05). DLBS3733 was also found to possess high antioxidant activity, where the highest concentration exhibited DPPH inhibition activity by up to 93% (P < 0.01). CONCLUSIONS: We propose that DLBS3733 may provide a prevention on hepatic steatosis through its activity as anti-lipogenesis, anti-cholesterologenesis and pro-lipolysis in HepG2 cells. This is the first report that revealed the molecular mechanism of L. speciosa (L.) Pers. as a potential treatment of hepatic steatosis-related diseases.


Assuntos
Lagerstroemia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipogênese/fisiologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico
10.
Environ Toxicol ; 35(11): 1225-1233, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32697429

RESUMO

Hepatocellular carcinoma is the second leading cause of cancer-related mortality worldwide. Lagerstroemia speciosa Pers. (Lythraceae) commonly known as Banaba has been used in different forms in traditional medicinal systems for treating various diseases which include diabetes and obesity. In this study, we investigated the cytotoxic potential of ethanolic Banaba leaf extract (EBLE) in HepG2 cells. The phytochemical analysis of EBLE was performed by HPTLC. HepG2 cells were treated with EBLE at 25, 50, 100, and 150 µg/mL concentrations, and cytotoxicity was evaluated by MTT assay. Oxidative stress was assessed by the evaluation of lipid peroxidation, superoxide dismutase, and reduced glutathione. Apoptosis-related morphology was investigated by acridine orange and ethidium bromide (AO/EB) dual staining. Mitochondrial membrane potential (ΔΨm) was evaluated by JC-1 staining. Apoptosis-related marker genes were evaluated by qPCR. HPTLC analysis confirmed the presence of corosolic acid (12.87 µg/mg), berberine (3.19 µg/mg), and gallic acid (2.94 µg/mg) in EBLE. EBLE treatments caused significant and concentration-dependent cytotoxicity and oxidative stress in HepG2 cells. Dual staining with AO/EB confirmed membrane distortion and nuclear chromatin condensation upon EBLE treatments. JC-I staining revealed the loss of ΔΨm. Furthermore, at a molecular level, EBLE treatments interfere with Bax/Bcl-2 homeostasis and induced the pro-apoptotic marker genes such as cytochrome c, Apaf-1, and caspases 9 and 3. EBLE treatments caused cytotoxicity in HepG2 cells, and this could be due to the induction of oxidative stress and apoptosis via the intrinsic or mitochondrial pathway.


Assuntos
Antineoplásicos/toxicidade , Extratos Vegetais/toxicidade , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Caspase 9 , Células Hep G2 , Humanos , Lagerstroemia , Neoplasias Hepáticas/patologia , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2 , Triterpenos
11.
Am J Chin Med ; 48(3): 579-595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32329643

RESUMO

Corosolic acid (CA) is the main active component of Lagetstroemia speciosa and has been known to serve as several different pharmacological effects, such as antidiabetic, anti-oxidant, and anticancer effects. In this study, effects of CA on the hepatic lipid accumulation were examined using HepG2 cells and tyloxapol (TY)-induced hyperlipidemia ICR mice. CA significantly inhibited hepatic lipid accumulation via inhibition of SREBPs, and its target genes FAS, SCD1, and HMGCR transcription in HepG2 cells. These effects were mediated through activation of AMPK, and these effects were all abolished in the presence of compound C (CC, an AMPK inhibitor). In addition, CA clearly alleviated serum ALT, AST, TG, TC, low-density lipoprotein cholesterol (LDL-C), and increased high-density lipoprotein cholesterol (HDL-C) levels, and obviously attenuated TY-induced liver steatosis and inflammation. Moreover, CA significantly upregulated AMPK, ACC, LKB1 phosphorylation, and significantly inhibited lipin1, SREBPs, TNF-α, F4/80, caspase-1 expression, NF-κB translocation, and MAPK activation in TY-induced hyperlipidemia mice. Our results suggest that CA is a potent antihyperlipidemia and antihepatic steatosis agent and the mechanism involved both lipogenesis and cholesterol synthesis and inflammation response inhibition via AMPK/SREBPs and NF-κB/MAPK signaling pathways.


Assuntos
Hiperlipidemias/tratamento farmacológico , Hipolipemiantes , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Fitoterapia , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Animais , Células Hep G2 , Humanos , Inflamação , Lagerstroemia/química , Camundongos Endogâmicos ICR , Estearoil-CoA Dessaturase/metabolismo , Receptor fas/metabolismo
12.
Nutr Cancer ; 72(1): 146-156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31149840

RESUMO

Lagerstroemia speciosa (L.) Pers., (Lythraceae) also called Banaba is a native plant of southeast Asia and is widely used in traditional medicinal system. Herbal tea from banaba leaves are used to reduce weight and diabetes. We investigated the cytotoxic potentials of ethanolic banaba leaves extract (EBLE) against human hepatocellular carcinoma (HepG2) cell line. Lagerstroemia speciosa leaves were extracted and obtained from M/s. Quimico Herbal Extract Manufacturer, Bengaluru, India, and it contains 20% corosolic acid. Cells were treated with 50, 100, and 150 µg/ml of EBLE for 24 h, and cytotoxicity was evaluated by MTT assay. Apoptosis-related morphology was investigated by DAPI nuclear staining. Protein and gene expressions of p-Akt, FOXO1, p53, MDM2, p21, p27, CDK4, cyclin D1, and E1 were evaluated through Western blotting and qPCR. EBLE treatments caused significant, concentration-dependent cytotoxicity. DAPI staining and flow cytometry studies showed chromatin condensation, increased apoptotic cell population and cell cycle arrest at subG0/G1 phase upon EBLE treatments respectively. Furthermore, EBLE treatments significantly increased the expressions of p53, p21, p27, FOXO1, while p-Akt, MDM2, CDK4, cyclin D1, and E1 expressions were downregulated. These findings suggested that EBLE induces G1-phase of cell cycle arrest and apoptosis in HepG2 cells. EBLE may serve as a therapeutic agent against hepatocellular carcinoma.


Assuntos
Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Pontos de Checagem do Ciclo Celular , Etanol/química , Lagerstroemia/química , Neoplasias Hepáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Produtos Biológicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Índia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Folhas de Planta/química , Solventes/química , Triterpenos/farmacologia
13.
Biomolecules ; 9(12)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842482

RESUMO

One of the major etiological factors that account for lung cancer is tobacco use. Benzo(a)pyrene [B(a)P], one of the main constituents of tobacco smoke, has a key role in lung carcinogenesis. The present study was conducted to investigate the cytotoxicity of an aqueous ethanolic extract of Lagerstroemia speciosa (L.) Pers leaves (LLE) on human lung adenocarcinoma cells (A549), as well as its in vivo antitumor effect on a lung tumorigenesis mice model. Our results revealed that LLE possesses cytotoxic activity against the A549 cell line. Mice orally administered B(a)P (50 mg/kg body weight) showed an increase in relative lung weight with subsequent decrease in final body weight. Serum levels of tumor marker enzymes AHH, ADA and LDH and the inflammatory mediator NF-κB increased, while total antioxidant capacity (TAC) decreased. In addition, we observed the increased activity of metalloproteinases (MMP-2 and MMP-12) and levels of the tumor angiogenesis marker VEFG and the lipid peroxidation marker MDA, as well as decreased levels of the non-enzymatic antioxidant GSH and enzymatic antioxidants CAT and GSH-Px in lung tissues. Moreover, B(a)P administration up-regulated the expression of the COX-2 gene, pro-inflammatory cytokines TNF-α and IL-6, and an anti-apoptotic gene Bcl-2, and at the same time down-regulated expression of pro-apoptotic genes BAX and caspase-3 and the p53 gene. Pre- and post-treatment with LLE (250 mg/kg body weight) attenuated all these abnormalities. Histopathological observations verified the protective effect of LLE. Overall, the present data positively confirm the potent antitumor effect of L. speciosa leaves against lung tumorigenesis.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Inflamação/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Pulmão/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Células A549 , Administração Oral , Animais , Antioxidantes/administração & dosagem , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Células Cultivadas , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lagerstroemia/química , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/isolamento & purificação , Picratos/antagonistas & inibidores , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química
14.
New Phytol ; 222(1): 408-424, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30472753

RESUMO

Pentacyclic triterpenes (PCTs) represent a major class of bioactive metabolites in banaba (Lagerstroemia speciosa) leaves; however, biosynthetic enzymes and their involvement in the temporal accumulation of PCTs remain to be studied. We use an integrated approach involving transcriptomics, metabolomics and gene function analysis to identify oxidosqualene cyclases (OSCs) and cytochrome P450 monooxygenases (P450s) that catalyzed sequential cyclization and oxidative reactions towards PCT scaffold diversification. Four monofunctional OSCs (LsOSC1,3-5) converted the triterpene precursor 2,3-oxidosqualene to either lupeol, ß-amyrin or cycloartenol, and a multifunctional LsOSC2 formed α-amyrin as a major product along with ß-amyrin. Two CYP716 family P450s (CYP716A265, CYP716A266) catalyzed C-28 oxidation of α-amyrin, ß-amyrin and lupeol to form ursolic acid, oleanolic acid and betulinic acid, respectively. However, CYP716C55 catalyzed C-2α hydroxylation of ursolic acid and oleanolic acid to produce corosolic acid and maslinic acid, respectively. Besides, combined transcript and metabolite analysis suggested major roles for the LsOSC2, CYP716A265 and CYP716C55 in determining leaf ursane and oleanane profiles. Combinatorial expression of OSCs and CYP716s in Saccharomyces cerevisiae and Nicotiana benthamiana led to PCT pathway reconstruction, signifying the utility of banaba enzymes for bioactive PCT production in alternate plant/microbial hosts that are more easily tractable than the tree species.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Transferases Intramoleculares/metabolismo , Lagerstroemia/metabolismo , Plantas Medicinais/metabolismo , Árvores/metabolismo , Triterpenos/química , Biocatálise , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Hidroxilação , Metaboloma , Oxirredução , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estações do Ano , Fatores de Tempo , Nicotiana/genética , Transcriptoma/genética , Triterpenos/metabolismo
15.
Int J Mol Sci ; 19(5)2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29702597

RESUMO

Corosolic acid is one of the pentacyclic triterpenoids isolated from Lagerstroemia speciose and has been reported to exhibit anti-cancer and anti-proliferative activities in various cancer cells. In the present study, we investigated the molecular mechanisms of corosolic acid in cancer cell death. Corosolic acid induces a decrease of cell viability and an increase of cell cytotoxicity in human renal carcinoma Caki cells. Corosolic acid-induced cell death is not inhibited by apoptosis inhibitor (z-VAD-fmk, a pan-caspase inhibitor), necroptosis inhibitor (necrostatin-1), or ferroptosis inhibitors (ferrostatin-1 and deferoxamine (DFO)). Furthermore, corosolic acid significantly induces reactive oxygen species (ROS) levels, but antioxidants (N-acetyl-l-cysteine (NAC) and trolox) do not inhibit corosolic acid-induced cell death. Interestingly, corosolic acid induces lipid oxidation, and α-tocopherol markedly prevents corosolic acid-induced lipid peroxidation and cell death. Anti-chemotherapeutic effects of α-tocopherol are dependent on inhibition of lipid oxidation rather than inhibition of ROS production. In addition, corosolic acid induces non-apoptotic cell death in other renal cancer (ACHN and A498), breast cancer (MDA-MB231), and hepatocellular carcinoma (SK-Hep1 and Huh7) cells, and α-tocopherol markedly inhibits corosolic acid-induced cell death. Therefore, our results suggest that corosolic acid induces non-apoptotic cell death in cancer cells through the increase of lipid peroxidation.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Renais/patologia , Morte Celular/efeitos dos fármacos , Neoplasias Renais/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lagerstroemia/química , alfa-Tocoferol/farmacologia
16.
J Photochem Photobiol B ; 170: 263-270, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28460300

RESUMO

The investigation was aimed to quantify the Gallic acid present in Lagerstroemia speciosa leaves (Lythraceae). The High-Performance Thin Layer Chromatography (HPTLC) quantification was performed for acetone (AE), methanolic (ME) and chloroform (CE) extract of leaves of L. speciosa. The pre-coated silica gel 60 F254 was used for complete separation of compounds using the mobile phase pet. Ether: ethyl acetate: formic acid (5:5:1v/v).The validation of the extracts was carried out using ICH guidelines for precision, repeatability and accuracy showing the Rf 0.49 against standard Gallic acid. Linearity range for Gallic acid was done from 200 to 1000ng/spot (AE) and200 ng to 600ng/spot (ME), with Correlation, coefficient r=0.99 (AE) and 0.54 (ME) in the said concentrations. The composition in crude leaf extract was determined to be of 49.712mg (AE) and 20.125mg (ME), while it was not found in chloroform extract against standard Gallic acid. Hence the proposed method was very simple, precise, accurate and easy for the screening of the bioactive compounds present in the acetone and methanolic extracts of the leaves of L. speciosa. It was observed that the acetone extract subjected to cytotoxicity showed promising activity at higher concentrations (100 and 200µg/ml) showed 92.9% and 87.13% inhibition against MCF-7 cell lines respectively. The photocatalytic activity of the acetone and methanolic extracts of methyl orange was found to be 90.25% (190min) and 89.03% (180min) respectively. Therefore this can be used as an indicator of purity of herbal drugs and formulation containing L. speciosa.


Assuntos
Compostos Azo/química , Biomarcadores/análise , Luz , Compostos Azo/toxicidade , Calibragem , Catálise , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cromatografia em Camada Fina/normas , Densitometria , Ácido Gálico/análise , Ácido Gálico/normas , Humanos , Lagerstroemia/química , Lagerstroemia/metabolismo , Células MCF-7 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Folhas de Planta/metabolismo
17.
J Photochem Photobiol B ; 171: 20-26, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28472721

RESUMO

The flavonoids present in the leaves of Lagerstroemia speciosa were extracted, characterized by spectral methods and studied for its cytotoxicity activity against MCF-cell lines and photocatalytic activity against azo dye. Direct and sequential soxhlet extraction was performed and its concentrated crude extract was subjected to high performance liquid chromatography. The yield obtained by the isolated compound (MEI-quercetin) from leaves of L. speciosa was found to be 1.8g from the methanolic extract. The phytochemical analysis and the Rf value of the isolated flavonoid was found to be 3.59. The isolated compound was characterized by Infrared Spectroscopy, NMR and Mass. Based on the characterization, the structure was elucidated as quercetin - a flavonoid. The isolated compound showed the significant in vitro cytotoxicity activity against MCF-7 cell lines at 500µg/ml when compared to the crude extract. Among the various concentrations (25, 50, 100, 250, and 500µg/ml), at higher concentration the cell viability was pronounced and also compared with that of the control. It was first time to report that the isolated flavonoid showed photocatalytic against azo dye-methyl orange. The dye degradation was monitored by UV-Vis spectrophotometry. The isolated compound showed dye degradation of 91.66% with the crude extract 82.47% at 160min. Hence in the present findings, the photocatalytic degradation of MO dye under UV irradiation was investigated over isolated compound of L. speciosa. Hence we expect that this can be used to treat the waste water in near future based on the photocatalytic technique.


Assuntos
Lagerstroemia/química , Extratos Vegetais/química , Compostos Azo/química , Compostos Azo/metabolismo , Compostos Azo/toxicidade , Catálise , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cromatografia Líquida de Alta Pressão , Humanos , Lagerstroemia/metabolismo , Luz , Células MCF-7 , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metanol/química , Fotólise/efeitos da radiação , Folhas de Planta/química , Folhas de Planta/metabolismo , Quercetina/análise , Quercetina/isolamento & purificação , Quercetina/toxicidade , Espectrofotometria Ultravioleta
18.
J Photochem Photobiol B ; 169: 47-55, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28273504

RESUMO

Metal oxide nanoparticles are gaining interest in recent years. The present paper explains about the green synthesis of zirconium oxide nanoparticles (ZrO NPs) mediated from the leaves of Lagerstroemia speciosa. The prepared ZrO NPs were characterized by UV-vis spectroscopy, FT-IR, X-ray diffraction analysis (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX) and Thermogravimetric Analysis (TGA). The photocatalytic activity of ZrO NPs was studied for azo dye by exposing to sunlight. The azo dye was degraded up to 94.58%. Also the ZrO NPs were studied for in vitro cytotoxicity activity against breast cancer cell lines-MCF-7 and evaluated by MTT assay. The cell morphological changes were recorded by light microscope. The cells viability was seen at 500µg/mL when compared against control. Hence the research highlights, that the method was simple, eco-friendly towards environment by phytoremediation activity of the azo dye and cytotoxicity activity against MCF-7 cell lines. Hence the present paper may help to further explore the metal nanoparticle for its potential applications.


Assuntos
Morte Celular/efeitos dos fármacos , Lagerstroemia , Nanopartículas Metálicas/química , Luz Solar , Zircônio/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Azo/metabolismo , Compostos Azo/efeitos da radiação , Biodegradação Ambiental/efeitos dos fármacos , Biodegradação Ambiental/efeitos da radiação , Catálise , Forma Celular/efeitos dos fármacos , Corantes/metabolismo , Corantes/efeitos da radiação , Humanos , Células MCF-7 , Folhas de Planta , Zircônio/química
19.
BMC Complement Altern Med ; 17(1): 55, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28100224

RESUMO

BACKGROUND: Lagerstroemia speciosa (L.) Pers. has medicinal importance. Bioactive phytochemicals isolated from different parts of L. speciosa, have revealed hypoglycemic, antibacterial, anti-inflammatory, antioxidant and hepato protective properties. Despite one report from Philippines detailing the use of L. speciosa as curative for fever and as well as diuretic, there is no experimental evidence about the hepatoprotective activity of the flower extracts. METHODS: Several spectroscopic methods, including GC-MS, were used to characterize phytochemicals present in the petal extract of L. speciosa. Ethanol extract of petals was evaluated for anti-oxidant and free radical scavenging properties by using methods related to hydrogen atom transfer, single electron transfer, reducing power, and metal chelation. This study has also revealed the in vitro antioxidant and in vivo hepatoprotective properties of petal extract against carbon tetra chloride (CCl4)-induced liver toxicity in Swiss albino mice. Hepatoprotection in CCl4 -intoxicated mice was studied with the aid of histology and different enzymatic and non-enzymatic markers of liver damage. Cytotoxicity tests were done using murein spleenocytes and cancareous cell lines, MCF7 and HepG2. RESULT: GCMS of the extract has revealed the presence of several potential antioxidant compounds, of them γ-Sitosterol and 1,2,3-Benzenetriol (Pyrogallol) were the predominant ones. The antioxidants activities of the flower-extract were significantly higher than curcumin (in terms of Nitric oxide scavenging activity; p = 0.0028) or ascorbic acid (in terms of 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) assay; p = 0.0022). The damage control by the flower extract can be attributed to the reduction in lipid peroxidation and restoration of catalase activity. In vitro cytotoxicity tests have shown that the flower extract did not affect growth and survivability of the cell lines. It left beyond doubt that a flower of L. speciosa is a reservoir of antioxidant and hepatoprotective agents capable of reversing the damage inflicted by CCl4-intoxication. CONCLUSION: Results from the present study may be used in developing a potential hepato-protective health drink enriched with antioxidants from Lagerstroemia speciosa (L.) Pers.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Lagerstroemia/química , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antioxidantes/farmacologia , Tetracloreto de Carbono , Linhagem Celular Tumoral , Feminino , Flores/química , Sequestradores de Radicais Livres/toxicidade , Células Hep G2 , Humanos , Lagerstroemia/toxicidade , Masculino , Camundongos , Extratos Vegetais/toxicidade
20.
Int J Mol Med ; 38(2): 482-90, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27314211

RESUMO

Lagerstroemia ovalifolia Teijsm. & Binn. has traditionally been used as an herbal medicine and possesses anti-inflammatory properties. However, the mechanisms underlying its anti-inflammatory effects remain poorly understood. For this purpose, we aimed to investigate the effects of methanolic extract of L. ovalifolia (LOME) on nitric oxide (NO) and prostaglandin E2 (PGE2) production, as well as the underlying molecular mechanisms responsible for these effects, in lipopolysaccharide (LPS)­stimulated RAW264.7 macrophages. We examined the effects of LOME on the production of NO and PGE2 in LPS-stimulated RAW264.7 cells. To explore the anti-inflammatory mechanisms of LOME, we measured the mRNA or protein expression of the pro­inflammatory mediators induced by LOME in the LPS-stimulated RAW264.7 cells. LOME significantly inhibited the production of NO, PGE2, interleukin (IL)-6, IL-1ß, and tumor necrosis factor-α (TNF-α) in LPS-stimulated RAW264.7 cells. Moreover, LOME suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and inhibited the phosphorylation of the mitogen-activated protein kinases (MAPKs), with a reduction in the nuclear translocation of nuclear factor (NF)-κB in LPS-stimulated RAW264.7 cells. Taken together, these findings suggest that LOME may exert anti-inflammatory effects in vitro in LPS-stimulated RAW264.7 macrophages and thus, may have potential for use as an adjuvant treatment of inflammatory diseases.


Assuntos
Inflamação/metabolismo , Lagerstroemia/química , Macrófagos/metabolismo , Macrófagos/patologia , Metanol/química , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Células RAW 264.7 , Sulfonas/farmacologia , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA