Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Dysmorphol ; 30(1): 10-16, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33038109

RESUMO

LMNA gene encodes A-type lamins and the encoded proteins join the structure of the nuclear lamina and affect the processes of nuclear homeostasis, DNA replication, repair, transcription, and apoptosis. LMNA variants cause a heterogeneous group of diseases known as laminopathies. Phenotypes associated with LMNA variants mainly affect the heart, skeleton, skin, bones, and nervous system. The affected tissues may vary depending on the site of the variant on the gene and the variation type. Complex phenotypes may also occur in some cases, in which findings of premature aging, cardiomyopathy, mandibuloacral dysplasia, lipodystrophy, renal involvement, metabolic involvement, and myopathy coexist. The pleiotropic effect of LMNA variants can result in heterogeneous phenotypes. In this study, we aimed to describe atypical phenotypic characteristics in a patient with familial partial lipodystrophy type 2 associated with LMNA variant, another with mandibuloacral dysplasia, and a third patient with a complex phenotype as well as discuss them in the context of their relationship with the genotype.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Lamina Tipo A/genética , Laminopatias/diagnóstico , Laminopatias/genética , Fenótipo , Alelos , Variação Biológica da População , Genótipo , Humanos , Lipodistrofia Generalizada Congênita/diagnóstico , Lipodistrofia Generalizada Congênita/genética , Especificidade de Órgãos
2.
J Am Heart Assoc ; 9(16): e015690, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32805188

RESUMO

Background Mutations in the LMNA gene, encoding LMNA (lamin A/C), causes distinct disorders, including dilated cardiomyopathies, collectively referred to as laminopathies. The genes (coding and noncoding) and regulatory pathways controlled by LMNA in the heart are not completely defined. Methods and Results We analyzed cardiac transcriptome from wild-type, loss-of-function (Lmna-/-), and gain-of-function (Lmna-/- injected with adeno-associated virus serotype 9 expressing LMNA) mice with normal cardiac function. Deletion of Lmna (Lmna-/-) led to differential expression of 2193 coding and 629 long noncoding RNA genes in the heart (q<0.05). Re-expression of LMNA in the Lmna-/- mouse heart, completely rescued 501 coding and 208 non-coding and partially rescued 1862 coding and 607 lncRNA genes. Pathway analysis of differentially expressed genes predicted activation of transcriptional regulators lysine-specific demethylase 5A, lysine-specific demethylase 5B, tumor protein 53, and suppression of retinoblastoma 1, paired-like homeodomain 2, and melanocyte-inducing transcription factor, which were completely or partially rescued upon reexpression of LMNA. Furthermore, lysine-specific demethylase 5A and 5B protein levels were increased in the Lmna-/- hearts and were partially rescued upon LMNA reexpression. Analysis of biological function for rescued genes identified activation of tumor necrosis factor-α, epithelial to mesenchymal transition, and suppression of the oxidative phosphorylation pathway upon Lmna deletion and their restoration upon LMNA reintroduction in the heart. Restoration of the gene expression and transcriptional regulators in the heart was associated with improved cardiac function and increased survival of the Lmna-/- mice. Conclusions The findings identify LMNA-regulated cardiac genes and their upstream transcriptional regulators in the heart and implicate lysine-specific demethylase 5A and B as epigenetic regulators of a subset of the dysregulated genes in laminopathies.


Assuntos
Regulação da Expressão Gênica , Lamina Tipo A/fisiologia , Laminopatias/genética , Miocárdio/metabolismo , RNA Longo não Codificante/metabolismo , Elementos Reguladores de Transcrição , Animais , Epigênese Genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Camundongos , Fenótipo , RNA Mensageiro
3.
Nucleus ; 11(1): 205-218, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32835589

RESUMO

The nuclear envelope compartmentalizes chromatin in eukaryotic cells. The main nuclear envelope components are lamins that associate with a panoply of factors, including the LEM domain proteins. The nuclear envelope of mammalian cells opens up during cell division. It is reassembled and associated with chromatin at the end of mitosis when telomeres tether to the nuclear periphery. Lamins, LEM domain proteins, and DNA binding factors, as BAF, contribute to the reorganization of chromatin. In this context, an emerging role is that of the ESCRT complex, a machinery operating in multiple membrane assembly pathways, including nuclear envelope reformation. Research in this area is unraveling how, mechanistically, ESCRTs link to nuclear envelope associated factors as LEM domain proteins. Importantly, ESCRTs work also during interphase for repairing nuclear envelope ruptures. Altogether the advances in this field are giving new clues for the interpretation of diseases implicating nuclear envelope fragility, as laminopathies and cancer. ABBREVIATIONS: na, not analyzed; ko, knockout; kd, knockdown; NE, nuclear envelope; LEM, LAP2-emerin-MAN1 (LEM)-domain containing proteins; LINC, linker of nucleoskeleton and cytoskeleton complexes; Cyt, cytoplasm; Chr, chromatin; MB, midbody; End, endosomes; Tel, telomeres; INM, inner nuclear membrane; NP, nucleoplasm; NPC, Nuclear Pore Complex; ER, Endoplasmic Reticulum; SPB, spindle pole body.


Assuntos
Cromatina/metabolismo , Laminopatias/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Membrana Nuclear/metabolismo , Animais , Cromatina/genética , Cromatina/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Interfase , Laminopatias/genética , Laminopatias/patologia , Laminas/genética , Laminas/metabolismo , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Membrana Nuclear/genética , Membrana Nuclear/patologia
4.
Cells ; 9(4)2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326241

RESUMO

The rare autosomal dominant Charcot-Marie-Tooth type 2B (CMT2B) is associated with mutations in the RAB7A gene, involved in the late endocytic pathway. CMT2B is characterized by predominant sensory loss, ulceromutilating features, with lesser-to-absent motor deficits. We characterized clinically and genetically a family harboring a novel pathogenic RAB7A variant and performed structural and functional analysis of the mutant protein. A 39-year-old woman presented with early-onset walking difficulties, progressive distal muscle wasting and weakness in lower limbs and only mild sensory signs. Electrophysiology demonstrated an axonal sensorimotor neuropathy. Nerve biopsy showed a chronic axonal neuropathy with moderate loss of all caliber myelinated fibers. Next-generation sequencing (NGS) technology revealed in the proband and in her similarly affected father the novel c.377A>G (p.K126R) heterozygous variant predicted to be deleterious. The mutation affects the biochemical properties of RAB7 GTPase, causes altered interaction with peripherin, and inhibition of neurite outgrowth, as for previously reported CMT2B mutants. However, it also shows differences, particularly in the epidermal growth factor receptor degradation process. Altogether, our findings indicate that this RAB7A variant is pathogenic and widens the phenotypic spectrum of CMT2B to include predominantly motor CMT2. Alteration of the receptor degradation process might explain the different clinical presentations in this family.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Laminopatias/genética , Mutação/genética , Proteólise , Proteínas rab de Ligação ao GTP/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Animais , Sequência de Bases , Biópsia , Linhagem Celular , Receptores ErbB/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Ligantes , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Mutantes/metabolismo , Crescimento Neuronal , Linhagem , Periferinas/metabolismo , Fenótipo , Ligação Proteica , Pele/patologia , Proteínas rab de Ligação ao GTP/química , proteínas de unión al GTP Rab7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA