Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Immunohorizons ; 8(5): 384-396, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809232

RESUMO

The mammalian Siglec receptor sialoadhesin (Siglec1, CD169) confers innate immunity against the encapsulated pathogen group B Streptococcus (GBS). Newborn lung macrophages have lower expression levels of sialoadhesin at birth compared with the postnatal period, increasing their susceptibility to GBS infection. In this study, we investigate the mechanisms regulating sialoadhesin expression in the newborn mouse lung. In both neonatal and adult mice, GBS lung infection reduced Siglec1 expression, potentially delaying acquisition of immunity in neonates. Suppression of Siglec1 expression required interactions between sialic acid on the GBS capsule and the inhibitory host receptor Siglec-E. The Siglec1 gene contains multiple STAT binding motifs, which could regulate expression of sialoadhesin downstream of innate immune signals. Although GBS infection reduced STAT1 expression in the lungs of wild-type newborn mice, we observed increased numbers of STAT1+ cells in Siglece-/- lungs. To test if innate immune activation could increase sialoadhesin at birth, we first demonstrated that treatment of neonatal lung macrophages ex vivo with inflammatory activators increased sialoadhesin expression. However, overcoming the low sialoadhesin expression at birth using in vivo prenatal exposures or treatments with inflammatory stimuli were not successful. The suppression of sialoadhesin expression by GBS-Siglec-E engagement may therefore contribute to disease pathogenesis in newborns and represent a challenging but potentially appealing therapeutic opportunity to augment immunity at birth.


Assuntos
Animais Recém-Nascidos , Camundongos Knockout , Ácido N-Acetilneuramínico , Fator de Transcrição STAT1 , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico , Infecções Estreptocócicas , Streptococcus agalactiae , Animais , Camundongos , Streptococcus agalactiae/imunologia , Ácido N-Acetilneuramínico/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Imunidade Inata , Camundongos Endogâmicos C57BL , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Feminino , Macrófagos/imunologia , Macrófagos/metabolismo , Lectinas/metabolismo , Lectinas/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B
2.
Cell Mol Immunol ; 21(7): 707-722, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789529

RESUMO

B-1a cells, an innate-like cell population, are crucial for pathogen defense and the regulation of inflammation through their release of natural IgM and IL-10. In sepsis, B-1a cell numbers are decreased in the peritoneal cavity as they robustly migrate to the spleen. Within the spleen, migrating B-1a cells differentiate into plasma cells, leading to alterations in their original phenotype and functionality. We discovered a key player, sialic acid-binding immunoglobulin-like lectin-G (Siglec-G), which is expressed predominantly on B-1a cells and negatively regulates B-1a cell migration to maintain homeostasis. Siglec-G interacts with CXCR4/CXCL12 to modulate B-1a cell migration. Neutrophils aid B-1a cell migration via neutrophil elastase (NE)-mediated Siglec-G cleavage. Human studies revealed increased NE expression in septic patients. We identified an NE cleavage sequence in silico, leading to the discovery of a decoy peptide that protects Siglec-G, preserves peritoneal B-1a cells, reduces inflammation, and enhances sepsis survival. The role of Siglec-G in inhibiting B-1a cell migration to maintain their inherent phenotype and function is compromised by NE in sepsis, offering valuable insights into B-1a cell homeostasis. Employing a small decoy peptide to prevent NE-mediated Siglec-G cleavage has emerged as a promising strategy to sustain peritoneal B-1a cell homeostasis, alleviate inflammation, and ultimately improve outcomes in sepsis patients.


Assuntos
Homeostase , Neutrófilos , Sepse , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Sepse/imunologia , Animais , Humanos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Movimento Celular , Camundongos , Camundongos Endogâmicos C57BL , Elastase de Leucócito/metabolismo , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B
3.
Commun Biol ; 7(1): 430, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594506

RESUMO

Despite recent advances in cancer immunotherapy, pancreatic ductal adenocarcinoma (PDAC) remains unresponsive due to an immunosuppressive tumor microenvironment, which is characterized by the abundance of cancer-associated fibroblasts (CAFs). Once identified, CAF-mediated immune inhibitory mechanisms could be exploited for cancer immunotherapy. Siglec receptors are increasingly recognized as immune checkpoints, and their ligands, sialic acids, are known to be overexpressed by cancer cells. Here, we unveil a previously unrecognized role of sialic acid-containing glycans on PDAC CAFs as crucial modulators of myeloid cells. Using multiplex immunohistochemistry and transcriptomics, we show that PDAC stroma is enriched in sialic acid-containing glycans compared to tumor cells and normal fibroblasts, and characterized by ST3GAL4 expression. We demonstrate that sialic acids on CAF cell lines serve as ligands for Siglec-7, -9, -10 and -15, distinct from the ligands on tumor cells, and that these receptors are found on myeloid cells in the stroma of PDAC biopsies. Furthermore, we show that CAFs drive the differentiation of monocytes to immunosuppressive tumor-associated macrophages in vitro, and that CAF sialylation plays a dominant role in this process compared to tumor cell sialylation. Collectively, our findings unravel sialic acids as a mechanism of CAF-mediated immunomodulation, which may provide targets for immunotherapy in PDAC.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Macrófagos/metabolismo , Polissacarídeos/metabolismo , Microambiente Tumoral
4.
Int Immunopharmacol ; 130: 111771, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38430807

RESUMO

BACKGROUND: Siglec9 has been identified as an immune checkpoint molecule on tumor-associated macrophages (TAMs). Nevertheless, the expression profile and clinical significance of Siglec9 + TAMs in colon cancer (CC) are still not fully understood. METHODS: Two clinical cohorts from distinct medical centers were retrospectively enrolled. Immunohistochemistry and immunofluorescence were conducted to evaluate the infiltration of immune cells. Single-cell RNA sequencing and flow cytometry were utilized to identify the impact of Siglec9 + TAMs on the tumor immune environment, which was subsequently validated through bioinformatics analysis of the TCGA database. Prognosis and the benefit of adjuvant chemotherapy (ACT) were also evaluated using Cox regression analysis and the Kaplan-Meier method. RESULTS: High infiltration of Siglec9 + TAMs was associated with worse prognosis and better benefit from 6-month ACT. Siglec9 + TAMs contributed to immunoevasion by promoting the infiltration of immunosuppressive cells and the dysfunction process of CD8 + T cells. Additionally, high infiltration of Siglec9 + TAMs was associated with the mesenchymal-featured subtype and overexpression of the VEGF signaling pathway, which was validated by the strongest communication between Siglec9 + TAMs and vascular endothelial cells. CONCLUSIONS: Siglec9 + TAMs may serve as a biomarker for prognosis and response to ACT in CC. Furthermore, the immunoevasive contexture and angiogenesis stimulated by Siglec9 + TAMs suggest potential treatment combinations for CC patients.


Assuntos
Antígenos CD , Neoplasias do Colo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Macrófagos Associados a Tumor , Humanos , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/patologia , Células Endoteliais , Prognóstico , Estudos Retrospectivos , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia , Antígenos CD/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Masculino , Feminino , Adulto , Pessoa de Meia-Idade
5.
BMC Cancer ; 24(1): 328, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468240

RESUMO

The sialic acid binding Ig like lectin 15 (Siglec-15) was previously identified as tumor immune suppressor gene in some human cancers with elusive molecular mechanism to be elucidated. The continuous focus on both clinical and basic biology of bladder cancer leads us to characterize aberrant abundance of BACH1-IT2 associating with stabilization of Siglec-15, which eventually contributes to local immune suppressive microenvironment and therefore tumor advance. This effect was evidently mediated by miR-4786-5p. BACH1-IT2 functions in this scenario as microRNA sponge, and competitively conceals miR-4786 and up-regulates cancer cell surface Siglec-15. The BACH1-IT2-miR-4786-Siglec-15 axis significantly influences activation of immune cell co-culture. In summary, our data highlights the critical involvements of BACH1-IT2 and miR-4786 in immune evasion in bladder cancer, which hints the potential for both therapeutic and prognostic exploitation.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Bexiga Urinária/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Microambiente Tumoral/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética
6.
Nat Immunol ; 25(4): 622-632, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454157

RESUMO

The development of a vaccine specific to severe acute respiratory syndrome coronavirus 2 Omicron has been hampered due to its low immunogenicity. Here, using reverse mutagenesis, we found that a phenylalanine-to-serine mutation at position 375 (F375S) in the spike protein of Omicron to revert it to the sequence found in Delta and other ancestral strains significantly enhanced the immunogenicity of Omicron vaccines. Sequence FAPFFAF at position 371-377 in Omicron spike had a potent inhibitory effect on macrophage uptake of receptor-binding domain (RBD) nanoparticles or spike-pseudovirus particles containing this sequence. Omicron RBD enhanced binding to Siglec-9 on macrophages to impair phagocytosis and antigen presentation and promote immune evasion, which could be abrogated by the F375S mutation. A bivalent F375S Omicron RBD and Delta-RBD nanoparticle vaccine elicited potent and broad nAbs in mice, rabbits and rhesus macaques. Our research suggested that manipulation of the Siglec-9 pathway could be a promising approach to enhance vaccine response.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Coelhos , Anticorpos Neutralizantes , Anticorpos Antivirais , Macaca mulatta , Macrófagos , Nanovacinas , Fagocitose , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
7.
Cell Mol Immunol ; 21(5): 495-509, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38448555

RESUMO

The overexpression of sialic acids on glycans, called hypersialylation, is a common alteration found in cancer cells. Sialylated glycans can enhance immune evasion by interacting with sialic acid-binding immunoglobulin-like lectin (Siglec) receptors on tumor-infiltrating immune cells. Here, we investigated the effect of sialylated glycans and their interaction with Siglec receptors on myeloid-derived suppressor cells (MDSCs). We found that MDSCs derived from the blood of lung cancer patients and tumor-bearing mice strongly express inhibitory Siglec receptors and are highly sialylated. In murine cancer models of emergency myelopoiesis, Siglec-E knockout in myeloid cells resulted in prolonged survival and increased tumor infiltration of activated T cells. Targeting suppressive myeloid cells by blocking Siglec receptors or desialylation strongly reduced their suppressive potential. We further identified CCL2 as a mediator involved in T-cell suppression upon interaction between sialoglycans and Siglec receptors on MDSCs. Our results demonstrated that sialylated glycans inhibit anticancer immunity by modulating CCL2 expression.


Assuntos
Quimiocina CCL2 , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides , Polissacarídeos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Polissacarídeos/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Humanos , Quimiocina CCL2/metabolismo , Camundongos , Camundongos Knockout , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Ácido N-Acetilneuramínico/metabolismo
8.
Sci Rep ; 14(1): 7593, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556590

RESUMO

Long non-coding RNAs (lncRNAs) and Sialic acid-binding immunoglobulin-type lectin (SIGLEC) family members play an important role in proliferation, apoptosis, immune-cell activation and tumor development. However, the relationships of SIGLEC family-related lncRNAs with clinical prognosis and tumor immune microenvironment in ovarian cancer (OC) are still unclear. 426 SIGLEC family-related lncRNAs were obtained according to the screening criteria R > 0.4 and p < 0.05 using Pearson correlation analysis. A risk model contained AL133279.1, AL021878.2, AC078788.1, AC039056.2, AC008750.1 and AC007608.3 was conducted based on the univariate Cox regression analysis, a least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression analyses. OC patient were divided into high-and low-risk group based on the median riskscore. K-M curve and ROC curve revealed that risk model has an abuset prognostic potential for OC patients. Moreover, we successfully validated the prognostic value of the model in the internal datasets, external datasets and clinical sample dataset. Finally, we found that the riskscore was positively correlated with the vast majority of immune cell infiltration. In conclusion, our research identified that a novel SIGLEC family-related lncRNAs risk model to predict the prognosis of OC patients. SIGLEC family-related lncRNAs risk model also has a positive relationship with the tumor immune microenvironment of OC, which may provide a new direction for immunotherapy of OC.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Neoplasias Ovarianas/genética , Prognóstico , Apresentação de Antígeno , Microambiente Tumoral/genética
9.
Chem Commun (Camb) ; 60(21): 2930-2933, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38372418

RESUMO

Pseudaminic acid (Pse) on pathogenic bacteria exopolysaccharide engages with the sialic acid-binding immunoglobulin-type lectin (Siglec)-10 receptor on macrophages via the critical 7-N-acetyl group. This binding stimulates macrophages to secrete interleukin 10 that suppresses phagocytosis against bacteria, but can be reverted by blocking Pse-Siglec-10 interaction with Pse-binding protein as a promising therapy.


Assuntos
Interleucina-10 , Macrófagos , Açúcares Ácidos , Interleucina-10/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
10.
J Hepatol ; 80(5): 792-804, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38331327

RESUMO

BACKGROUND & AIMS: Natural killer (NK) cell-based anti-hepatocellular carcinoma (HCC) therapy is an increasingly attractive approach that warrants further study. Siglec-9 interacts with its ligand (Siglec-9L) and restrains NK cell functions, suggesting it is a potential therapeutic target. However, in situ Siglec-9/Siglec-9L interactions in HCC have not been reported, and a relevant interventional strategy is lacking. Herein, we aim to illustrate Siglec-9/Siglec-9L-mediated cell sociology and identify small-molecule inhibitors targeting Siglec-9 that could improve the efficacy of NK cell-based immunotherapy for HCC. METHODS: Multiplexed immunofluorescence staining was performed to analyze the expression pattern of Siglec-7, -9 and their ligands in HCC tissues. Then we conducted docking-based virtual screening combined with bio-layer interferometry assays to identify a potent small-molecule Siglec-9 inhibitor. The therapeutic potential was further evaluated in vitro and in hepatoma-bearing NCG mice. RESULTS: Siglec-9 expression, rather than Siglec-7, was markedly upregulated on tumor-infiltrating NK cells, which correlated significantly with reduced survival of patients with HCC. Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival, further suggesting that Siglec-9/Siglec-9L interactions are a potential therapeutic target in HCC. In addition, we identified a small-molecule Siglec-9 inhibitor MTX-3937 which inhibited phosphorylation of Siglec-9 and downstream SHP1 and SHP2. Accordingly, MTX-3937 led to considerable improvement in NK cell function. Notably, MTX-3937 enhanced cytotoxicity of both human peripheral and tumor-infiltrating NK cells. Furthermore, transfer of MTX-3937-treated NK92 cells greatly suppressed the growth of hepatoma xenografts in NCG mice. CONCLUSIONS: Our study provides the rationale for HCC treatment by targeting Siglec-9 on NK cells and identifies a promising small-molecule inhibitor against Siglec-9 that enhances NK cell-mediated HCC surveillance. IMPACT AND IMPLICATIONS: Herein, we found that Siglec-9 expression is markedly upregulated on tumor-infiltrating natural killer (TINK) cells and correlates with reduced survival in patients with hepatocellular carcinoma (HCC). Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival. More importantly, we identified a small-molecule inhibitor targeting Siglec-9 that augments NK cell functions, revealing a novel immunotherapy strategy for liver cancer that warrants further clinical investigation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Recidiva Local de Neoplasia/metabolismo , Células Matadoras Naturais/patologia , Imunoterapia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ligantes , Prognóstico
13.
Br J Dermatol ; 190(5): 627-635, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38197441

RESUMO

Modulation of immune responses through immune checkpoint blockade has revolutionized cutaneous melanoma treatment. However, it is still the case that not all patients respond successfully to these therapies, indicating the presence of as yet unknown resistance mechanisms. Hence, it is crucial to find novel targets to improve therapy efficacy. One of the described resistance mechanisms is regulated by immune inhibitory Siglec receptors, which are engaged by the carbohydrates sialic acids expressed on tumour cells, contributing to programmed cell death protein-1 (PD1)-like immune suppression mechanisms. In this review, we provide an overview on the regulation of sialic acid synthesis, its expression in melanoma, and the contribution of the sialic acid-Siglec axis to tumour development and immune suppressive mechanisms in the tumour microenvironment. Finally, we highlight potential sialic acid-Siglec axis-related therapeutics to improve the treatment of melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácido N-Acetilneuramínico , Imunidade , Microambiente Tumoral
14.
Allergy ; 79(3): 629-642, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38186079

RESUMO

BACKGROUND: Sialic acid-binding immunoglobulin-like lectin (Siglec)-6 and Siglec-8 are closely related mast cell (MC) receptors with broad inhibitory activity, but whose functional differences are incompletely understood. METHODS: Proteomic profiling using quantitative mass spectrometry was performed on primary mouse MCs to identify proteins associated with Siglec-6 and Siglec-8. For functional characterization, each receptor was evaluated biochemically and in ex vivo and in vivo inhibition models of IgE and non-IgE-mediated MC activation in Siglec-6- or Siglec-8-expressing transgenic mice. RESULTS: Siglec-6 and Siglec-8 were found in MCs within large complexes, interacting with 66 and 86 proteins, respectively. Strikingly, Siglec-6 and Siglec-8 interacted with a large cluster of proteins involved in IgE and non-IgE-mediated MC activation, including the high affinity IgE receptor, stem cell factor (SCF) receptor KIT/CD117, IL-4 and IL-33 receptors, and intracellular kinases LYN and JAK1. Protein interaction networks revealed Siglec-6 and Siglec-8 had overlapping yet distinct MC functions, with a potentially broader regulatory role for Siglec-6. Indeed, Siglec-6 preferentially interacted with the mature form of KIT at the cell surface, and treatment with an anti-Siglec-6 antibody significantly inhibited SCF-mediated MC activation more in comparison to targeting Siglec-8. CONCLUSION: These data demonstrate a central role for Siglec-6 and Siglec-8 in controlling MC activation through interactions with multiple activating receptors and key signaling molecules. Our findings suggest that Siglec-6 has a role distinct from that of Siglec-8 in regulating MC function and represents a distinct potential therapeutic target in mast cell-driven diseases.


Assuntos
Antígenos CD , Mastócitos , Camundongos , Animais , Antígenos CD/metabolismo , Proteômica , Camundongos Transgênicos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Imunoglobulina E/metabolismo
15.
Sci Rep ; 14(1): 577, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182638

RESUMO

Sarcomas (SARC) are a highly heterogeneous cancer type that is prone to recurrence and metastasis. Numerous studies have confirmed that Siglecs are involved in immune signaling and play a key role in regulating immune responses in inflammatory diseases and various cancers. However, studies that systematically explore the therapeutic and prognostic value of Siglecs in SARC patients are very limited. The online databases GEPIA, UALCAN, TIMER, The Kaplan-Meier Plotter, GeneMANIA, cBioPortal, and STING were used in this study. IHC staining was performed on the collected patient tissues, and clinical data were statistically analyzed. The transcript levels of most Siglec family members showed a high expression pattern in SARC. Compared with normal tissues, Siglec-5, Siglec-10, and Siglec-12 were abnormally highly expressed in tumor tissues. Importantly, Siglec-15 was significantly associated with poor prognosis. Functional enrichment analysis showed that the Siglec family was mainly enriched in hematopoietic cell lineages. The genes associated with molecular mutations in the Siglec family were mainly TP53 and MUC16, among which Siglec-2 and Siglec-15 were significantly associated with the survival of patients. The expression levels of all Siglec family members were significantly correlated with various types of immune cells (B cells, CD8 + T cells, CD4 + T cells, macrophages, neutrophils and dendritic cells). Furthermore, a significant correlation was found between the somatic copy number changes of all Siglec molecules and the abundance of immune infiltrates. Our study paints a promising vision for the development of immunotherapy drugs and the construction of prognostic stratification models by investigating the therapeutic and prognostic potential of the Siglec family for SARC.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Prognóstico , Sarcoma/genética , Biomarcadores , Microambiente Tumoral/genética
16.
Cancer Immunol Immunother ; 73(2): 31, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279998

