Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Immunol ; 208(8): 1845-1850, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35379746

RESUMO

Inhibitory receptors have a critical role in the regulation of immunity. Siglecs are a family of primarily inhibitory receptors expressed by immune cells that recognize specific sialic acid modifications on cell surface glycans. Many tumors have increased sialic acid incorporation. Overexpression of the sialyltransferase ST8Sia6 on tumors led to altered immune responses and increased tumor growth. In this study, we examined the role of ST8Sia6 on immune cells in regulating antitumor immunity. ST8Sia6 knockout mice had an enhanced immune response to tumors. The loss of ST8Sia6 promoted an enhanced intratumoral activation of macrophages and dendritic cells, including upregulation of CD40. Intratumoral regulatory T cells exhibited a more inflammatory phenotype in ST8Sia6 knockout mice. Using adoptive transfer studies, the change in regulatory T cell phenotype was not cell intrinsic and depended on the loss of ST8Sia6 expression in APCs. Thus, ST8Sia6 generates ligands for Siglecs that dampen antitumor immunity.


Assuntos
Neoplasias , Sialiltransferases , Animais , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/imunologia , Ácido N-Acetilneuramínico/imunologia , Neoplasias/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Sialiltransferases/genética , Sialiltransferases/imunologia
2.
Microbiol Spectr ; 9(3): e0039921, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878295

RESUMO

Escherichia coli K1 causes bacteremia and meningitis in human neonates. The K1 capsule, an α2,8-linked polysialic acid (PSA) homopolymer, is its essential virulence factor. PSA is usually partially modified by O-acetyl groups. It is known that O-acetylation alters the antigenicity of PSA, but its impact on the interactions between E. coli K1 and host cells is unclear. In this study, a phase variant was obtained by passage of E. coli K1 parent strain, which expressed a capsule with 44% O-acetylation whereas the capsule of the parent strain has only 3%. The variant strain showed significantly reduced adherence and invasion to macrophage-like cells in comparison to the parent strain. Furthermore, we found that O-acetylation of PSA enhanced the modulation of trafficking of E. coli-containing vacuoles (ECV), enabling them to avoid fusing with lysosomes in these cells. Intriguingly, by using quartz crystal microbalance, we demonstrated that the PSA purified from the parent strain interacted with human sialic acid-binding immunoglobulin-like lectins (Siglecs), including Siglec-5, Siglec-7, Siglec-11, and Siglec-14. However, O-acetylated PSA from the variant interacted much less and also suppressed the production of Siglec-mediated proinflammatory cytokines. The adherence of the parent strain to human macrophage-like cells was significantly blocked by monoclonal antibodies against Siglec-11 and Siglec-14. Furthermore, the variant strain caused increased bacteremia and higher lethality in neonatal mice compared to the parent strain. These data elucidate that O-acetylation of K1 capsule enables E. coli to escape from Siglec-mediated innate immunity and lysosomal degradation; therefore, it is a strategy used by E. coli K1 to regulate its virulence. IMPORTANCE Escherichia coli K1 is a leading cause of neonatal meningitis. The mortality and morbidity of this disease remain significantly high despite antibiotic therapy. One major limitation on advances in prevention and therapy for meningitis is an incomplete understanding of its pathogenesis. E. coli K1 is surrounded by PSA, which is observed to have high-frequency variation of O-acetyl modification. Here, we present an in-depth study of the function of O-acetylation in PSA at each stage of host-pathogen interaction. We found that a high level of O-acetylation significantly interfered with Siglec-mediated bacterial adherence to macrophage-like cells, and blunted the proinflammatory response. Furthermore, the O-acetylation of PSA modulated the trafficking of ECVs to prevent them from fusing with lysosomes, enabling them to escape degradation by lysozymes within these cells. Elucidating how subtle modification of the capsule enhances bacterial defenses against host innate immunity will enable the future development of effective drugs or vaccines against infection by E. coli K1.


Assuntos
Cápsulas Bacterianas/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Ácidos Siálicos/imunologia , Acetilação , Animais , Escherichia coli/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Inata , Lisossomos/imunologia , Lisossomos/microbiologia , Masculino , Camundongos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Vacúolos/imunologia , Vacúolos/microbiologia
3.
J Cancer Res Clin Oncol ; 147(11): 3343-3357, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34472004

RESUMO

PURPOSE: The anti-inflammatory environment of glioma reduces the efficacy of immunotherapies. Therefore, it is vital to transform the immunosuppressive microenvironment of glioma into a pro-inflammatory environment. Sialic acid-binding immunoglobulin-type lectins (Siglecs) can serve as immune checkpoint targets that enhance the anti-tumor immune response. However, the roles of Siglecs in the glioma microenvironment are unknown. This study was conducted to identify targets to inhibit the anti-inflammatory environment to improve therapeutic outcomes in patients with glioma. METHODS: We analyzed the regulatory effect of prognosis-related Siglecs identified from data available in The Cancer Genome Atlas database (TCGA) and China Glioma Genome Atlas Data portal on the immunosuppressive microenvironment of glioma. The effects of prognosis-related Siglecs on the glioma microenvironment were investigated by determining the Pearson correlation coefficients of the Siglecs in transcriptome data from the TCGA database. RESULTS: Siglec-1, -9, -10, and -14 were closely associated with the prognosis of patients with glioma. The expression of these four Siglecs was significantly increased in the high-risk group and positively correlated with anti-inflammatory cytokine levels in the glioma microenvironment. CONCLUSION: Our study provides insights into the effects of prognosis-related Siglecs in glioma immunotherapy, suggesting that targeted prognosis-related Siglecs can modify the microenvironment of glioma and improve the sensitivity of patients with glioma to immunotherapy.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Glioma/genética , Glioma/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Humanos , Macrófagos/imunologia , Nomogramas , Prognóstico , Modelos de Riscos Proporcionais , Risco , Transcriptoma , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
4.
Curr Opin Chem Biol ; 62: 34-42, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33607404

RESUMO

Siglecs (sialic acid-binding immunoglobulin-like lectins) are a family of receptors that bind sialic acids in specific linkages on glycoproteins and glycolipids. Siglecs play roles in immune signalling and exhibit cell-type specific expression and endocytic properties. Recent studies suggest that Siglecs are likely to function as immune checkpoints that regulate responses in cancers and inflammatory diseases. In this review, we discuss strategies to target the Siglec-sialic acid axis in human diseases, particularly cancer, and the possibility of exploiting them for therapeutic intervention.


Assuntos
Antineoplásicos/química , Biomarcadores Tumorais/metabolismo , Imunoterapia/métodos , Neoplasias/terapia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais/imunologia , Glicolipídeos/química , Glicoproteínas/química , Humanos , Inflamação/metabolismo , Inflamação/terapia , Terapia de Alvo Molecular , Ácido N-Acetilneuramínico/metabolismo , Neoplasias/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/antagonistas & inibidores
5.
Cell Mol Life Sci ; 78(4): 1637-1653, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32725371

RESUMO

Polysialic acid (polySia) emerges as a novel regulator of microglia activity. We recently identified polysialylated proteins in the Golgi compartment of murine microglia that are released in response to inflammatory stimulation. Since exogenously added polySia is able to attenuate the inflammatory response, we proposed that the release of polysialylated proteins constitutes a mechanism for negative feedback regulation of microglia activation. Here, we demonstrate that translocation of polySia from the Golgi to the cell surface can be induced by calcium depletion of the Golgi compartment and that polysialylated proteins are continuously released for at least 24 h after the onset of inflammatory stimulation. The latter was unexpected, because polySia signals detected by immunocytochemistry are rapidly depleted. However, it indicates that the amount of released polySia is much higher than anticipated based on immunostaining. This may be crucial for microglial responses during traumatic brain injury (TBI), as we detected polySia signals in activated microglia around a stab wound in the adult mouse brain. In BV2 microglia, the putative polySia receptor Siglec-E is internalized during lipopolysaccharide (LPS)-induced activation and in response to polySia exposure, indicating interaction. Correspondingly, CRISPR/Cas9-mediated Siglec-E knockout prevents inhibition of pro inflammatory activation by exogenously added polySia and leads to a strong increase of the LPS response. A comparable increase of LPS-induced activation has been observed in microglia with abolished polySia synthesis. Together, these results indicate that the release of the microglia-intrinsic polySia pool, as implicated in TBI, inhibits the inflammatory response by acting as a trans-activating ligand of Siglec-E.


Assuntos
Inflamação/genética , Microglia/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Ácidos Siálicos/genética , Animais , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B/genética , Sistemas CRISPR-Cas/genética , Células Cultivadas , Retroalimentação Fisiológica/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/genética , Humanos , Inflamação/imunologia , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Microglia/imunologia , Microglia/patologia , Fagocitose/efeitos dos fármacos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Ácidos Siálicos/imunologia
6.
Nat Chem Biol ; 16(12): 1376-1384, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32807964

RESUMO

Currently approved immune checkpoint inhibitor therapies targeting the PD-1 and CTLA-4 receptor pathways are powerful treatment options for certain cancers; however, most patients across cancer types still fail to respond. Consequently, there is interest in discovering and blocking alternative pathways that mediate immune suppression. One such mechanism is an upregulation of sialoglycans in malignancy, which has been recently shown to inhibit immune cell activation through multiple mechanisms and therefore represents a targetable glycoimmune checkpoint. Since these glycans are not canonically druggable, we designed an αHER2 antibody-sialidase conjugate that potently and selectively strips diverse sialoglycans from breast cancer cells. In syngeneic breast cancer models, desialylation enhanced immune cell infiltration and activation and prolonged the survival of mice, an effect that was dependent on expression of the Siglec-E checkpoint receptor found on tumor-infiltrating myeloid cells. Thus, antibody-sialidase conjugates represent a promising modality for glycoimmune checkpoint therapy.


Assuntos
Imunoterapia/métodos , Melanoma Experimental/terapia , Neuraminidase/imunologia , Polissacarídeos/química , Receptor ErbB-2/química , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Aloenxertos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Humanos , Hidrólise , Imunoconjugados/química , Imunoconjugados/metabolismo , Imunoconjugados/farmacologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Terapia de Alvo Molecular , Neuraminidase/química , Neuraminidase/genética , Polissacarídeos/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/química , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Análise de Sobrevida , Linfócitos T/citologia , Linfócitos T/imunologia
7.
Adv Exp Med Biol ; 1204: 215-230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32152949

RESUMO

Siglecs are a family of transmembrane receptor-like glycan-recognition proteins expressed primarily on leukocytes. Majority of Siglecs have an intracellular sequence motif called immunoreceptor tyrosine-based inhibitory motif (ITIM) and associate with Src homology region 2 domain-containing tyrosine phosphatase-1 (SHP-1), and negatively regulate tyrosine phosphorylation-mediated intracellular signaling events. On the other hand, some Siglecs have a positively charged amino acid residue in the transmembrane domain and associate with DNAX activation protein of 12 kDa (DAP12), which in turn recruits spleen tyrosine kinase (Syk). These DAP12-associated Siglecs play diverse functions. For example, Siglec-15 is conserved throughout vertebrate evolution and plays a role in bone homeostasis by regulating osteoclast development and function. Human Siglec-14 and -16 have inhibitory counterparts (Siglec-5 and -11, respectively), which show extremely high sequence similarity with them at the extracellular domain but interact with SHP-1. The DAP12-associated Siglec in such "paired receptor" configuration counteracts the pathogens that exploit the inhibitory counterpart. Polymorphisms (mutations) that render DAP12-associated inactive Siglecs are found in humans, and some of these appear to be associated with sensitivity or resistance of human hosts to bacterially induced conditions. Studies of mouse Siglec-H have revealed complex and intriguing functions it plays in regulating adaptive immunity. Many questions remain unanswered, and further molecular and genetic studies of DAP12-associated Siglecs will yield valuable insights with translational relevance.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Animais , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Transdução de Sinais
8.
Adv Exp Med Biol ; 1204: 197-214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32152948

RESUMO

Siglecs are sialic acid (Sia) recognizing immunoglobulin-like receptors expressed on the surface of all the major leukocyte lineages in mammals. Siglecs recognize ubiquitous Sia epitopes on various glycoconjugates in the cell glycocalyx and transduce signals to regulate immunological and inflammatory activities of these cells. The subset known as CD33-related Siglecs is principally inhibitory receptors that suppress leukocyte activation, and recent research has shown that a number of bacterial pathogens use Sia mimicry to engage these Siglecs as an immune evasion strategy. Conversely, Siglec-1 is a macrophage phagocytic receptor that engages GBS and other sialylated bacteria to promote effective phagocytosis and antigen presentation for the adaptive immune response, whereas certain viruses and parasites use Siglec-1 to gain entry to immune cells as a proximal step in the infectious process. Siglecs are positioned in crosstalk with other host innate immune sensing pathways to modulate the immune response to infection in complex ways. This chapter summarizes the current understanding of Siglecs at the host-pathogen interface, a field of study expanding in breadth and medical importance, and which provides potential targets for immune-based anti-infective strategies.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Animais , Glicocálix/imunologia , Humanos , Leucócitos/citologia , Leucócitos/imunologia , Macrófagos/imunologia , Fagocitose , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia
9.
Trends Immunol ; 41(4): 274-285, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32139317

RESUMO

Sialic acid sugar-carrying glycans, sialoglycans, are aberrantly expressed on many tumor cells and have emerged as potent regulatory molecules involved in creating a tumor-supportive microenvironment. Sialoglycans can be recognized by sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immunomodulatory receptors. Most mammalian Siglecs transmit inhibitory signals comparable with the immune checkpoint inhibitor programmed death protein 1 (PD-1), but some are activating. Recent studies have shown that tumor cells can exploit sialoglycan-Siglec interactions to modulate immune cell function, contributing to an immunosuppressive tumor microenvironment (TME). Interference with sialoglycan synthesis or sialoglycan-Siglec interactions might improve antitumor immunity. Many questions regarding specificity, signaling, and regulatory function of sialoglycan-Siglec interactions remain. We posit that sialoglycans and Siglecs present as potential glyco-immune 'checkpoints' for cancer immunotherapy.


Assuntos
Polissacarídeos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Microambiente Tumoral , Animais , Humanos , Imunidade , Imunoterapia , Neoplasias/terapia , Polissacarídeos/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Microambiente Tumoral/imunologia
10.
Cell Mol Life Sci ; 77(4): 593-605, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31485715

RESUMO

The mammalian immune system evolved to tightly regulate the elimination of pathogenic microbes and neoplastic transformed cells while tolerating our own healthy cells. Here, we summarize experimental evidence for the role of Siglecs-in particular CD33-related Siglecs-as self-receptors and their sialoglycan ligands in regulating this balance between recognition of self and non-self. Sialoglycans are found in the glycocalyx and extracellular fluids and matrices of all mammalian cells and can be considered as self-associated molecular patterns (SAMPs). We also provide an overview of the known interactions of Siglec receptors and sialoglycan-SAMPs. Manipulation of the Siglec-SAMP axis offers new therapeutic opportunities for the treatment of inflammatory conditions, autoimmune diseases and also cancer immunotherapy.


Assuntos
Imunidade , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Animais , Doenças Autoimunes/imunologia , Autoimunidade , Humanos , Inflamação/imunologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia
11.
Expert Opin Ther Targets ; 23(10): 839-853, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31524529

RESUMO

Introduction: During cancer progression, tumor cells develop several mechanisms to prevent killing and to shape the immune system into a tumor-promoting environment. One of such regulatory mechanism is the overexpression of sialic acid (Sia) on carbohydrates of proteins and lipids on tumor cells. Sia-containing glycans or sialoglycans were shown to inhibit immune effector functions of NK cells and T cells by engaging inhibitory Siglec receptors on the surface of these cells. They can also modulate the differentiation of myeloid cells into tumor-promoting M2 macrophages. Areas covered: We review the role of sialoglycans in cancer and introduce the Siglecs, their expression on different immune cells and their interaction with cancer-associated sialoglycans. The targeting of this sialoglycan-Siglec glyco-immune checkpoint is discussed along with potential therapeutic approaches. Pubmed was searched for publications on Siglecs, sialic acid, and cancer. Expert opinion: The targeting of sialoglycan-Siglec interactions has become a major focus in cancer research. New approaches have been developed that directly target sialic acids in tumor lesions. Targeted sialidases that cleave sialic acid specifically in the tumor, have already shown efficacy; efforts targeting the sialoglycan-Siglec pathway for improvement of CAR T cell therapy are ongoing. The sialoglycan-Siglec immune checkpoint is a promising new target for cancer immunotherapy.


Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Imunidade Adaptativa/imunologia , Animais , Progressão da Doença , Humanos , Imunidade Inata/imunologia , Terapia de Alvo Molecular , Neoplasias/imunologia , Polissacarídeos/imunologia
12.
Cancer Immunol Immunother ; 68(6): 937-949, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30953118

RESUMO

Gliomas appear to be highly immunosuppressive tumors, with a strong myeloid component. This includes MDSCs, which are a heterogeneous, immature myeloid cell population expressing myeloid markers Siglec-3 (CD33) and CD11b and lacking markers of mature myeloid cells including MHC II. Siglec-3 is a member of the sialic acid-binding immunoglobulin-like lectin (Siglec) family and has been suggested to promote MDSC expansion and suppression. Siglecs form a recently defined family of receptors with potential immunoregulatory functions but only limited insight in their expression on immune regulatory cell subsets, prompting us to investigate Siglec expression on MDSCs. We determined the expression of different Siglec family members on monocytic-MDSCs (M-MDSCs) and polymorphnuclear-MDSCs (PMN-MDSCs) from blood of glioma patients and healthy donors, as well as from patient-derived tumor material. Furthermore, we investigated the presence of sialic acid ligands for these Siglecs on MDSCs and in the glioma tumor microenvironment. Both MDSC subsets express Siglec-3, -5, -7 and -9, with higher levels of Siglec-3, -7 and -9 on M-MDSCs and higher Siglec-5 levels on PMN-MDSCs. Similar Siglec expression profiles were found on MDSCs from healthy donors. Furthermore, the presence of Siglec-5 and -9 was also confirmed on PMN-MDSCs from glioma tissue. Interestingly, freshly isolated glioma cells predominantly expressed sialic acid ligands for Siglec-7 and -9, which was confirmed in situ. In conclusion, our data show a distinct Siglec expression profile for M- and PMN-MDSCs and propose possible sialic acid-Siglec interactions between glioma cells and MDSCs in the tumor microenvironment.


Assuntos
Neoplasias Encefálicas/imunologia , Glioma/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Transcriptoma/imunologia , Adulto , Idoso , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Feminino , Glioma/genética , Glioma/terapia , Humanos , Ligantes , Masculino , Pessoa de Meia-Idade , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
13.
Cancer Immunol Res ; 7(5): 707-718, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30988027

RESUMO

Emerging evidence suggests an immunosuppressive role of altered tumor glycosylation due to downregulation of innate immune responses via immunoregulatory Siglecs. In contrast, human T cells, a major anticancer effector cell, only rarely express Siglecs. However, here, we report that the majority of intratumoral, but not peripheral blood, cytotoxic CD8+ T cells expressed Siglec-9 in melanoma. We identified Siglec-9+ CD8+ T cells as a subset of effector memory cells with high functional capacity and signatures of clonal expansion. This cytotoxic T-cell subset was functionally inhibited in the presence of Siglec-9 ligands or by Siglec-9 engagement by specific antibodies. TCR signaling pathways and key effector functions (cytotoxicity, cytokine production) of CD8+ T cells were suppressed by Siglec-9 engagement, which was associated with the phosphorylation of the inhibitory protein tyrosine phosphatase SHP-1, but not SHP-2. Expression of cognate Siglec-9 ligands was observed on the majority of tumor cells in primary and metastatic melanoma specimens. Targeting the tumor-restricted, glycosylation-dependent Siglec-9 axis may unleash this intratumoral T-cell subset, while confining T-cell activation to the tumor microenvironment.


Assuntos
Antígenos CD/imunologia , Linfócitos T CD8-Positivos/imunologia , Melanoma/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Subpopulações de Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Humanos
14.
Life Sci ; 216: 189-199, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30471282

RESUMO

AIM: Inflammation is a driving force in development of atherosclerosis, and hyperglycemia is a significant risk factor for angiopathy. Siglec-9, expressed on human neutrophils and macrophages, engages specific glycan ligands on tissues to diminish ongoing inflammation. MATERIALS AND METHOD: Siglec-9 ligands on human aorta were characterized and the effects of high glucose exposure on the expression of ligands for Siglec-9 on human umbilical vein endothelial cells (HUV-EC-C) in vitro and ligands for the comparable siglec (Siglec-E) on mouse aorta in vivo were studied. KEY FINDINGS: Siglec-9 ligands were expressed broadly on human aorta, as well as on HUV-EC-C. Siglec-9 ligands on HUV-EC-C were sharply up-regulated under high glucose exposure in vitro, as were Siglec-E ligands on the aortas of hyperglycemic mice. Exposure of HUV-EC-C to high-glucose resulted in consistent inhibitory changes in co-cultured macrophages including increased apoptosis and decreased phagocytosis. Control of Siglec-9 ligand expression on HUV-EC-C was downstream of changes in an enzyme involved in their biosynthesis, UDP-galactose-4-epimerase (GALE) and increased cellular N-acetylgalactosamine. The alteration of GALE was associated with the regulatory microRNA hsa-let-7f. SIGNIFICANCE: We conclude that exposure to high-glucose results in up-regulation of immune inhibitory Siglec-9 sialoglycan ligands on aorta and HUV-EC-C cells downstream of altered GALE and GalNAc expression, resulting in up-regulation of apoptosis and decrease of phagocytic activity of macrophages. Changes in Siglec-9 sialoglycan ligand expression on vascular endothelial cells may be a natural response to the initial steps of atherosclerosis and might be a potential target to regulate inflammation in diabetic angiopathy.


Assuntos
Antígenos CD/metabolismo , Aorta/metabolismo , Apoptose/imunologia , Glucose/metabolismo , Inflamação/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Animais , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos B/imunologia , Antígenos de Diferenciação de Linfócitos B/metabolismo , Aorta/imunologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/imunologia , Ligantes , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , UDPglucose 4-Epimerase/metabolismo , Regulação para Cima
15.
Front Immunol ; 9: 2807, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581432

RESUMO

One of the key features of the immune system is its extraordinary capacity to discriminate between self and non-self and to respond accordingly. Several molecular interactions allow the induction of acquired immune responses when a foreign antigen is recognized, while others regulate the resolution of inflammation, or the induction of tolerance to self-antigens. Post-translational signatures, such as glycans that are part of proteins (glycoproteins) and lipids (glycolipids) of host cells or pathogens, are increasingly appreciated as key molecules in regulating immunity vs. tolerance. Glycans are sensed by glycan binding receptors expressed on immune cells, such as C-type lectin receptors (CLRs) and Sialic acid binding immunoglobulin type lectins (Siglecs), that respond to specific glycan signatures by triggering tolerogenic or immunogenic signaling pathways. Glycan signatures present on healthy tissue, inflamed and malignant tissue or pathogens provide signals for "self" or "non-self" recognition. In this review we will focus on sialic acids that serve as "self" molecular pattern ligands for Siglecs. We will emphasize on the function of Siglec-expressing mononuclear phagocytes as sensors for sialic acids in tissue homeostasis and describe how the sialic acid-Siglec axis is exploited by tumors and pathogens for the induction of immune tolerance. Furthermore, we highlight how the sialic acid-Siglec axis can be utilized for clinical applications to induce or inhibit immune tolerance.


Assuntos
Glicoproteínas/imunologia , Tolerância Imunológica , Lectinas Tipo C/imunologia , Ácido N-Acetilneuramínico/imunologia , Fagócitos/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Animais , Glicolipídeos/imunologia , Humanos
16.
J Clin Invest ; 128(11): 4912-4923, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30130255

RESUMO

First-generation immune checkpoint inhibitors, including anti-CTLA-4 and anti-programmed death 1 (anti-PD-1) antibodies, have led to major clinical progress, yet resistance frequently leads to treatment failure. Thus, new targets acting on T cells are needed. CD33-related sialic acid-binding immunoglobulin-like lectins (Siglecs) are pattern-recognition immune receptors binding to a range of sialoglycan ligands, which appear to function as self-associated molecular patterns (SAMPs) that suppress autoimmune responses. Siglecs are expressed at very low levels on normal T cells, and these receptors were not until recently considered as interesting targets on T cells for cancer immunotherapy. Here, we show an upregulation of Siglecs, including Siglec-9, on tumor-infiltrating T cells from non-small cell lung cancer (NSCLC), colorectal, and ovarian cancer patients. Siglec-9-expressing T cells coexpressed several inhibitory receptors, including PD-1. Targeting of the sialoglycan-SAMP/Siglec pathway in vitro and in vivo resulted in increased anticancer immunity. T cell expression of Siglec-9 in NSCLC patients correlated with reduced survival, and Siglec-9 polymorphisms showed association with the risk of developing lung and colorectal cancer. Our data identify the sialoglycan-SAMP/Siglec pathway as a potential target for improving T cell activation for immunotherapy.


Assuntos
Antígenos CD , Regulação Neoplásica da Expressão Gênica/imunologia , Proteínas de Neoplasias , Neoplasias , Polimorfismo Genético , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Linfócitos T , Antígenos CD/genética , Antígenos CD/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/mortalidade , Neoplasias/patologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia
17.
Glycobiology ; 28(9): 640-647, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29309569

RESUMO

Changes in sialic acids in cancer have been observed for many years. In particular, the increase of sialoglycan density or hypersialylation in tumors has been described. Recent studies have identified mechanisms for immune evasion based on sialoglycan interactions with immunoregulatory Siglec receptors that are exploited by tumor cells and microorganisms alike. Siglecs are mostly inhibitory receptors similar to known immune checkpoints including PD-1 or CTLA-4 that are successfully targeted with blocking antibodies for cancer immunotherapy. Here, we summarize the known changes of sialic acids in cancer and the role Siglec receptors play in cancer immunity. We also focus on potential ways to target these Siglec receptors or sialoglycans in order to improve anti-cancer immunity.


Assuntos
Tolerância Imunológica/imunologia , Ácido N-Acetilneuramínico/imunologia , Neoplasias/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Humanos , Imunidade Inata , Imunoterapia , Neoplasias/terapia
18.
Sci Rep ; 7(1): 1296, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28465620

RESUMO

Intravenous immunoglobulin (IVIG) are purified IgG preparations made from the pooled plasma from thousands of healthy donors and are being tested in preclinical mouse models. Inherent challenges, however, are the pluripotency of IVIG and its xenogeneicity in animals. IVIG can alter the viability of human neutrophils via agonistic antibodies to Fas and Siglec-9. In this study, we compared the effects of IVIG on human and mouse neutrophils using different death assays. Different commercial IVIG preparations similarly induced cytokine-dependent death in human neutrophils, whereas they had no effects on the survival of either peripheral blood or bone marrow neutrophils from C57BL/6 or BALB/c mice. F(ab')2 but not Fc fragments of IVIG induced death of human neutrophils, whereas neither of these IVIG fragments, nor agonistic monoclonal antibodies to human Fas or Siglec-9 affected the viability of mouse neutrophils. Pooled mouse IgG, which exhibited a different immunoprofile compared to IVIG, also had no effect on mouse cells. Together, these observations demonstrate that effects of IVIG on neutrophil survival are not adequately reflected in current mouse models, despite the key role of these cells in human inflammatory and autoimmune diseases.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Imunoglobulina G/imunologia , Imunoglobulinas Intravenosas/administração & dosagem , Neutrófilos/efeitos dos fármacos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Antígenos CD/imunologia , Sobrevivência Celular/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/administração & dosagem , Imunoglobulinas Intravenosas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Receptor fas/imunologia
19.
Immunol Rev ; 276(1): 178-191, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28258691

RESUMO

Many Siglecs function as inhibitory receptors on innate and adaptive immune cells and may contribute to the attenuation of immune responses to tumors. Siglec 9 on neutrophils and Siglec 7 on NK cells are prominent examples of inhibitory Siglecs that can potentially dampen anti-tumor immunity. CD169 is a Siglec that may function as an adhesion molecule and a facilitator of the recognition and internalization of sialic acid decorated apoptotic bodies and exosomes derived from tumors. It can potentially contribute to both the attenuation as well as the facilitation of anti-tumor immunity. Siglecs have been best studied in the tumor context in animal models of cancer. Modulators of Siglec function are likely to be developed and investigated clinically in a cancer context over the next few years.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Lectinas/metabolismo , Neoplasias/imunologia , Neutrófilos/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Imunidade Adaptativa , Animais , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Humanos , Imunidade Inata , Imunomodulação , Lectinas/imunologia , Neoplasias/terapia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Evasão Tumoral
20.
Sci Rep ; 6: 37462, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892478

RESUMO

Functionally distinct plasmacytoid and conventional dendritic cells (pDC and cDC) shape innate and adaptive immunity. They are derived from common dendritic cell progenitors (CDPs) in the murine bone marrow, which give rise to CD11c+ MHCII- precursors with early commitment to DC subpopulations. In this study, we dissect pDC development from CDP into an ordered sequence of differentiation events by monitoring the expression of CD11c, MHC class II, Siglec H and CCR9 in CDP cultures by continuous single cell imaging and tracking. Analysis of CDP genealogies revealed a stepwise differentiation of CDPs into pDCs in a part of the CDP colonies. This developmental pathway involved an early CD11c+ SiglecH- pre-DC stage and a Siglec H+ CCR9low precursor stage, which was followed rapidly by upregulation of CCR9 indicating final pDC differentiation. In the majority of the remaining CDP pedigrees however the Siglec H+ CCR9low precursor state was maintained for several generations. Thus, although a fraction of CDPs transits through precursor stages rapidly to give rise to a first wave of pDCs, the majority of CDP progeny differentiate more slowly and give rise to longer lived precursor cells which are poised to differentiate on demand.


Assuntos
Células da Medula Óssea/citologia , Linhagem da Célula/imunologia , Células Dendríticas/citologia , Análise de Célula Única/métodos , Células-Tronco/citologia , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Antígeno CD11c/genética , Antígeno CD11c/imunologia , Diferenciação Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fêmur/citologia , Fêmur/imunologia , Fêmur/metabolismo , Citometria de Fluxo , Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Imunofenotipagem , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Receptores CCR/genética , Receptores CCR/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Tíbia/citologia , Tíbia/imunologia , Tíbia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA