RESUMO
MicroRNAs (miRNAs) are small non-coding RNAs that play pivotal roles in the host response to invading pathogens. Among these pathogens, Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the main causes of substantial economic losses in sericulture, and there are relatively few studies on the specific functions of miRNAs in the B. mori-BmNPV interaction. Therefore, we conducted transcriptome sequencing to identify differentially expressed (DE) messenger RNAs (mRNAs) and miRNAs in the midgut of 2 B. mori strains (BmNPV-susceptible strain P50 and BmNPV-resistant strain A35) after BmNPV infection. Through correlation analysis of the miRNA and mRNA data, we identified a comprehensive set of 21 miRNAs and 37 predicted target mRNAs. Notably, miR-3351, which has high expression in A35, exhibited remarkable efficacy in suppressing BmNPV proliferation. Additionally, we confirmed that miR-3351 binds to the 3' untranslated region (3' UTR) of B. mori glutathione S-transferase epsilon 6 (BmGSTe6), resulting in its downregulation. Conversely, BmGSTe6 displayed an opposite expression pattern to miR-3351, effectively promoting BmNPV proliferation. Notably, BmGSTe6 levels were positively correlated with glutathione S-transferase activity, consequently influencing intracellular glutathione content in the infected samples. Furthermore, our investigation revealed the protective role of glutathione against BmNPV infection in BmN cells. In summary, miR-3351 modulates glutathione content by downregulating BmGSTe6 to inhibit BmNPV proliferation in B. mori. Our findings enriched the research on the role of B. mori miRNAs in the defense against BmNPV infection, and suggests that the antiviral molecule, glutathione, offers a novel perspective on preventing viral infection in sericulture.
Assuntos
Bombyx , Glutationa , MicroRNAs , Nucleopoliedrovírus , Animais , Bombyx/virologia , Bombyx/genética , Bombyx/metabolismo , Bombyx/crescimento & desenvolvimento , MicroRNAs/metabolismo , MicroRNAs/genética , Nucleopoliedrovírus/fisiologia , Glutationa/metabolismo , Larva/virologia , Larva/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Replicação ViralRESUMO
Baculoviruses are insect pathogens that are characterized by assembling the viral dsDNA into two different enveloped virions during an infective cycle: occluded virions (ODVs; immersed in a protein matrix known as occlusion body) and budded virions (BVs). ODVs are responsible for the primary infection in midgut cells of susceptible larvae thanks to the per os infectivity factor (PIF) complex, composed of at least nine essential viral proteins. Among them, P74 is a crucial factor whose activity has been identified as virus-specific. In this work, the p74 gene from AcMNPV was pseudogenized using CRISPR/Cas9 technology and then complemented with wild-type alleles from SeMNPV and HearSNPV species, as well as chimeras combining the P74 amino and carboxyl domains. The results on Spodoptera exigua and Rachiplusia nu larvae showed that an amino terminal sector of P74 (lacking two potential transmembrane regions but possessing a putative nuclear export signal) is sufficient to restore the virus infectivity whether alone or fused to the P74 transmembrane regions of the other evaluated viral species. These results provide novel information about the functional role of P74 and delimit the region on which mutagenesis could be applied to enhance viral activity and, thus, produce better biopesticides.
Assuntos
Nucleopoliedrovírus/química , Nucleopoliedrovírus/fisiologia , Spodoptera/virologia , Proteínas do Envelope Viral/química , Motivos de Aminoácidos , Animais , Sistemas CRISPR-Cas , Teste de Complementação Genética , Larva/virologia , Mariposas/virologia , Nucleopoliedrovírus/genética , Filogenia , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Células Sf9 , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismoRESUMO
Early March 2019, health authorities of Matadi in the Democratic Republic of the Congo alerted a sudden increase in acute fever/arthralgia cases, prompting an outbreak investigation. We collected surveillance data, clinical data, and laboratory specimens from clinical suspects (for CHIKV-PCR/ELISA, malaria RDT), semi-structured interviews with patients/caregivers about perceptions and health seeking behavior, and mosquito sampling (adult/larvae) for CHIKV-PCR and estimation of infestation levels. The investigations confirmed a large CHIKV outbreak that lasted February-June 2019. The total caseload remained unknown due to a lack of systematic surveillance, but one of the two health zones of Matadi notified 2686 suspects. Of the clinical suspects we investigated (n = 220), 83.2% were CHIKV-PCR or IgM positive (acute infection). One patient had an isolated IgG-positive result (while PCR/IgM negative), suggestive of past infection. In total, 15% had acute CHIKV and malaria. Most adult mosquitoes and larvae (>95%) were Aedes albopictus. High infestation levels were noted. CHIKV was detected in 6/11 adult mosquito pools, and in 2/15 of the larvae pools. This latter and the fact that 2/6 of the CHIKV-positive adult pools contained only males suggests transovarial transmission. Interviews revealed that healthcare seeking shifted quickly toward the informal sector and self-medication. Caregivers reported difficulties to differentiate CHIKV, malaria, and other infectious diseases resulting in polypharmacy and high out-of-pocket expenditure. We confirmed a first major CHIKV outbreak in Matadi, with main vector Aedes albopictus. The health sector was ill-prepared for the information, surveillance, and treatment needs for such an explosive outbreak in a CHIKV-naïve population. Better surveillance systems (national level/sentinel sites) and point-of-care diagnostics for arboviruses are needed.
Assuntos
Aedes/virologia , Febre de Chikungunya/epidemiologia , Adolescente , Adulto , Idoso , Animais , Artralgia/epidemiologia , Vírus Chikungunya/patogenicidade , Criança , Pré-Escolar , República Democrática do Congo/epidemiologia , Surtos de Doenças , Feminino , Febre/epidemiologia , Humanos , Larva/virologia , Malária/epidemiologia , Masculino , Pessoa de Meia-Idade , Mosquitos Vetores , Filogenia , Doenças Transmitidas por Vetores/epidemiologiaRESUMO
Bradysia species, commonly known as fungus gnats, are ubiquitous in greenhouses, nurseries of horticultural plants, and commercial mushroom houses, causing significant economic losses. Moreover, the insects from the Bradysia genus have a well-documented role in plant pathogenic fungi transmission. Here, a study on the potential of Bradysia impatiens to acquire and transmit the peanut stunt virus (PSV) from plant to plant was undertaken. Four-day-old larvae of B. impatiens were exposed to PSV-P strain by feeding on virus-infected leaves of Nicotiana benthamiana and then transferred to healthy plants in laboratory conditions. Using the reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR (RT-qPCR), and digital droplet PCR (RT-ddPCR), the PSV RNAs in the larva, pupa, and imago of B. impatiens were detected and quantified. The presence of PSV genomic RNA strands as well as viral coat protein in N. benthamiana, on which the viruliferous larvae were feeding, was also confirmed at the molecular level, even though the characteristic symptoms of PSV infection were not observed. The results have shown that larvae of B. impatiens could acquire the virus and transmit it to healthy plants. Moreover, it has been proven that PSV might persist in the insect body transstadially. Although the molecular mechanisms of virion acquisition and retention during insect development need further studies, this is the first report on B. impatiens playing a potential role in plant virus transmission.
Assuntos
Cucumovirus/patogenicidade , Dípteros/virologia , Nicotiana/parasitologia , Nicotiana/virologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Animais , Interações Hospedeiro-Patógeno/fisiologia , Larva/virologia , Folhas de Planta/parasitologia , Folhas de Planta/virologiaRESUMO
An important goal of disease ecology is to understand trophic interactions influencing the host-pathogen relationship. This study focused on the effects of diet and immunity on the outcome of viral infection for the polyphagous butterfly, Vanessa cardui Linnaeus (Lepidoptera: Nymphalidae) (painted lady). Specifically, we aimed to understand the role that larval host plants play when fighting a viral pathogen. Larvae were orally inoculated with the entomopathogenic virus, Junonia coenia densovirus (JcDV) (Parvovirididae: Densovirinae, Lepidopteran Potoambidensovirus 1) and reared on two different host plants (Lupinus albifrons Bentham (Fabales: Fabaceae) or Plantago lanceolata Linnaeus (Lamiales: Plantaginaceae)). Following viral infection, the immune response (i.e., phenoloxidase [PO] activity), survival to adulthood, and viral load were measured for individuals on each host plant. We found that the interaction between the immune response and survival of the viral infection was host plant dependent. The likelihood of survival was lowest for infected larvae exhibiting suppressed PO activity and feeding on P. lanceolata, providing some evidence that PO activity may be an important defense against viral infection. However, for individuals reared on L. albifrons, the viral infection had a negligible effect on the immune response, and these individuals also had higher survival and lower viral load when infected with the pathogen compared to the controls. Therefore, we suggest that host plant modifies the effects of JcDV infection and influences caterpillars' response when infected with the virus. Overall, we conclude that the outcome of viral infection is highly dependent upon diet, and that certain host plants can provide protection from pathogens regardless of immunity.
Assuntos
Borboletas/virologia , Densovirus , Dieta , Monofenol Mono-Oxigenase/metabolismo , Animais , Borboletas/imunologia , Borboletas/metabolismo , Densovirus/patogenicidade , Interações entre Hospedeiro e Microrganismos , Imunidade/fisiologia , Larva/imunologia , Larva/metabolismo , Larva/virologia , Plantas , Análise de Sobrevida , Carga Viral , Viroses/imunologiaRESUMO
We conducted orthonairovirus RNA screening of 7043 tick specimens-representing 16 species-collected from various regions of Anatolia. In 602 pools, Crimean-Congo hemorrhagic fever virus (CCHFV) Europe 1 and 2 lineages were detected in seven pools (1.1 %) comprising Hyalomma marginatum, Hyalomma scupense, Rhipicephalus bursa, Rhipicephalus sanguineus sensu lato and Rhipicephalus turanicus ticks. In pools of Hyalomma aegyptium, we detected Tamdy virus (TAMV) and an unclassified nairovirus sequence. Next-generation sequencing revealed complete coding regions of three CCHFV Europe 2 (AP92-like) viruses, TAMV and the novel orthonairovirus, tentatively named herein as Meram virus. We further performed in silico functional analysis of all available CCHFV Europe 2, TAMV, Meram and related virus genomes. The CCHFV Europe 2 viruses possessed several conserved motifs, including those with OTU-like cysteine protease activity. Probable recombinations were identified in L genome segments of CCHFV and TAMV. Through phylogeny reconstruction using individual genome segments, Meram virus emerged as a distinct virus among species within the Orthonairovirus genus. It further exhibited conserved motifs associated with RNA binding, encapsidation, signal peptidase cleavage, post-translational modification, RNA-dependent RNA polymerase and OTU-like activities. Bole tick virus 3 was also detected in two pools with CCHFV reactivity. Hereby, we describe a novel tick-associated orthonairovirus, in a CCHFV-endemic region with confirmed TAMV activity. Human and animal health impact of these viruses need to be addressed.
Assuntos
Genoma Viral , Ixodidae/virologia , Nairovirus/isolamento & purificação , Animais , Simulação por Computador , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Ixodidae/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/virologia , Masculino , Nairovirus/classificação , Nairovirus/genética , Ninfa/crescimento & desenvolvimento , Ninfa/virologia , Filogenia , Rhipicephalus/crescimento & desenvolvimento , Rhipicephalus/virologia , TurquiaRESUMO
Baculovirus occlusion-derived viruses (ODVs) contain ten known per os infectivity factors (PIFs). These PIFs are crucial for midgut infection of insect larvae and form, with the exception of PIF5, an ODV entry complex. Previously, R18-dequenching assays have shown that PIF3 is dispensable for binding and fusion with midgut epithelial cells. Oral infection nevertheless fails in the absence of PIF3. PIF9 has not been analysed in much depth yet. Here, the biological role of these two PIFs in midgut infection was examined by monitoring the fate of fluorescently labelled ODVs when incubated with isolated midgut cells from Spodoptera exigua larvae. Confocal microscopy showed that in the absence of either PIF3 or PIF9, the ODVs bound to the brush borders, but the nucleocapsids failed to enter the cells. Finally, we discuss how the results obtained for PIF3 with dequenching assays and confocal microscopy can be explained by a two-phase fusion process.
Assuntos
Baculoviridae/fisiologia , Células Epiteliais/virologia , Imagem Molecular , Proteínas Virais/metabolismo , Animais , Células Cultivadas , Expressão Gênica , Genes Reporter , Insetos/virologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Larva/virologia , Microvilosidades/metabolismo , Microvilosidades/patologia , Microvilosidades/virologia , Deleção de Sequência , Fatores de Virulência/metabolismoRESUMO
Our previous study showed that the Bombyx mori nucleopolyhedrovirus (BmNPV) F-like protein Bm14 is intrinsically related to the production of occlusion bodies, occlusion-derived virus (ODV) embedding and virulence in infected larvae. However, the exact mechanism by which Bm14 affects primary infection remains unknown. In this report, we characterized the detailed distribution and topology of Bm14 in occlusion bodies (OBs) and ODVs, and then further investigated the functional role of Bm14 in primary infection. A combination of Western blot and immunoelectron microscopy showed that Bm14 is mainly present on the surface of ODVs within OBs, but rarely in the OB matrix. Further phase separation and topology analysis of Bm14 by selective permeabilization revealed that Bm14 is a type I integral membrane protein with an N-terminus hidden in the endoplasmic reticulum (ER) lumen and a C-terminus exposed to the cytosol. In vivo assays demonstrated that the disruption of bm14 impaired the interactions of ODV with midgut epithelia, resulting in delayed spread in larval tissues. As the essential trigger of primary infection, some per os infectivity factors (PIFs) were verified to interact with Bm14 via a series of coimmunoprecipitation analyses. Further partially denaturing SDS-PAGE and BN-PAGE assays clearly showed that the deletion of bm14 did not affect the formation and presence of the PIF complex. In conclusion, Bm14 functions as a type I integral membrane protein to regulate ODV attachment to the midgut epithelial cells.
Assuntos
Bombyx/virologia , Células Epiteliais/metabolismo , Mucosa Intestinal/citologia , Proteínas de Membrana/metabolismo , Nucleopoliedrovírus/metabolismo , Corpos de Oclusão Virais/metabolismo , Proteínas Virais de Fusão/metabolismo , Ligação Viral , Animais , Bombyx/citologia , Linhagem Celular , Retículo Endoplasmático/metabolismo , Técnicas de Inativação de Genes , Larva/virologia , Proteínas de Membrana/genética , Nucleopoliedrovírus/química , Transfecção , Proteínas Virais de Fusão/genética , Vírion/metabolismoRESUMO
Human noroviruses (HuNoVs) are the most common cause of foodborne illness, with a societal cost of $60 billion and 219,000 deaths/year. The lack of robust small animal models has significantly hindered the understanding of norovirus biology and the development of effective therapeutics. Here we report that HuNoV GI and GII replicate to high titers in zebrafish (Danio rerio) larvae; replication peaks at day 2 post infection and is detectable for at least 6 days. The virus (HuNoV GII.4) could be passaged from larva to larva two consecutive times. HuNoV is detected in cells of the hematopoietic lineage and the intestine, supporting the notion of a dual tropism. Antiviral treatment reduces HuNoV replication by >2 log10, showing that this model is suited for antiviral studies. Zebrafish larvae constitute a simple and robust replication model that will largely facilitate studies of HuNoV biology and the development of antiviral strategies.
Assuntos
Norovirus/fisiologia , Norovirus/patogenicidade , Replicação Viral/fisiologia , Peixe-Zebra/virologia , Animais , Antivirais/administração & dosagem , Infecções por Caliciviridae/virologia , Doenças Transmitidas por Alimentos/virologia , Gastroenterite/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Larva/virologia , Metagenômica , Modelos Animais , Norovirus/genética , Cultura de Vírus/métodos , Replicação Viral/efeitos dos fármacosRESUMO
ODV-E66 is a major envelope proteins of baculovirus occlusion derived virus (ODV) with chondroitinase activity. Here, we studied the roles of ODV-E66 during Helicoverpa armigera nucleopolyhedrovirus (HearNPV) primary infection. ODV-E66 is a late viral protein dispensable for BV production and ODV morphogenesis. Deletion of odv-e66 had a profound effect on HearNPV oral infectivity in 4th instar larvae with a 50% lethal concentration (LC50) value of 26 fold higher than that of the repaired virus, compared to in 3rd instar larvae. Calcofluor white, an agent which destroys the peritrophic membrane (PM), could rescue the oral infectivity of odv-e66 deleted HearNPV, implying the PM may be the target of ODV-E66. In vitro assays showed HearNPV ODV-E66 has chondroitinase activity. Electron microscopy demonstrated that odv-e66 deletion alleviated the damage to the PM caused by HearNPV infection. These data suggest an important role of ODV-E66 in the penetration of the PM during oral infection.
Assuntos
Lepidópteros/virologia , Nucleopoliedrovírus/crescimento & desenvolvimento , Proteínas do Envelope Viral/metabolismo , Fatores de Virulência/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Condroitinases e Condroitina Liases/metabolismo , Deleção de Genes , Larva/virologia , Dose Letal Mediana , Boca/virologia , Análise de Sobrevida , Proteínas do Envelope Viral/genética , Fatores de Virulência/genéticaRESUMO
Here, we report the first confirmed autochthonous tick-borne encephalitis case diagnosed in Moscow in 2016 and describe the detection of tick-borne encephalitis virus (TBEV) in ticks and small mammals in a Moscow park. The paper includes data from two patients who were bitten by TBEV-infected ticks in Moscow city; one of these cases led to the development of the meningeal form of TBE. Both TBEV-infected ticks attacked patients in the same area. We collected ticks and trapped small mammals in this area in 2017. All samples were screened for the presence of pathogens causing tick-borne diseases by PCR. The TBEV-positive ticks and small mammals' tissue samples were subjected to virus isolation. The sequencing of the complete polyprotein gene of the positive samples was performed. A total of 227 questing ticks were collected. TBEV was detected in five specimens of Ixodes ricinus. We trapped 44 small mammals, mainly bank voles (Myodes glareolus) and pygmy field mice (Apodemus uralensis). Two samples of brain tissue from bank voles yielded a positive signal in RT-PCR for TBEV. We obtained six virus isolates from the ticks and brain tissue of a bank vole. Complete genome sequencing showed that the obtained isolates belong to the European subtype and have low diversity with sequence identities as high as 99.9%. GPS tracking showed that the maximum distance between the exact locations where the TBEV-positive ticks were collected was 185â¯m. We assume that the forest park had been free of TBEV and that the virus was recently introduced.
Assuntos
Vetores Aracnídeos/virologia , Arvicolinae , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/veterinária , Ixodes/virologia , Murinae , Doenças dos Roedores/epidemiologia , Adulto , Animais , Vetores Aracnídeos/crescimento & desenvolvimento , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/virologia , Feminino , Humanos , Ixodes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/virologia , Masculino , Moscou/epidemiologia , Ninfa/crescimento & desenvolvimento , Ninfa/virologia , Doenças dos Roedores/virologia , Resultado do TratamentoRESUMO
The open reading frame 117 (3h-117) of Heliothis virescens ascovirus 3h (HvAV-3h), which is a conserved coding region present in all completely sequenced ascovirus members, was characterized in this study. By RT-PCR detection, 3h-117 transcription began at 6-h post-infection (hpi) and remained stable until 168 hpi in HvAV-3h-infected Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae. In addition, 3h-117 putatively encodes a 21.5-kDa protein (3H-117) predicted to be a CTD-like phosphatase. Western blot analysis using a prepared rabbit polyclonal antibody specific to 3H-117 showed that the product could be detected at 24 hpi, which remained stably detectable until 168 hpi. The same analysis also demonstrated that the 3H-117 protein localized in the virions of HvAV-3h. Immunofluorescence analysis showed that at 24 hpi, 3H-117 was mainly located in the nuclei of H. armigera larval fat body cells and later spread into the cytoplasm. In summary, our results indicate that 3H-117 is a structural protein of HvAV-3h.
Assuntos
Ascoviridae/crescimento & desenvolvimento , Lepidópteros/virologia , Transcrição Gênica , Proteínas Estruturais Virais/biossíntese , Animais , Ascoviridae/química , Ascoviridae/genética , Western Blotting , Perfilação da Expressão Gênica , Larva/virologia , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Estruturais Virais/genética , Vírion/químicaRESUMO
BACKGROUND: The golden birdwing butterfly (Troides aeacus formosanus) is a rarely observed species in Taiwan. Recently, a typical symptom of nuclear polyhedrosis was found in reared T. aeacus larvae. From the previous Kimura-2 parameter (K-2-P) analysis based on the nucleotide sequence of three genes in this isolate, polh, lef-8 and lef-9, the underlying virus did not belong to any known nucleopolyhedrovirus (NPV) species. Therefore, this NPV was provisionally named "TraeNPV". To understand this NPV, the nucleotide sequence of the whole TraeNPV genome was determined using next-generation sequencing (NGS) technology. RESULTS: The genome of TraeNPV is 125,477 bp in length with 144 putative open reading frames (ORFs) and its GC content is 40.45%. A phylogenetic analysis based on the 37 baculoviral core genes suggested that TraeNPV is a Group I NPV that is closely related to Autographa californica nucleopolyhedrovirus (AcMNPV). A genome-wide analysis showed that TraeNPV has some different features in its genome compared with other NPVs. Two novel ORFs (Ta75 and Ta139), three truncated ORFs (pcna, he65 and bro) and one duplicated ORF (38.7 K) were found in the TraeNPV genome; moreover, there are fewer homologous regions (hrs) than there are in AcMNPV, which shares eight hrs within the TraeNPV genome. TraeNPV shares similar genomic features with AcMNPV, including the gene content, gene arrangement and gene/genome identity, but TraeNPV lacks 15 homologous ORFs from AcMNPV in its genome, such as ctx, host cell-specific factor 1 (hcf-1), PNK/PNL, vp15, and apsup, which are involved in the auxiliary functions of alphabaculoviruses. CONCLUSIONS: Based on these data, TraeNPV would be clarified as a new NPV species with defective AcMNPV genomic features. The precise relationship between TraeNPV and other closely related NPV species were further investigated. This report could provide comprehensive information on TraeNPV for evolutionary insights into butterfly-infected NPV.
Assuntos
Baculoviridae/genética , Borboletas/virologia , Genoma Viral , Animais , Baculoviridae/classificação , Baculoviridae/isolamento & purificação , Borboletas/crescimento & desenvolvimento , Replicação do DNA , DNA Viral/química , Genes Duplicados , Genes Virais , Genômica , Especificidade de Hospedeiro/genética , Larva/virologia , Fases de Leitura Aberta , Filogenia , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica , Proteínas Estruturais Virais/genéticaRESUMO
Although the tritrophic interactions of plants, insect herbivores and their natural enemies have been intensely studied for several decades, the roles of entomopathogens in their indirect modulation of plant-insect relationships is still unclear. Here, we employed a sublethal dose of a baculovirus with a relatively broad host range (AcMNPV) to explore if feeding by baculovirus-challenged Helicoverpa zea caterpillars induces direct defenses in the tomato plant. We examined induction of plant defenses following feeding by H. zea, including tomato plants fed on by healthy caterpillars, AcMNPV-challenged caterpillars, or undamaged controls, and subsequently compared the transcript levels of defense related proteins (i.e., trypsin proteinase inhibitors, peroxidase and polyphenol oxidase) and other defense genes (i.e., proteinase inhibitor II and cysteine proteinase inhibitor) from these plants, in addition to comparing caterpillar relative growth rates. As a result, AcMNPV-challenged caterpillars induced the highest plant anti-herbivore defenses. We examined several elicitors and effectors in the secretions of these caterpillars (i.e., glucose oxidase, phospholipase C, and ATPase hydrolysis), which surprisingly did not differ between treatments. Hence, we suggest that the greater induction of plant defenses by the virus-challenged caterpillars may be due to differences in the amount of these secretions deposited during feeding or to some other unknown factor(s).
Assuntos
Baculoviridae/patogenicidade , Mariposas/fisiologia , Solanum lycopersicum/metabolismo , Animais , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Comportamento Alimentar , Regulação da Expressão Gênica de Plantas , Herbivoria , Interações Hospedeiro-Parasita , Larva/efeitos dos fármacos , Larva/fisiologia , Larva/virologia , Solanum lycopersicum/parasitologia , Mariposas/crescimento & desenvolvimento , Mariposas/virologia , Peroxidase/genética , Peroxidase/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Glândulas Salivares/metabolismoRESUMO
Baculoviruses are large double-stranded DNA viruses that are virulent pathogens of certain insect species. In a natural host, Trichoplusia ni, infection by the model baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) begins when the occluded form of the virus disassembles in the midgut and virions infect midgut epithelial cells to establish the primary phase of the infection. To better understand the primary phase of the AcMNPV infection cycle, newly molted 5th-instar T. ni larvae were orally infected with AcMNPV occlusion bodies and the transcriptional responses of the T. ni midgut were analyzed at various times from 0 to 72 h postinfection, using transcriptome sequencing analysis and a T. ni reference genome. The numbers of differentially expressed host genes increased as the infection progressed, and we identified a total of 3,372 differentially expressed T. ni transcripts in the AcMNPV-infected midgut. Genes encoding orthologs of HMG176, atlastin, and CPH43 were among the most dramatically upregulated in response to AcMNPV infection. A number of cytochrome P450 genes were downregulated in response to infection. We also identified the effects of AcMNPV infection on a large variety of genes associated with innate immunity. This analysis provides an abundance of new and detailed information on host responses to baculovirus infection during the primary phase of the infection in the midgut and will be important for understanding how baculoviruses establish productive infections in the organism.IMPORTANCE Baculoviruses are virulent pathogens of a number of important insect pest species. In the host Trichoplusia ni, infection begins in the midgut when infectious virions of the occlusion-derived virus (ODV) phenotype enter and subsequently replicate in cells of the midgut epithelium. A second virion phenotype (budded virus [BV]) is produced there, and BV mediates systemic infection of the animal. Most prior detailed studies of baculovirus infections have focused on BV infections of cultured cells. In this study, we examined the transcriptional responses of the T. ni midgut to infection by ODV of the baculovirus AcMNPV and identified a variety of host genes that respond dramatically to viral infection. Understanding the transcriptional responses of the host midgut to viral infection is critically important for understanding the biphasic infection in the animal as a whole.
Assuntos
Células Epiteliais , Genoma de Inseto , Proteínas de Insetos , Intestinos/virologia , Mariposas , Nucleopoliedrovírus/metabolismo , Animais , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Perfilação da Expressão Gênica , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Larva/genética , Larva/metabolismo , Larva/virologia , Mariposas/genética , Mariposas/metabolismo , Mariposas/virologiaRESUMO
Bombyx mori nucleopolyhedrovirus (BmNPV) is the most prevalent threat to silkworms. Hence, there is a need for antiviral agents in sericulture. The PI3K-Akt pathway is essential for the efficient replication of the baculovirus. In an attempt to screen antiviral drugs against BmNPV, we summarized the commercial compounds targeting PI3K-Akt and selected the following seven oral drugs for further analyses: afuresertib, AZD8835, AMG319, HS173, AS605240, GDC0941, and BEZ235. Cell viability assay revealed that the cytotoxicity of these drugs at 10 µM concentration was not strong. Viral fluorescence observation and qPCR analysis showed that these candidate drugs significantly inhibited BmNPV in BmE cells. Only AMG319 and AZD8835 inhibited viral proliferation in silkworm larvae. The mortality of AZD8835-treated silkworms was lower than that of the control silkworms. Western blotting showed that AMG319 and AZD8835 decreased p-Akt expression after BmNPV infection. These results suggest that AZD8835 has application potential in sericulture.
Assuntos
Animais Geneticamente Modificados/crescimento & desenvolvimento , Antivirais/farmacologia , Bombyx/crescimento & desenvolvimento , Nucleopoliedrovírus/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Animais Geneticamente Modificados/virologia , Bombyx/efeitos dos fármacos , Bombyx/virologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/virologiaRESUMO
Melanization mediated by the prophenoloxidase-activating system (proPO) is an important immune response in invertebrates. However, the role of melanization on viral infection has not been wildly revealed in Bombyx mori (B. mori), silkworm. Here, we investigated the extent of melanization of susceptible (871) and resistant (near-isogenic line 871C) B. mori strains. The result showed that the extent of melanization was significantly higher in the susceptible strain than in the resistant strain. A majority of Serpins were up-regulated in the resistant strain through iTRAQ-based quantitative proteomics, comparing with susceptible strain. Our data further identified that Serpin-5, Serpin-9 and Serpin-19 reduced PO activity, indicating that the menlanization pathway was inhibited in the resistant strain. Moreover, our results indicated that the hemolymph of 871 reduced viral infection in the presence of PTU, indicating that melanization of 871 strain hemolymph blocked viral infection. However, viral infection was significantly suppressed in the hemolymph of 871C strain regardless of the presence of PTU or not, which implied that the resistant strain inhibited viral infection independent of the melanization pathway. Taken together, our findings indicated that the melanization pathway was inhibited in resistant strain. These results expend the analysis of melanization pathway in insects and provide insights into understanding the antiviral mechanism.
Assuntos
Baculoviridae/fisiologia , Bombyx/fisiologia , Bombyx/virologia , Resistência à Doença/fisiologia , Larva/fisiologia , Larva/virologia , Animais , Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Hemolinfa/metabolismo , Hemolinfa/virologia , Interações Hospedeiro-Patógeno , Proteínas de Insetos/metabolismo , Melaninas/metabolismo , Serpinas/metabolismoRESUMO
Wild-type ODVs (Wt) have an intact ODV entry complex in their envelope and are orally infectious towards insect larvae (left panel). In the absence of Ac108 (mut ac108), the stable core is still present but nevertheless fails to form an entry complex, affecting the ODV oral infectivity (right panel). The components of the core complex are depicted in yellow and the loosely associated components are depicted in red. PIF7 is depicted in green as its affinity with the complex is currently not known.Baculoviruses orally infect insect larvae when they consume viral occlusion bodies (OBs). OBs consist of a crystalline protein matrix in which the infectious virus particles, the occlusion-derived viruses (ODVs), are embedded. The protein matrix dissolves in the alkaline environment of the insect's midgut lumen. The liberated ODVs can then infect midgut endothelial cells through the action of at least nine different ODV-envelope proteins, called per os infectivity factors (PIFs). These PIF proteins mediate ODV oral infectivity, but are not involved in the systemic spread of the infection by budded viruses (BVs). Eight of the known PIFs form a multimeric complex, named the ODV entry complex. In this study, we show for Autographa californica multiple nucleopolyhedrovirus that mutation of the ac108ORF abolishes the ODV oral infectivity, while production and infectivity of the BVs remains unaffected. Furthermore, repair of the ac108 mutant completely recovered oral infectivity. With an HA-tagged repair mutant, we were able to demonstrate by Western analysis that the Ac108 protein is a constituent of the ODV entry complex, where the formation was abolished in the absence of this protein. Based on these results, we conclude that ac108 encodes a per os infectivity factor (PIF9) that is also an essential constituent of the ODV entry complex.
Assuntos
Baculoviridae/metabolismo , Baculoviridae/patogenicidade , Nucleopoliedrovírus/metabolismo , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Sistema Digestório/virologia , Células Endoteliais/virologia , Insetos/virologia , Larva/virologia , Corpos de Oclusão Virais/metabolismo , Corpos de Oclusão Virais/patologia , Células Sf9 , Spodoptera/virologia , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Vírion/patogenicidade , Internalização do VírusRESUMO
Frog virus 3 (FV3) is the type species of the genus Ranavirus (family Iridoviridae). FV3 and FV3-like viruses are globally distributed infectious agents with the capacity to replicate in three vertebrate classes (teleosts, amphibians, and reptiles). At the cellular level, FV3 and FV3-like viruses can infect cells from virtually all vertebrate classes. To date, the cellular receptors that are involved in the FV3 entry process are unknown. Class A scavenger receptors (SR-As) are a family of evolutionarily conserved cell-surface receptors that bind a wide range of chemically distinct polyanionic ligands and can function as cellular receptors for other DNA viruses, including vaccinia virus and herpes simplex virus. The present study aimed to determine whether SR-As are involved in FV3 cellular entry. By using well-defined SR-A competitive and non-competitive ligand-blocking assays and absolute qPCR, we demonstrated that the SR-A competitive ligands drastically reduced the quantities of cell-associated viral loads in frog cells. Moreover, inducing the expression of a human SR-AI in an SR-A null cell line significantly increased FV3â»cell association. Together, our results indicate that SR-As are utilized by FV3 during the cellular entry process.
Assuntos
Anfíbios/virologia , Ranavirus/fisiologia , Receptores Depuradores Classe A/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Larva/virologia , Macrófagos/virologia , Receptores Depuradores Classe A/genéticaRESUMO
The Sf9 and Sf21 cell lines derived from ovarian tissues of the wide-host-range phytophagous lepidopteran Spodoptera frugiperda are widely used for research and commercial-scale production of recombinant proteins. These cell lines are chronically infected with a rhabdovirus (Sf-RV) that does not cause any overt cytopathic effects. We demonstrate that wild populations of S. frugiperda in the eastern United States and Caribbean are infected with genetically diverse strains of Sf-RV and that this virus is also capable of infecting cells of Spodoptera exigua, Heliothis subflexa, and Bombyx mori Feeding studies demonstrated the ability of S. frugiperda larvae to deposit Sf-RV onto human-consumed vegetables during feeding. Although no evidence for replication in two species of plant cells was detected, subcellular localization studies demonstrated that the Sf-RV nucleocapsid was targeted to plasmodesmata, while two forms of the accessory protein were differentiated on the basis of their ability to localize to nuclei. Collectively, the results from this study suggest that environmental exposure of humans to Sf-RV is likely to be commonplace and frequent, but its inability to replicate in plant or human cells suggests that there is no substantial risk to human health.IMPORTANCE Insect-derived cell lines are widely used commercially for the production of vaccines and protein-based pharmaceuticals. After decades of safe and beneficial use, it was a surprise to the biotechnology industry to discover an endemic rhabdovirus in Sf9 cells. This discovery was made possible only by the substantial advancements in DNA sequencing technologies. Given the public health concerns associated with many rhabdovirus species, several initiatives were undertaken to establish that Spodoptera frugiperda rhabdovirus (Sf-RV) does not pose a threat to humans. Such actions include the generation of cell lines that have been cleared of Sf-RV. Given that Sf9 is derived from a moth whose larvae feed on human-edible foods, we explored the prevalence of Sf-RV in its wild and lab-grown populations, as well as its ability to be deposited on food items during feeding. Collectively, our data suggest that there is no overt risk from exposure to Sf-RV.