RESUMO

The small, heavily glycosylated protein CD24 is primarily expressed by many immune cells and is highly expressed mostly in cancer cells. As one of the most crucial biomarkers of cancers, CD24 is frequently highly expressed in solid tumors, while tumor-associated macrophages express Siglec-10 at high levels, Siglec-10 and CD24 can interact on innate immune cells to lessen inflammatory responses to a variety of disorders. Inhibiting inflammation brought on by SHP-1 and/or SHP-2 phosphatases as well as cell phagocytosis by macrophages, the binding of CD24 to Siglec-10 can prevent toll-like receptor-mediated inflammation. Targeted immunotherapy with immune checkpoint inhibitors (ICI) has lately gained popularity as one of the best ways to treat different tumors. CD24 is a prominent innate immune checkpoint that may be a useful target for cancer immunotherapy. In recent years, numerous CD24/Siglec-10-related research studies have made tremendous progress. This study discusses the characteristics and workings of CD24/Siglec-10-targeted immunotherapy and offers a summary of current advances in CD24/Siglec-10-related immunotherapy research for cancer. We then suggested potential directions for CD24-targeted immunotherapy, basing our speculation mostly on the results of recent preclinical and clinical trials.


Assuntos
Macrófagos , Neoplasias , Humanos , Transdução de Sinais , Inflamação , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Imunoterapia/métodos , Antígeno CD24/metabolismo
17.
Allergy ; 79(1): 37-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37605867

RESUMO

Chronic urticaria (CU) is a mast cell (MC)-dependent disease with limited therapeutic options. Current management strategies are directed at inhibiting IgE-mediated activation of MCs and antagonizing effects of released mediators. Due to the complexity and heterogeneity of CU and other MC diseases and mechanisms of MC activation-including multiple activating receptors and ligands, diverse signaling pathways, and a menagerie of mediators-strategies of MC depletion or MC silencing (i.e., inhibition of MC activation via binding of inhibitory receptors) have been developed to overcome limitations of singularly targeted agents. MC silencers, such as agonist monoclonal antibodies that engage inhibitory receptors (e.g., sialic acid-binding immunoglobulin-like lectin8 -[Siglec-8] [lirentelimab/AK002], Siglec-6 [AK006], and CD200R [LY3454738]), have reached preclinical and clinical stages of development. In this review, we (1) describe the role of MCs in the pathogenesis of CU, highlighting similarities with other MC diseases in disease mechanisms and response to treatment; (2) explore current therapeutic strategies, categorized by nonspecific immunosuppression, targeted inhibition of MC activation or mediators, and targeted modulation of MC activity; and (3) introduce the concept of MC silencing as an emerging strategy that could selectively block activation of MCs without eliciting or exacerbating on- or off-target, immunosuppressive adverse effects.


Assuntos
Antineoplásicos , Mastocitose , Urticária , Humanos , Mastócitos , Urticária/tratamento farmacológico , Urticária/genética , Mastocitose/patologia , Antineoplásicos/farmacologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/farmacologia
18.
Clin Transl Oncol ; 26(1): 190-203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37311988

RESUMO

PURPOSE: This study intends to investigate the possible molecular mechanism of immune response and tumorigenesis in ovarian cancer cells, mediated by sirtuin 1 (SIRT1)-containing extracellular vesicles (EVs) derived from cancer-associated adipocytes (CAAs) (CAA-EVs). METHODS: Differentially expressed genes in EVs from CAAs were screened by RNA transcriptome sequencing, and the downstream pathway was predicted in silico. The binding between SIRT1 and CD24 was investigated by luciferase activity and ChIP-PCR assays. EVs were extracted from human ovarian cancer tissue-isolated CAAs, and the internalization of CCA-EVs by ovarian cancer cells was characterized. The ovarian cancer cell line was injected into mice to establish an animal model. Flow cytometry was performed to analyze the proportions of M1 and M2 macrophages, CD8+ T, T-reg, and CD4+ T cells. TUNEL staining was used to detect cell apoptosis in the mouse tumor tissues. ELISA detection was performed on immune-related factors in the serum of mice. RESULTS: CAA-EVs could deliver SIRT1 to ovarian cancer cells, thereby affecting the immune response of ovarian cancer cells in vitro and promoting tumorigenesis in vivo. SIRT1 could transcriptionally activate the expression of CD24, and CD24 could up-regulate Siglec-10 expression. CAA-EVs-SIRT1 activated the CD24/Siglec-10 axis and promoted CD8+ T cell apoptosis, thereby promoting tumorigenesis in mice. CONCLUSION: CAA-EVs-mediated transfer of SIRT1 regulates the CD24/Siglec-10 axis to curb immune response and promote tumorigenesis of ovarian cancer cells.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Adipócitos/metabolismo , Adipócitos/patologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Imunidade , MicroRNAs/metabolismo , Neoplasias Ovarianas/patologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Sirtuína 1/metabolismo
19.
Cancer Gene Ther ; 31(3): 427-438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072971

RESUMO

Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) is an immune checkpoint molecule with sequence homology to programmed cell death ligand 1 (PD-L1), which is mainly expressed on macrophages and tumor cells. However, whether Siglec-15-induced immunosuppression and poor prognosis are independent of PD-L1 remains unclear. In this study, we collected samples of 135 non-small cell lung cancers and found that Siglec-15 and PD-L1 expression were independent in non-small cell lung cancer by multiple immunofluorescence staining. Siglec-15 on macrophages (Mφ-Siglec-15) was significantly associated with DFS (p < 0.05) in PD-L1- patients with non-metastasis lung adenocarcinoma, not in PD-L1+ or lung squamous cell carcinoma patients. Moreover, stromal Siglec-15+ macrophages of Mφ-Siglec-15+PD-L1- patients were significantly more than those of Mφ-Siglec-15-PD-L1- patients (p = 0.002). We further found that Siglec-15+ macrophages polarized toward M2 and produced more IL-10, negatively associated with inflamed immunophenotype in PD-L1- patients and may inhibit CD8+T cells infiltration. In conclusion, PD-L1-independent Siglec-15+ macrophages contribute to the formation of an immunosuppressive microenvironment in non-metastasis lung adenocarcinoma patients, which may cause a higher risk of recurrence. Siglec-15 could be a potential target for normalizing cancer immunotherapy, benefiting patients who fail to respond to anti-PD-L1 therapy.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão/patologia , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Microambiente Tumoral
20.
Semin Arthritis Rheum ; 64S: 152328, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042621

RESUMO

BACKGROUND: B-cell activation is triggered by the B-cell receptor, but is also controlled by inhibitory receptors, which limit the BCR signaling. CD22 (Siglec-2) and Siglec-G are such inhibitory receptors expressed on B cells. CD22- or Siglec-G deficient mice show enhanced B cell activation. OBJECTIVES: It was the objective of our study to investigate the role of these inhibitory receptors in autoimmune disease and leukemia. RESULTS: Ageing Siglec-G deficient or CD22 x Siglec-G deficient mice develop an SLE-like autoimmune disease with autoantibodies and kidney nephritis. In a mouse model for chronic lymphocytic leukemia (CLL), Siglec-G deficient mice show an earlier and more severe disease. AUTHOR'S CONCLUSIONS: These results show that Siglec-G and CD22 are both involved in preventing autoimmune diseases and leukemia delevopment and could therefore be attractive new targets.


Assuntos
Doenças Autoimunes , Leucemia , Animais , Camundongos , Autoimunidade , Linfócitos B , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA