Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Eur J Med Chem ; 270: 116312, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552425

RESUMO

Ingenol diterpenoids continue to attract the attention for their extensive biological activity and novel structural features. To further explore this type of compound as anti-tumor agent, 13-oxyingenol dodecanoate (13-OD) was prepared by a standard chemical transformation from an Euphorbia kansui extract, and 29 derivatives were synthesized through parent 13-OD. Their inhibition activities against different types of cancer were screened and some derivatives showed superior anti-non-small cell lung cancer (NSCLC) cells cytotoxic potencies than oxaliplatin. In addition, TMBIM6 was identified as a crucial cellular target of 13-OD using ABPP target angling technique, and subsequently was verified by pull down, siRNA interference, BLI and CETSA assays. With modulating the function of TMBIM6 protein by 13-OD and its derivatives, Ca2+ release function was affected, causing mitochondrial Ca2+ overload, depolarisation of membrane potential. Remarkably, 13-OD, B6, A2, and A10-2 induced mitophagy and ferroptosis. In summary, our results reveal that 13-OD, B6, A2, and A10-2 holds great potential in developing anti-tumor agents for targeting TMBIM6.


Assuntos
Antineoplásicos , Benzenoacetamidas , Carcinoma Pulmonar de Células não Pequenas , Diterpenos , Ferroptose , Neoplasias Pulmonares , Piperidonas , Humanos , Lauratos , Mitofagia , Antineoplásicos/farmacologia , Diterpenos/farmacologia , Diterpenos/química , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Membrana/metabolismo , Proteínas Reguladoras de Apoptose
2.
Poult Sci ; 103(5): 103644, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507830

RESUMO

The objective of this study was to evaluate the effects of different levels of glycerol monolaurate (GML) on laying performance, egg quality, antioxidant capacity, intestinal morphology and immune function in late-phase laying hens. A total of 480 Hy-Line Variety Brown hens (age 54 wk) were randomly assigned to 5 treatments: the control group (basal diet) and 4 GML groups (basal diet supplemented with 100, 200, 300, and 400 mg/kg GML). Each treatment consisted of 8 replicates with 12 hens each and the trial lasted for 8 wk. The results showed that dietary inclusion of GML increased the ADFI in the entire experimental period and the average egg weight in wk 5 to 8 and wk 1 to 8 of the experiment (linear, P < 0.05). Dietary GML addition linearly increased albumen height, Haugh unit and yolk color, and quadratically increased eggshell thickness (P < 0.05). The serum SOD activity, T-AOC and IgG concentrations in the 200 mg/kg GML group, and GSH-Px activity in 200 and 300 mg/kg GML groups were increased, while the MDA concentration in 200 and 300 mg/kg GML groups was decreased than those in the control group (P < 0.05). The jejunal villus height and villus height: crypt depth in 300 mg/kg GML group were higher than that in the control group (P < 0.05). The mRNA expression of TLR4, IL-1ß and TNF-α in spleen and jejunum decreased with the increase of dietary GML concentration (linear, P < 0.05). In conclusion, dietary GML supplementation could improve egg quality, antioxidant capacity, intestinal morphology and immune function in late-phase laying hens, and dietary 300 mg/kg GML inclusion is suggested.


Assuntos
Ração Animal , Antioxidantes , Galinhas , Dieta , Suplementos Nutricionais , Intestinos , Lauratos , Monoglicerídeos , Óvulo , Animais , Galinhas/fisiologia , Galinhas/imunologia , Galinhas/crescimento & desenvolvimento , Suplementos Nutricionais/análise , Dieta/veterinária , Feminino , Antioxidantes/metabolismo , Ração Animal/análise , Lauratos/administração & dosagem , Lauratos/farmacologia , Monoglicerídeos/administração & dosagem , Monoglicerídeos/farmacologia , Intestinos/efeitos dos fármacos , Intestinos/anatomia & histologia , Intestinos/fisiologia , Óvulo/efeitos dos fármacos , Óvulo/fisiologia , Distribuição Aleatória , Relação Dose-Resposta a Droga , Reprodução/efeitos dos fármacos
3.
Acta Biomater ; 177: 165-177, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354873

RESUMO

Four-dimensional (4D) printing unlocks new potentials for personalized biomedical implantation, but still with hurdles of lacking suitable materials. Herein, we demonstrate a bioresorbable shape memory elastomer (SME) with high elasticity at both below and above its phase transition temperature (Ttrans). This SME can be digital light 3D printed by co-polymerizing glycerol dodecanoate acrylate prepolymer (pre-PGDA) with acrylic acid monomer to form crosslinked Poly(glycerol dodecanoate acrylate) (PGDA)-Polyacrylic acid (PAA), or PGDA-PAA network. The printed complex, free-standing 3D structures with high-resolution features exhibit shape programming properties at a physiological temperature. By tuning the pre-PGDA weight ratios between 55 wt% and 70 wt%, Ttrans varies between 39.2 and 47.2 ℃ while Young's moduli (E) range 40-170 MPa below Ttrans with fractural strain (εf) of 170 %-200 %. Above Ttrans, E drops to 1-1.82 MPa which is close to those of soft tissue. Strikingly, εf of 130-180 % is still maintained. In vitro biocompatibility test on the material shows > 90 % cell proliferation and great cell attachment. In vivo vascular grafting trials underline the geometrical and mechanical adaptability of these 4D printed constructs in regenerating the aorta tissue. Biodegradation of the implants shows the possibility of their full replacement by natural tissue over time. To highlight its potential for personalized medicine, a patient-specific left atrial appendage (LAA) occluder was printed and implanted endovascularly into an in vitro heart model. STATEMENT OF SIGNIFICANCE: 4D printed shape-memory elastomer (SME) implants particularly designed and manufactured for a patient are greatly sought-after in minimally invasive surgery (MIS). Traditional shape-memory polymers used in these implants often suffer from issues like unsuitable transition temperatures, poor biocompatibility, limited 3D design complexity, and low toughness, making them unsuitable for MIS. Our new SME, with an adjustable transition temperature and enhanced toughness, is both biocompatible and naturally degradable, particularly in cardiovascular contexts. This allows implants, like biomedical scaffolds, to be programmed at room temperature and then adapt to the body's physiological conditions post-implantation. Our studies, including in vivo vascular grafts and in vitro device implantation, highlight the SME's effectiveness in aortic tissue regeneration and its promising applications in MIS.


Assuntos
Elastômeros , Alicerces Teciduais , Humanos , Elastômeros/química , Alicerces Teciduais/química , Glicerol , Implantes Absorvíveis , Lauratos , Impressão Tridimensional , Acrilatos
4.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(1): 54-63, 2024 Jan 09.
Artigo em Chinês | MEDLINE | ID: mdl-38172062

RESUMO

Objective: To investigate the role and related mechanisms of the LiaSR two-component system in acid tolerance and biofilm formation abilities of Streptococcus mutans (Sm) 593. Methods: The growth curves of various Sm strains in pH=5.5 brian heart infusion (BHI) medium were analyzed. And colony forming unit (CFU) was also performed to evaluate the acid tolerance of Sm. Laurdan probe, H+-K+adenosine triphosphate (ATP)ase activity analysis kit, proton permeability assay and real-time fluorescence quantitative PCR (RT-qPCR) were conducted to detect the acid tolerant mechanisms of LiaSR two-component system in Sm. Crystal violet staining, CFU, SYTOX probe and anthrone-sulfuric method were used to analyze the properties and structures of the Sm biofilms. RT-qPCR was conducted to detect the expression levels of underlying regulated genes. Results: The growth of mutants in acidic BHI were inhibited (P<0.05). The acid tolerance of mutants significantly decreased compared to the wild-type strain (P<0.05). In mutants, the activity of H+-ATPase (917.06±59.53 and 469.53±47.65) were elevated by 7.22-folds and 3.70-folds compared to the wild-type strain (127.00±50.71) (P<0.001, P<0.001) and the encoded gene atpD (3.39±0.21 and 1.94±0.17) were also elevated by 3.39-folds and 1.94-folds compared to the wild-type strain (1.00±0.15) (P<0.001, P=0.001). The Laurdan generalized polarization of mutants (0.18±0.04 and 0.18±0.05) increased significantly compared to the wild-type strain (0.08±0.05) (P=0.006, P=0.003) and the expression levels of fabM gene were decreased in mutants (0.52±0.11 and 0.57±0.05) by 1/2 (P=0.014, P=0.022). In liaR deletion mutant, the reduced terminal pH (4.76±0.01) can also be observed (P<0.001). The total amount of the biofilms of three Sm didn't show significant differences (P>0.05). But the number of viable bacteria of mutants' biofilms were decreased [Sm 593: (12.00±2.80)×107 CFU/ml; Sm ΔliaS: (2.95±1.13)×107 CFU/ml; Sm ΔliaR: (7.25±1.60)×107 CFU/ml] (P=0.001, P=0.024). The extracellular DNA were increased by 18.00-folds and 6.50-folds in mutants' biofilms (128.73±15.65 and 46.38±5.52) compared to the wild-type strain (7.16±3.62) (P<0.001, P=0.003). Water-soluble exopolysaccharides could be found up-regulated in liaS deletion mutant [(138.73±10.12) µg/ml] (P=0.003) along with the expression level of gtfC gene (1.65±0.39) (P=0.014). The expression level of gtfD were elevated by 47.43-folds and 16.90-folds in mutants (P<0.001, P=0.010). Conclusions: The LiaSR two-component system can promote the expression of fabM gene and increase the fluidity of Sm which contributes to acid tolerance. The LiaR can also decrease the proton permeability and restrict the entrance of H+. The LiaSR two-component system can negatively regulate the production of the extracellular matrix in Sm biofilm.


Assuntos
2-Naftilamina/análogos & derivados , Lauratos , Prótons , Streptococcus mutans , Streptococcus mutans/genética , Biofilmes
5.
Food Chem ; 442: 138418, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237293

RESUMO

Tyrosol is a natural phenolic compound with potent antioxidant properties in the field of food manufacturing. However, the low lipophilicity of tyrosol limited its application. Therefore, the construction of tyrosol laurate (Tyr-L) could effectively overcome the limitations of tyrosol. In this work, four ionic liquids (ILs) were applied for TYr-L preparation. Among them, the 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) showed the best catalytic performance. The maximum TYr-L yield was achieved (94.24 ± 1.23 %) under the optimal conditions (reaction temperature 119 °C, substrate ratio 1:6.7, IL dosage 9.2 %, and reaction time 12 h). The kinetic and thermodynamic parameters were also evaluated and it was found that Ea, ΔH, ΔS, and ΔG were 80.81 kJ·mol-1, 77.63 kJ·mol-1, -82.08 J·(mol·K)-1, and 109.89 kJ·mol-1, respectively. The acidic [Bmim]HSO4 demonstrated excellent reusability and stability, even after 6 cycles. Furthermore, TYr-L showed superior ABTS radical scavenging ability, which could be further applied in various industrial processes.


Assuntos
Antioxidantes , Líquidos Iônicos , Álcool Feniletílico/análogos & derivados , Líquidos Iônicos/química , Lauratos , Catálise
6.
J Sci Food Agric ; 104(4): 2015-2022, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37919879

RESUMO

BACKGROUND: This study aimed to determine the effects of a mixture of glycerol monolaurate and cinnamaldehyde (GCM) supplementation on the laying performance, egg quality, antioxidant capacity, and serum parameters of laying hens. A total of 1120 14-week-old Jingfen-1 strain laying hens with similar performance were randomly allocated to four dietary treatments: control, and GCM groups supplemented with 250, 500, or 1000 mg kg-1 for 12 weeks. RESULTS: Compared with the control group, GCM-supplemented groups significantly reduced (P < 0.05) the rate of unqualified eggs of laying hens aged 17-24 weeks. Supplementation of GCM significantly increased (P < 0.05) yolk color and serum glutathione peroxidase (GSH-Px) activity but decreased (P < 0.05) the hydrogen peroxide (H2 O2 ) content in the serum of laying hens at the age of 20 weeks. Furthermore, groups supplemented with GCM showed a significant increase (P < 0.05) in Haugh unit, yolk color, activities of total superoxide dismutase and GSH-Px, and the glucose content in serum, and a decrease (P < 0.05) in the content of urea nitrogen and H2 O2 and malondialdehyde in serum of laying hens at the age of 24 weeks. 500 mg kg-1 GCM supplementation significantly increased (P < 0.05) the number of large white follicles and 1000 mg kg-1 GCM supplementation decreased the number of large yellow follicles in 28-week-old laying hens. CONCLUSION: These results indicated that GCM supplementation has positive effects on reducing egg loss and improving egg quality in the early laying period of laying hens. © 2023 Society of Chemical Industry.


Assuntos
Acroleína , Antioxidantes , Galinhas , Lauratos , Monoglicerídeos , Animais , Feminino , Acroleína/análogos & derivados , Ração Animal/análise , Dieta , Suplementos Nutricionais
7.
mBio ; 15(2): e0282323, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38131669

RESUMO

Pseudomonas aeruginosa can survive in a myriad of environments, partially due to modifications of its lipid A, the membrane anchor of lipopolysaccharide. We previously demonstrated that divergent late acyltransferase paralogs, HtrB1 and HtrB2, add acyloxyacyl laurate to lipid A 2- and 2'-acyl chains, respectively. The genome of P. aeruginosa also has genes which encode two dioxygenase enzymes, LpxO1 and LpxO2, that individually hydroxylate a specific secondary laurate. LpxO1 acts on the 2'-acyloxyacyl laurate (added by HtrB2), whereas LpxO2 acts on the 2-acyloxyacyl laurate (added by HtrB1) in a site-specific manner. Furthermore, while both enzyme pairs are evolutionarily linked, phylogenomic analysis suggests the LpxO1/HtrB2 enzyme pair as being of ancestral origin, present throughout the Pseudomonas lineage, whereas the LpxO2/HtrB1 enzyme pair likely arose via horizontal gene transfer and has been retained in P. aeruginosa over time. Using a murine pulmonary infection model, we showed that both LpxO1 and LpxO2 enzymes are functional in vivo, as direct analysis of in vivo lipid A structure from bronchoalveolar lavage fluid revealed 2-hydroxylated lipid A. Gene expression analysis reveals increased lpxO2 but unchanged lpxO1 expression in vivo, suggesting differential regulation of these enzymes during infection. We also demonstrate that loss-of-function mutations arise in lpxO1 and lpxO2 during chronic lung infection in people with cystic fibrosis (CF), indicating a potential role for pathogenesis and airway adaptation. Collectively, our study characterizes lipid A 2-hydroxylation during P. aeruginosa airway infection that is regulated by two distinct lipid A dioxygenase enzymes.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen that causes severe infection in hospitalized and chronically ill individuals. During infection, P. aeruginosa undergoes adaptive changes to evade host defenses and therapeutic interventions, increasing mortality and morbidity. Lipid A structural alteration is one such change that P. aeruginosa isolates undergo during chronic lung infection in CF. Investigating genetic drivers of this lipid A structural variation is crucial in understanding P. aeruginosa adaptation during infection. Here, we describe two lipid A dioxygenases with acyl-chain site specificity, each with different evolutionary origins. Further, we show that loss of function in these enzymes occurs in CF clinical isolates, suggesting a potential pathoadaptive phenotype. Studying these bacterial adaptations provides insight into selection pressures of the CF airway on P. aeruginosa phenotypes that persist during chronic infection. Understanding these adaptive changes may ultimately provide clinicians better control over bacterial populations during chronic infection.


Assuntos
Fibrose Cística , Dioxigenases , Infecções por Pseudomonas , Humanos , Animais , Camundongos , Pseudomonas aeruginosa/metabolismo , Lipídeo A/metabolismo , Infecção Persistente , Lauratos/metabolismo , Hidroxilação , Fibrose Cística/microbiologia , Infecções por Pseudomonas/microbiologia , Dioxigenases/metabolismo
8.
Langmuir ; 39(50): 18390-18402, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38048524

RESUMO

Reconstitution of a transmembrane protein in model lipid systems allows studying its structure and dynamics in isolation from the complexity of the natural environment. This approach also provides a well-defined environment for studying the interactions of proteins with lipids. In this work, we describe the FRET-GP method, which utilizes Förster resonance energy transfer (FRET) to specifically probe the nanoenvironment of a transmembrane domain. The tryptophan residues flanking this domain act as efficient FRET donors, while Laurdan acts as acceptor. The fluorescence of this solvatochromic probe is quantified using generalized polarization (GP) to report on lipid mobility in the vicinity of the transmembrane domain. We applied FRET-GP to study the transmembrane peptide WALP incorporated in liposomes. We found that the direct excitation of Laurdan to its second singlet state strongly contributes to GP values measured in FRET conditions. Removal of this parasitic contribution was essential for proper determination of GPFRET - the local analogue of classical GP parameter. The presence of WALP significantly increased both parameters but the local effects were considerably stronger (GPFRET ≫ GP). We conclude that WALP restricts lipid movement in its vicinity, inducing lateral inhomogeneity in membrane fluidity. WALP was also found to influence lipid phase transition. Our findings demonstrated that FRET-GP simultaneously provides local and global results, thereby enhancing the depth of information obtained from the measurement. We highlight the simplicity and sensitivity of the method, but also discuss its potential and limitations in studying protein-lipid interactions.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Lauratos , Lipossomos/química , Peptídeos , Corantes Fluorescentes
9.
Artigo em Inglês | MEDLINE | ID: mdl-37271251

RESUMO

Lipid droplets (LD) are important regulators of lipid metabolism and are implicated in several diseases. However, the mechanisms underlying the roles of LD in cell pathophysiology remain elusive. Hence, new approaches that enable better characterization of LD are essential. This study establishes that Laurdan, a widely used fluorescent probe, can be used to label, quantify, and characterize changes in cell LD properties. Using lipid mixtures containing artificial LD we show that Laurdan GP depends on LD composition. Accordingly, enrichment in cholesterol esters (CE) shifts Laurdan GP from ∼0.60 to ∼0.70. Moreover, live-cell confocal microscopy shows that cells present multiple LD populations with distinctive biophysical features. The hydrophobicity and fraction of each LD population are cell type dependent and change differently in response to nutrient imbalance, cell density, and upon inhibition of LD biogenesis. The results show that cellular stress caused by increased cell density and nutrient overload increased the number of LD and their hydrophobicity and contributed to the formation of LD with very high GP values, likely enriched in CE. In contrast, nutrient deprivation was accompanied by decreased LD hydrophobicity and alterations in cell plasma membrane properties. In addition, we show that cancer cells present highly hydrophobic LD, compatible with a CE enrichment of these organelles. The distinct biophysical properties of LD contribute to the diversity of these organelles, suggesting that the specific alterations in their properties might be one of the mechanisms triggering LD pathophysiological actions and/or be related to the different mechanisms underlying LD metabolism.


Assuntos
Lauratos , Gotículas Lipídicas , Gotículas Lipídicas/metabolismo , Lauratos/análise , Lauratos/metabolismo , Metabolismo dos Lipídeos , 2-Naftilamina/análise , 2-Naftilamina/metabolismo
10.
ACS Appl Mater Interfaces ; 14(50): 55332-55341, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36508194

RESUMO

The transdermal delivery of hydrophilic drugs remains challenging owing to their poor ability to permeate the skin; formulation with oil media is difficult without adding chemical permeation enhancers or co-solvents. Herein, we synthesized 12 oil-miscible ionic liquid (IL) drugs comprising lidocaine-, imipramine-, and levamisole (Lev)-hydrochloride with fatty acid permeation enhancers, i.e., laurate, oleate, linoleate, and stearate as counterions. A set of in vitro and in vivo studies was performed to investigate the potency and deliverability of the transdermal drug formulations. All of the synthesized compounds were freely miscible with pharmaceutically acceptable solvents/agents (i.e., ethanol, N-methyl pyrrolidone, Tween 20, and isopropyl myristate (IPM)). In vitro permeation studies revealed that the oleate-based Lev formulation had 2.6-fold higher skin permeation capability than the Lev salts and also superior ability compared with the laurate-, linoleate-, and stearate-containing samples. Upon in vivo transdermal administration to mice, the peak plasma concentration, elimination half-life, and area under the plasma concentration curve values of Lev-IL were 4.6-, 2.9-, and 5.4-fold higher, respectively, than those of the Lev salt. Furthermore, in vitro skin irritation and in vivo histological studies have demonstrated that Lev-IL has excellent biocompatibility compared with a conventional ionic liquid-based carrier. The results indicate that oil-miscible IL-based drugs provide a simple and scalable strategy for the design of effective transdermal drug delivery systems.


Assuntos
Líquidos Iônicos , Camundongos , Animais , Administração Cutânea , Líquidos Iônicos/química , Absorção Cutânea , Estearatos , Lauratos , Ácido Linoleico , Ácido Oleico/farmacologia , Pele , Portadores de Fármacos/química , Solventes , Permeabilidade , Sistemas de Liberação de Medicamentos/métodos
11.
Fish Shellfish Immunol ; 128: 634-643, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35987502

RESUMO

In order to evaluate the effects of glycerol monolaurate (GML) on the growth performance, immunology function, disease resistance and intestinal microbiota for hybrid groupers. Seven levels of GML (0, 600, 1200, 1800, 2400, 3000 and 3600 mg/kg) were added to diets and were noted as the G1 (control group), G2, G3, G4, G5, G6 and G7, respectively. Each experimental diet was fed to triplicate groups of 30 juvenile groupers for 8 weeks. The FBW, WGR and SGR were significantly higher and FCR was significantly lower in the G4 group compared to the G1 group (P < 0.05). Serum immune enzyme activities (ACP, AKP and LZM) rose and then fell and had the highest values in the G4 group (P < 0.05). The expression of TNF-α and IL6 in head kidney was significantly inhibited (P < 0.05), while the expression of TLR22 was increased (P < 0.05). After the Vibrio parahaemolyticus challenge test, ACP and AKP activities were increased in the G4 and G5 groups, while mortality was lower than in the G1 group (P < 0.05). GML significantly modulated the abundance of intestinal microbiota, with the G4 and G5 groups increasing the relative abundance of the Firmicutes and Bacillus, respectively (P < 0.05). The alpha diversity of the G5 group (Sob, Chao1 and ACE) was significantly higher than that of the G1 group (P < 0.05). In summary, the optimal level of GML was 1700 mg/kg according to the regression equation model fitted by the WGR index.


Assuntos
Bass , Microbioma Gastrointestinal , Ração Animal/análise , Animais , Dieta/veterinária , Resistência à Doença , Ácidos Graxos , Interleucina-6 , Lauratos , Monoglicerídeos , Fator de Necrose Tumoral alfa
12.
Food Chem ; 397: 133767, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35905623

RESUMO

In this study, soybean oil-based oleogels were prepared using soy-protein isolate (SPI) and glycerol monolaurate (GML) in an emulsion-template approach. The rheological, texture, microstructure, and oil-retention properties of the obtained oleogels were analyzed. Results showed that the soy oil-based oleogel prepared with 6 wt% GML exhibited high oil loss, low-hardness, and needle-like morphology compared to the soy-oil/SPI-based oleogel. On the other hand, soy oil-based /SPI-based oleogels structured by 3 or 6 wt% GML presented moderate thermal-stability and lowest oil loss than those prepared without GML. Furthermore, SPI-based oleogel containing 6 wt% GML showed highest free fatty acids release (62.07%) with significantly improved elastic modulus and apparent viscosity. Additionally, the obtained oleogels displayed the occurrence of van der Waals interactions and intermolecular hydrogen bonds, presenting enhanced thermal stability. These results contribute to a better understanding of oleogelation-based emulsions for formulating trans-free and low-saturated foodstuffs with desired physical and functional properties.


Assuntos
Monoglicerídeos , Óleo de Soja , Emulsões/química , Lauratos , Monoglicerídeos/química , Compostos Orgânicos , Óleo de Soja/química , Proteínas de Soja/química
13.
Food Chem ; 386: 132776, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35509162

RESUMO

Four types of pure lipid, namely lauric acid (LA), glycerol monolaurate (MAG), diglycerol laurate (DAG) and triglyceride laurate (TAG) were used to prepare oleofoams. The relationship between crystal profiles and their performance in oleofoams was established. DAG formed small needle-like crystals while MAG formed large flake-like crystals in oleogels, and crystal shells around air bubbles were observed in LA-, MAG- and DAG-based oleofoams. LA and DAG displayed higher over-run whereas DAG-stabilised foam possessed smaller bubbles and higher physical stability due to the presence of small ß and ß' crystals. Upon heating, DAG and TAG-based foams showed varying extents of oil drainage indicating the crystals were distributed in a different manner. Therefore, DAG was shown to be an excellent gelator in the fabrication of ultra-stable oleofoams. This work extends the lipid varieties with nutritional features and allows a better understanding on the stabilization mechanisms of lauric acid lipids in oleofoams.


Assuntos
Ésteres , Glicerol , Diglicerídeos/química , Lauratos , Ácidos Láuricos
14.
Fish Shellfish Immunol ; 125: 65-73, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35533975

RESUMO

This study aims to investigate the effects of glycerol monolaurate (GML) on growth performance, non-specific immunity, antioxidant capacity and intestinal microflora in Chinese mitten crabs. The crabs were randomly arranged to three experimental diets groups containing 0 (control group), 1000 mg/kg GML (GML1000 group), and 2000 mg/kg GML (GML2000 group), respectively. After 8 weeks of breeding, results showed a better growth performance in GML2000 group, with a higher PWG, SGR and lower FCR (P < 0.05). Meanwhile, in GML2000 group the activities of phenoloxidase, alkaline phosphatase, acid phosphatase and lysozyme in hemolymph were increased (P < 0.05), also the activities of hemolymph and hepatopancreas superoxide dismutase (SOD) and glutathione peroxidase (GPx) were increased in hepatopancreas (P < 0.05). While malondialdehyde (MDA) concentrations were lower significantly (P < 0.05) both in GML1000 and GML2000 groups. Furthermore, the mRNA expression of TLR1, TLR2, which related to the Toll pathway were increased (P < 0.05). Supplementation of 2000 mg/kg GML up-regulated the expression of ALF and LZM (P < 0.05), and down-regulated the expression of caspase-3 (P < 0.05). The abundance of Firmicutes increased in GML2000 group (P < 0.05), and Shewanella was significantly increased (P < 0.05) in both GML1000 and GML2000 groups. In conclusion, dietary supplemented with GML enhanced the growth performance and antioxidant capacity, enhanced hemolymph immune enzymes activities and antimicrobial peptides expression through regulating the proPO system and Toll pathway, and improved gut microflora in Chinese mitten crabs.


Assuntos
Braquiúros , Microbioma Gastrointestinal , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Braquiúros/metabolismo , China , Dieta/veterinária , Suplementos Nutricionais/análise , Imunidade Inata , Lauratos , Monoglicerídeos
15.
J Anim Sci ; 100(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35167667

RESUMO

This experiment was conducted to investigate the effects of dietary supplementation of α-glycerol monolaurate (α-GML) on the growth performance, nutrient digestibility, serum profiles, intestinal morphology, and gut microbiota of weaned piglets. A total of 96 healthy 28-d-old (Duroc × Landrace × Yorkshire) weaned piglets with body weight of 8.34 ± 0.05 kg were randomly divided into 2 treatment groups with 6 replicate pens and 8 piglets per pen. The control group was fed a basal diet and the experimental group was fed the basal diet supplemented with 1,000 mg/kg α-GML. The experiment lasted for 28 d. Dietary supplementation with α-GML had no effect on average daily gain, average daily feed intake, or gain to feed ratio in piglets (P > 0.05); however, it reduced (P < 0.05) diarrhea rate of piglets on days 15 to 28. The apparent total tract digestibility of dry matter (DM), crude protein (CP), ether extract (EE), and gross energy (GE) on day 14, and DM, organic matter, CP, EE, and GE on day 28 increased (P < 0.05) with α-GML supplementation. Moreover, higher (P < 0.05) glutathione peroxidase activity and interleukin-10 (IL-10) concentration, and lower (P < 0.05) malondialdehyde and tumor necrosis factor-α concentrations were observed in piglets supplemented with α-GML compared with the control group on day 14. Compared with the control group, the villus height/crypt depth in the duodenum and villus height in the jejunum and ileum were significantly greater (P < 0.05) in the α-GML group. Dietary α-GML supplementation significantly increased (P < 0.05) the relative abundance of Firmicutes, while decreasing (P < 0.05) Bacteroidota and Campilobacterota in the cecal contents; significantly increased (P < 0.05) the relative proportion of Lactobacillus and Blautia species, reduced (P < 0.05) Eubacterium_rectale_ATCC_33656, Campylobacter, and uncultured_bacterium_Alloprevotella species. Thus, dietary α-GML supplementation at 1,000 mg/kg reduces diarrhea rate, improves intestinal morphology, nutrient digestibility, antioxidant capacity, and immune status, and ameliorates gut microbiota in weaned piglets.


Glycerol monolaurate (GML) is naturally present in breast milk as well as other natural sources such as coconut oil and is widely used as a food additive. Dietary α-GML is used in animal production due to its safe-guarding health and growth-promoting effects. In the present study, α-GML was evaluated for growth performance, blood parameters, and intestinal health in piglets. Dietary α-GML helped piglets digest dry matter, crude protein, ether extract, and gross energy in feed. The blood parameters and intestinal structure of piglets fed the diet containing 1,000 mg/kg α-GML were improved. In addition, α-GML supplementation promoted the colonization of beneficial bacteria and inhibited the number of harmful bacteria. In the current study, dietary α-GML was responsible for improving the health status, intestinal morphology, and digestion and absorption of nutrients of weaned piglets with less diarrhea.


Assuntos
Microbioma Gastrointestinal , Ração Animal/análise , Animais , Suplementos Nutricionais/análise , Lauratos/farmacologia , Monoglicerídeos , Nutrientes , Suínos , Desmame
16.
Food Funct ; 12(21): 11024-11032, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657941

RESUMO

Helicobacter pylori infection is the most common cause of gastritis and gastric ulcers. Considering the severe side effects of current antibiotic therapies, it is crucial to find an alternate treatment for H. pylori infection. In this study, we investigated the anti-H. pylori effects of a newly isolated strain of Lactobacillus plantarum (pH3A), monolaurin, grapefruit seed extract (GSE), and their synergies in vitro and in vivo. Monolaurin and GSE suppressed H. pylori growth and urease activity at a minimal inhibitory concentration (MIC) of 62.5 ppm. Live cells and cell-free culture supernatant (CFCS) of L. plantarum pH3A with or without pH adjustment also significantly inhibited H. pylori growth. Although synergy was not observed between monolaurin and GSE, the addition of CFCS significantly enhanced their anti-H. pylori activities. Moreover, L. plantarum pH3A significantly decreased the ability of H. pylori to adhere to AGS cells and interleukin (IL)-8 production in the H. pylori-stimulated AGS cell line. The addition of GSE or monolaurin strengthened these effects. In the in vivo study, H. pylori colonization of the mouse stomach and total serum IgG production were significantly reduced by L. plantarum pH3A treatment, but the addition of monolaurin or GSE did not contribute to these anti-H. pylori activities. Therefore, the L. plantarum pH3A strain can potentially be applied as an alternative anti-H. pylori therapy, but evidence of its synergy with monolaurin or GSE in vivo is still lacking.


Assuntos
Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/fisiologia , Lactobacillus plantarum/fisiologia , Lauratos/farmacologia , Monoglicerídeos/farmacologia , Extratos Vegetais/farmacologia , Adenocarcinoma , Animais , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Citrus paradisi , Regulação da Expressão Gênica/efeitos dos fármacos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Probióticos , Organismos Livres de Patógenos Específicos , Estômago/microbiologia , Neoplasias Gástricas
17.
Front Immunol ; 12: 713485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630388

RESUMO

This study was conducted to investigate the impact of glycerol monolaurate (GML) on performance, immunity, intestinal barrier, and cecal microbiota in broiler chicks. A total of 360 one-day-old broilers (Arbor Acres) with an average weight of 45.7 g were randomly allocated to five dietary groups as follows: basal diet and basal diets complemented with 300, 600, 900, or 1200 mg/kg GML. Samples were collected at 7 and 14 days of age. Results revealed that feed intake increased (P < 0.05) after 900 and 1200 mg/kg GML were administered during the entire 14-day experiment period. Dietary GML decreased (P < 0.05) crypt depth and increased the villus height-to-crypt depth ratio of the jejunum. In the serum and jejunum, supplementation with more than 600 mg/kg GML reduced (P < 0.05) interleukin-1ß, tumor necrosis factor-α, and malondialdehyde levels and increased (P < 0.05) the levels of immunoglobulin G, jejunal mucin 2, total antioxidant capacity, and total superoxide dismutase. GML down-regulate (P < 0.05) jejunal interleukin-1ß and interferon-γ expression and increased (P < 0.05) the mRNA level of zonula occludens 1 and occludin. A reduced (P < 0.05) expression of toll-like receptor 4 and nuclear factor kappa-B was shown in GML-treated groups. In addition, GML modulated the composition of the cecal microbiota of the broilers, improved (P < 0.05) microbial diversity, and increased (P < 0.05) the abundance of butyrate-producing bacteria. Spearman's correlation analysis revealed that the genera Barnesiella, Coprobacter, Lachnospiraceae, Faecalibacterium, Bacteroides, Odoriacter, and Parabacteroides were related to inflammation and intestinal integrity. In conclusion, GML ameliorated intestinal morphology and barrier function in broiler chicks probably by regulating intestinal immune and antioxidant balance, as well as intestinal microbiota.


Assuntos
Antioxidantes/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Lauratos/farmacologia , Monoglicerídeos/farmacologia , Animais , Galinhas , Citocinas/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Mucosa Intestinal/patologia , Metagenoma , Metagenômica/métodos , Mucinas/genética , Mucinas/metabolismo
18.
J Food Sci ; 86(10): 4717-4729, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34553787

RESUMO

(-)-Epigallocatechin-3-O-gallate(EGCG) was enzymatically modified to enhance the lipophilicity and the antioxidant property. The determination of optimal reaction conditions are as follows: Lipase DF "Amano" 15 and acetone were used as catalyst and solvent, respectively. Equal molar of EGCG and vinyl laurate (1:1); lipase addition of 6.0% (w/w of total substrates); reaction temperature of 50°C and reaction time of 96 h, which obtained the conversion rate of EGCG at 80.1%. The structure of EGCG lauroyl derivatives were 5″-O-lauroyl-EGCG, 3″,5″-2-O-lauroyl-EGCG, and 5',3″,5″-3-O-lauroyl-EGCG, identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR). Compared with the logP of precursor EGCG (0.69 ± 0.03), the logP of EGCG lauroyl derivatives was 1.37 ± 0.19, 2.27 ± 0.33, and 3.28 ± 0.37, increasing by 0.98, 2.28, and 3.75 times, respectively (p < 0.05), suggesting the grafted fatty acid chains make EGCG derivatives more lipophilic, and the lipid solubility gradually increased as the number of substituents increased. Furthermore, EGCG lauroyl derivatives had excellent lipid oxidation than that of EGCG. The POVs (peroxide values) of soybean oil with mono-, di-, tri-lauroyl EGCG were significantly reduced by 42%, 47%, and 57% than that of EGCG at 21 days, respectively, indicating the antioxidative inhibition of these derivatives decreased with the increase in substituents. This indicates that these derivatives have broad prospects of the antioxidant application while improving their solubility properties in lipophilic environments/high-fat food. Practical Application: The lipophilic esterification reaction of EGCG catalyzed by new catalytic lipase DF "Amano" 15 was carried out in a non-aqueous solvent.Various reaction factors on a higher conversion rate of EGCG lauroyl derivatives were evaluated. The lipophilicity and antioxidant properties of EGCG lauroyl derivatives were much excellent than that of parent EGCG.


Assuntos
Catequina/análogos & derivados , Lauratos , Compostos de Vinila , Antioxidantes/química , Antioxidantes/farmacologia , Catequina/química , Catequina/farmacologia , Esterificação , Lauratos/química , Lauratos/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Compostos de Vinila/química , Compostos de Vinila/farmacologia
19.
BMC Vet Res ; 17(1): 312, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563182

RESUMO

BACKGROUND: This experiment tested the impact of the combined supplementation of glycerol monolaurate (GLM) and oregano essential oil (EO) to broiler diets. Growth performance, metabolic response, immune status, apparent ileal digestibility coefficient (AID%), and intestinal histomorphology were assessed. Three-day-old Ross-308 broilers (76.62 g ± 0.50, n = 240) were randomly allocated into 4 experimental groups (6 replicates/group and 10 chicks/replicate). Birds were fed corn-soybean meal basal diets supplemented with four levels of GLM and oregano EO blend: 0, 0.15, 0.45, and 0.75% for 35 days. RESULTS: During the starter period, dietary GLM and oregano EO did not show significant (P > 0.05) changes in growth performance. During the grower period, GLM and oregano EO supplemented groups showed a linear and quadratic decline in FCR. During the finisher and overall performance, a linear increase in the body weight (BW), body weight gain (BWG), the protein efficiency ratio (PER), and relative growth rate (RGR), and a linear decrease in the FCR at 0.75% dietary level of GLM and oregano EO compared to the control. The broken-line regression model showed that the optimum dietary level of GLM and oregano EO blend was 0.58% based on final BW and FCR. The 0.45% or 0.15% dietary level of supplemented additives lowered (P < 0.05) the AID% of threonine and arginine, respectively, with no change in the AID% of other assessed amino acids at all dietary levels. Muscle thickness in jejunum and ileum in all dietary supplemented groups was increased (P < 0.05); however, such increase (P < 0.05) in the duodenum was shown at 0.45 and 0.75% dietary levels. All GLM and oregano EO supplemented groups showed increased (P < 0.05) duodenal, jejunal, and ileal villus height. The 0.15 and/or 0.75% dietary levels of supplemented additives increased (P < 0.05) the ileal and duodenal crypt depth, respectively, with a decreased (P < 0.05) duodenal crypt depth at 0.15% dietary level. The goblet cell count in ileum decreased (P < 0.05) in all GLM and oregano EO supplemented groups, but this decreased count (P < 0.05) was detected in jejunum at 0.45 and 0.75% dietary levels. The GLM and oregano EO supplemented groups did not show significant (P > 0.05) changes in the assessed metabolic and immune status parameters. Economically, the total return and performance index was increased at 0.75% dietary level. CONCLUSION: Better growth performance was achieved at a 0.75 % dietary level of GLM and oregano EO by improving most intestinal morphometric measures. The optimum dietary level detected was 0.58%. The lack of influence of supplemented additives on chickens' immune and metabolic responses could indicate a lack of synergy between GLM and oregano EO.


Assuntos
Galinhas/fisiologia , Suplementos Nutricionais , Digestão/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Lauratos/farmacologia , Monoglicerídeos/farmacologia , Óleos Voláteis/farmacologia , Origanum/química , Aminoácidos/metabolismo , Animais , Dieta/veterinária
20.
ACS Appl Mater Interfaces ; 13(25): 29936-29948, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34143617

RESUMO

Alzheimer's disease (AD) is a major cause of dementia characterized by the overexpression of transmembrane amyloid precursor protein and its neurotoxic byproduct amyloid beta (Aß). A small peptide of considerable hydrophobicity, Aß is aggregation prone catalyzed by the presence of cell membranes, among other environmental factors. Accordingly, current AD mitigation strategies often aim at breaking down the Aß-membrane communication, yet no data is available concerning the cohesive interplay of the three key entities of the cell membrane, Aß, and its inhibitor. Using a lipophilic Laurdan dye and confocal fluorescence microscopy, we observed cell membrane perturbation and actin reorganization induced by Aß oligomers but not by Aß monomers or amyloid fibrils. We further revealed recovery of membrane fluidity by ultrasmall MoS2 quantum dots, also shown in this study as a potent inhibitor of Aß amyloid aggregation. Using discrete molecular dynamics simulations, we uncovered the binding of MoS2 and Aß monomers as mediated by hydrophilic interactions between the quantum dots and the peptide N-terminus. In contrast, Aß oligomers and fibrils were surface-coated by the ultrasmall quantum dots in distinct testudo-like, reverse protein-corona formations to prevent their further association with the cell membrane and adverse effects downstream. This study offers a crucial new insight and a viable strategy for regulating the amyloid aggregation and membrane-axis of AD pathology with multifunctional nanomedicine.


Assuntos
Peptídeos beta-Amiloides , Dissulfetos/química , Fluidez de Membrana/fisiologia , Molibdênio/química , Pontos Quânticos/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Actinas/química , Actinas/metabolismo , Doença de Alzheimer , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lauratos/química , Microscopia Confocal , Simulação de Dinâmica Molecular , Nanomedicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA