Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Commun Biol ; 7(1): 430, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594506

RESUMO

Despite recent advances in cancer immunotherapy, pancreatic ductal adenocarcinoma (PDAC) remains unresponsive due to an immunosuppressive tumor microenvironment, which is characterized by the abundance of cancer-associated fibroblasts (CAFs). Once identified, CAF-mediated immune inhibitory mechanisms could be exploited for cancer immunotherapy. Siglec receptors are increasingly recognized as immune checkpoints, and their ligands, sialic acids, are known to be overexpressed by cancer cells. Here, we unveil a previously unrecognized role of sialic acid-containing glycans on PDAC CAFs as crucial modulators of myeloid cells. Using multiplex immunohistochemistry and transcriptomics, we show that PDAC stroma is enriched in sialic acid-containing glycans compared to tumor cells and normal fibroblasts, and characterized by ST3GAL4 expression. We demonstrate that sialic acids on CAF cell lines serve as ligands for Siglec-7, -9, -10 and -15, distinct from the ligands on tumor cells, and that these receptors are found on myeloid cells in the stroma of PDAC biopsies. Furthermore, we show that CAFs drive the differentiation of monocytes to immunosuppressive tumor-associated macrophages in vitro, and that CAF sialylation plays a dominant role in this process compared to tumor cell sialylation. Collectively, our findings unravel sialic acids as a mechanism of CAF-mediated immunomodulation, which may provide targets for immunotherapy in PDAC.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Macrófagos/metabolismo , Polissacarídeos/metabolismo , Microambiente Tumoral
2.
Cell Mol Immunol ; 21(5): 495-509, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38448555

RESUMO

The overexpression of sialic acids on glycans, called hypersialylation, is a common alteration found in cancer cells. Sialylated glycans can enhance immune evasion by interacting with sialic acid-binding immunoglobulin-like lectin (Siglec) receptors on tumor-infiltrating immune cells. Here, we investigated the effect of sialylated glycans and their interaction with Siglec receptors on myeloid-derived suppressor cells (MDSCs). We found that MDSCs derived from the blood of lung cancer patients and tumor-bearing mice strongly express inhibitory Siglec receptors and are highly sialylated. In murine cancer models of emergency myelopoiesis, Siglec-E knockout in myeloid cells resulted in prolonged survival and increased tumor infiltration of activated T cells. Targeting suppressive myeloid cells by blocking Siglec receptors or desialylation strongly reduced their suppressive potential. We further identified CCL2 as a mediator involved in T-cell suppression upon interaction between sialoglycans and Siglec receptors on MDSCs. Our results demonstrated that sialylated glycans inhibit anticancer immunity by modulating CCL2 expression.


Assuntos
Quimiocina CCL2 , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides , Polissacarídeos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Polissacarídeos/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Humanos , Quimiocina CCL2/metabolismo , Camundongos , Camundongos Knockout , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Ácido N-Acetilneuramínico/metabolismo
3.
BMC Cancer ; 24(1): 328, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468240

RESUMO

The sialic acid binding Ig like lectin 15 (Siglec-15) was previously identified as tumor immune suppressor gene in some human cancers with elusive molecular mechanism to be elucidated. The continuous focus on both clinical and basic biology of bladder cancer leads us to characterize aberrant abundance of BACH1-IT2 associating with stabilization of Siglec-15, which eventually contributes to local immune suppressive microenvironment and therefore tumor advance. This effect was evidently mediated by miR-4786-5p. BACH1-IT2 functions in this scenario as microRNA sponge, and competitively conceals miR-4786 and up-regulates cancer cell surface Siglec-15. The BACH1-IT2-miR-4786-Siglec-15 axis significantly influences activation of immune cell co-culture. In summary, our data highlights the critical involvements of BACH1-IT2 and miR-4786 in immune evasion in bladder cancer, which hints the potential for both therapeutic and prognostic exploitation.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Bexiga Urinária/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Microambiente Tumoral/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética
4.
Int Immunopharmacol ; 130: 111771, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38430807

RESUMO

BACKGROUND: Siglec9 has been identified as an immune checkpoint molecule on tumor-associated macrophages (TAMs). Nevertheless, the expression profile and clinical significance of Siglec9 + TAMs in colon cancer (CC) are still not fully understood. METHODS: Two clinical cohorts from distinct medical centers were retrospectively enrolled. Immunohistochemistry and immunofluorescence were conducted to evaluate the infiltration of immune cells. Single-cell RNA sequencing and flow cytometry were utilized to identify the impact of Siglec9 + TAMs on the tumor immune environment, which was subsequently validated through bioinformatics analysis of the TCGA database. Prognosis and the benefit of adjuvant chemotherapy (ACT) were also evaluated using Cox regression analysis and the Kaplan-Meier method. RESULTS: High infiltration of Siglec9 + TAMs was associated with worse prognosis and better benefit from 6-month ACT. Siglec9 + TAMs contributed to immunoevasion by promoting the infiltration of immunosuppressive cells and the dysfunction process of CD8 + T cells. Additionally, high infiltration of Siglec9 + TAMs was associated with the mesenchymal-featured subtype and overexpression of the VEGF signaling pathway, which was validated by the strongest communication between Siglec9 + TAMs and vascular endothelial cells. CONCLUSIONS: Siglec9 + TAMs may serve as a biomarker for prognosis and response to ACT in CC. Furthermore, the immunoevasive contexture and angiogenesis stimulated by Siglec9 + TAMs suggest potential treatment combinations for CC patients.


Assuntos
Antígenos CD , Neoplasias do Colo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Macrófagos Associados a Tumor , Humanos , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/patologia , Células Endoteliais , Prognóstico , Estudos Retrospectivos , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia , Antígenos CD/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Masculino , Feminino , Adulto , Pessoa de Meia-Idade
5.
J Hepatol ; 80(5): 792-804, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38331327

RESUMO

BACKGROUND & AIMS: Natural killer (NK) cell-based anti-hepatocellular carcinoma (HCC) therapy is an increasingly attractive approach that warrants further study. Siglec-9 interacts with its ligand (Siglec-9L) and restrains NK cell functions, suggesting it is a potential therapeutic target. However, in situ Siglec-9/Siglec-9L interactions in HCC have not been reported, and a relevant interventional strategy is lacking. Herein, we aim to illustrate Siglec-9/Siglec-9L-mediated cell sociology and identify small-molecule inhibitors targeting Siglec-9 that could improve the efficacy of NK cell-based immunotherapy for HCC. METHODS: Multiplexed immunofluorescence staining was performed to analyze the expression pattern of Siglec-7, -9 and their ligands in HCC tissues. Then we conducted docking-based virtual screening combined with bio-layer interferometry assays to identify a potent small-molecule Siglec-9 inhibitor. The therapeutic potential was further evaluated in vitro and in hepatoma-bearing NCG mice. RESULTS: Siglec-9 expression, rather than Siglec-7, was markedly upregulated on tumor-infiltrating NK cells, which correlated significantly with reduced survival of patients with HCC. Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival, further suggesting that Siglec-9/Siglec-9L interactions are a potential therapeutic target in HCC. In addition, we identified a small-molecule Siglec-9 inhibitor MTX-3937 which inhibited phosphorylation of Siglec-9 and downstream SHP1 and SHP2. Accordingly, MTX-3937 led to considerable improvement in NK cell function. Notably, MTX-3937 enhanced cytotoxicity of both human peripheral and tumor-infiltrating NK cells. Furthermore, transfer of MTX-3937-treated NK92 cells greatly suppressed the growth of hepatoma xenografts in NCG mice. CONCLUSIONS: Our study provides the rationale for HCC treatment by targeting Siglec-9 on NK cells and identifies a promising small-molecule inhibitor against Siglec-9 that enhances NK cell-mediated HCC surveillance. IMPACT AND IMPLICATIONS: Herein, we found that Siglec-9 expression is markedly upregulated on tumor-infiltrating natural killer (TINK) cells and correlates with reduced survival in patients with hepatocellular carcinoma (HCC). Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival. More importantly, we identified a small-molecule inhibitor targeting Siglec-9 that augments NK cell functions, revealing a novel immunotherapy strategy for liver cancer that warrants further clinical investigation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Recidiva Local de Neoplasia/metabolismo , Células Matadoras Naturais/patologia , Imunoterapia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ligantes , Prognóstico
6.
Chem Commun (Camb) ; 60(21): 2930-2933, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38372418

RESUMO

Pseudaminic acid (Pse) on pathogenic bacteria exopolysaccharide engages with the sialic acid-binding immunoglobulin-type lectin (Siglec)-10 receptor on macrophages via the critical 7-N-acetyl group. This binding stimulates macrophages to secrete interleukin 10 that suppresses phagocytosis against bacteria, but can be reverted by blocking Pse-Siglec-10 interaction with Pse-binding protein as a promising therapy.


Assuntos
Interleucina-10 , Macrófagos , Açúcares Ácidos , Interleucina-10/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
7.
Br J Dermatol ; 190(5): 627-635, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38197441

RESUMO

Modulation of immune responses through immune checkpoint blockade has revolutionized cutaneous melanoma treatment. However, it is still the case that not all patients respond successfully to these therapies, indicating the presence of as yet unknown resistance mechanisms. Hence, it is crucial to find novel targets to improve therapy efficacy. One of the described resistance mechanisms is regulated by immune inhibitory Siglec receptors, which are engaged by the carbohydrates sialic acids expressed on tumour cells, contributing to programmed cell death protein-1 (PD1)-like immune suppression mechanisms. In this review, we provide an overview on the regulation of sialic acid synthesis, its expression in melanoma, and the contribution of the sialic acid-Siglec axis to tumour development and immune suppressive mechanisms in the tumour microenvironment. Finally, we highlight potential sialic acid-Siglec axis-related therapeutics to improve the treatment of melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácido N-Acetilneuramínico , Imunidade , Microambiente Tumoral
8.
Allergy ; 79(3): 629-642, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38186079

RESUMO

BACKGROUND: Sialic acid-binding immunoglobulin-like lectin (Siglec)-6 and Siglec-8 are closely related mast cell (MC) receptors with broad inhibitory activity, but whose functional differences are incompletely understood. METHODS: Proteomic profiling using quantitative mass spectrometry was performed on primary mouse MCs to identify proteins associated with Siglec-6 and Siglec-8. For functional characterization, each receptor was evaluated biochemically and in ex vivo and in vivo inhibition models of IgE and non-IgE-mediated MC activation in Siglec-6- or Siglec-8-expressing transgenic mice. RESULTS: Siglec-6 and Siglec-8 were found in MCs within large complexes, interacting with 66 and 86 proteins, respectively. Strikingly, Siglec-6 and Siglec-8 interacted with a large cluster of proteins involved in IgE and non-IgE-mediated MC activation, including the high affinity IgE receptor, stem cell factor (SCF) receptor KIT/CD117, IL-4 and IL-33 receptors, and intracellular kinases LYN and JAK1. Protein interaction networks revealed Siglec-6 and Siglec-8 had overlapping yet distinct MC functions, with a potentially broader regulatory role for Siglec-6. Indeed, Siglec-6 preferentially interacted with the mature form of KIT at the cell surface, and treatment with an anti-Siglec-6 antibody significantly inhibited SCF-mediated MC activation more in comparison to targeting Siglec-8. CONCLUSION: These data demonstrate a central role for Siglec-6 and Siglec-8 in controlling MC activation through interactions with multiple activating receptors and key signaling molecules. Our findings suggest that Siglec-6 has a role distinct from that of Siglec-8 in regulating MC function and represents a distinct potential therapeutic target in mast cell-driven diseases.


Assuntos
Antígenos CD , Mastócitos , Camundongos , Animais , Antígenos CD/metabolismo , Proteômica , Camundongos Transgênicos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Imunoglobulina E/metabolismo
9.
Cancer Gene Ther ; 31(3): 427-438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072971

RESUMO

Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) is an immune checkpoint molecule with sequence homology to programmed cell death ligand 1 (PD-L1), which is mainly expressed on macrophages and tumor cells. However, whether Siglec-15-induced immunosuppression and poor prognosis are independent of PD-L1 remains unclear. In this study, we collected samples of 135 non-small cell lung cancers and found that Siglec-15 and PD-L1 expression were independent in non-small cell lung cancer by multiple immunofluorescence staining. Siglec-15 on macrophages (Mφ-Siglec-15) was significantly associated with DFS (p < 0.05) in PD-L1- patients with non-metastasis lung adenocarcinoma, not in PD-L1+ or lung squamous cell carcinoma patients. Moreover, stromal Siglec-15+ macrophages of Mφ-Siglec-15+PD-L1- patients were significantly more than those of Mφ-Siglec-15-PD-L1- patients (p = 0.002). We further found that Siglec-15+ macrophages polarized toward M2 and produced more IL-10, negatively associated with inflamed immunophenotype in PD-L1- patients and may inhibit CD8+T cells infiltration. In conclusion, PD-L1-independent Siglec-15+ macrophages contribute to the formation of an immunosuppressive microenvironment in non-metastasis lung adenocarcinoma patients, which may cause a higher risk of recurrence. Siglec-15 could be a potential target for normalizing cancer immunotherapy, benefiting patients who fail to respond to anti-PD-L1 therapy.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão/patologia , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Microambiente Tumoral
10.
Allergy ; 79(1): 37-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37605867

RESUMO

Chronic urticaria (CU) is a mast cell (MC)-dependent disease with limited therapeutic options. Current management strategies are directed at inhibiting IgE-mediated activation of MCs and antagonizing effects of released mediators. Due to the complexity and heterogeneity of CU and other MC diseases and mechanisms of MC activation-including multiple activating receptors and ligands, diverse signaling pathways, and a menagerie of mediators-strategies of MC depletion or MC silencing (i.e., inhibition of MC activation via binding of inhibitory receptors) have been developed to overcome limitations of singularly targeted agents. MC silencers, such as agonist monoclonal antibodies that engage inhibitory receptors (e.g., sialic acid-binding immunoglobulin-like lectin8 -[Siglec-8] [lirentelimab/AK002], Siglec-6 [AK006], and CD200R [LY3454738]), have reached preclinical and clinical stages of development. In this review, we (1) describe the role of MCs in the pathogenesis of CU, highlighting similarities with other MC diseases in disease mechanisms and response to treatment; (2) explore current therapeutic strategies, categorized by nonspecific immunosuppression, targeted inhibition of MC activation or mediators, and targeted modulation of MC activity; and (3) introduce the concept of MC silencing as an emerging strategy that could selectively block activation of MCs without eliciting or exacerbating on- or off-target, immunosuppressive adverse effects.


Assuntos
Antineoplásicos , Mastocitose , Urticária , Humanos , Mastócitos , Urticária/tratamento farmacológico , Urticária/genética , Mastocitose/patologia , Antineoplásicos/farmacologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/farmacologia
11.
Clin Transl Oncol ; 26(1): 190-203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37311988

RESUMO

PURPOSE: This study intends to investigate the possible molecular mechanism of immune response and tumorigenesis in ovarian cancer cells, mediated by sirtuin 1 (SIRT1)-containing extracellular vesicles (EVs) derived from cancer-associated adipocytes (CAAs) (CAA-EVs). METHODS: Differentially expressed genes in EVs from CAAs were screened by RNA transcriptome sequencing, and the downstream pathway was predicted in silico. The binding between SIRT1 and CD24 was investigated by luciferase activity and ChIP-PCR assays. EVs were extracted from human ovarian cancer tissue-isolated CAAs, and the internalization of CCA-EVs by ovarian cancer cells was characterized. The ovarian cancer cell line was injected into mice to establish an animal model. Flow cytometry was performed to analyze the proportions of M1 and M2 macrophages, CD8+ T, T-reg, and CD4+ T cells. TUNEL staining was used to detect cell apoptosis in the mouse tumor tissues. ELISA detection was performed on immune-related factors in the serum of mice. RESULTS: CAA-EVs could deliver SIRT1 to ovarian cancer cells, thereby affecting the immune response of ovarian cancer cells in vitro and promoting tumorigenesis in vivo. SIRT1 could transcriptionally activate the expression of CD24, and CD24 could up-regulate Siglec-10 expression. CAA-EVs-SIRT1 activated the CD24/Siglec-10 axis and promoted CD8+ T cell apoptosis, thereby promoting tumorigenesis in mice. CONCLUSION: CAA-EVs-mediated transfer of SIRT1 regulates the CD24/Siglec-10 axis to curb immune response and promote tumorigenesis of ovarian cancer cells.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Adipócitos/metabolismo , Adipócitos/patologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Imunidade , MicroRNAs/metabolismo , Neoplasias Ovarianas/patologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Sirtuína 1/metabolismo
12.
Trends Cancer ; 10(3): 230-241, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38160071

RESUMO

Advances in immunotherapy have revolutionized cancer treatment, yet many patients do not show clinical responses. While most immunotherapies target T cells, myeloid cells are the most abundant cell type in solid tumors and are key orchestrators of the immunosuppressive tumor microenvironment (TME), hampering effective T cell responses. Therefore, unraveling the immune suppressive pathways within myeloid cells could unveil new avenues for cancer immunotherapy. Over the past decade, Siglec receptors and their ligand, sialic acids, have emerged as a novel immune checkpoint on myeloid cells. In this review, we highlight key findings on how sialic acids modify immunity in the TME through engagement of Siglec-7/9/10/15 expressed on myeloid cells, and how the sialic acid-Siglec axis can be targeted for future cancer immunotherapies.


Assuntos
Imunoterapia , Neoplasias , Humanos , Ligantes , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácidos Siálicos , Células Mieloides/metabolismo , Neoplasias/terapia
13.
Curr Protoc ; 3(12): e949, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38050649

RESUMO

Siglecs (sialic acid-binding, immunoglobulin superfamily, lectins) are a family of transmembrane receptor-type glycan recognition proteins in vertebrates that are primarily expressed on leukocytes and regulate immune responses. Siglecs are involved in several diseases, such as cancer and neurodegenerative diseases. Most Siglecs suppress the activation of leukocytes by recognizing ligands containing sialic acid, a group of acidic sugars commonly found in vertebrate glycans, but rare among microbes. Siglec ligands are critical in the interaction between leukocytes and target cells. The abundance of the Siglec ligand is influenced by both the abundance of the glycoconjugate carrier (glycoprotein or glycolipid) and that of the terminal glycan epitope directly recognized by the Siglec. Therefore, a direct approach to evaluate the expression level of a Siglec ligand on cells of interest is to analyze the binding of recombinant Siglec protein to these cells. In this article, we describe a protocol for semi-quantitatively analyzing the expression level of Siglec ligands via flow cytometry using recombinant Siglec-Fc fusion protein. Support protocols describe how to remove sialic acids from the cell surface with sialidase under mild conditions to demonstrate the sialic acid dependence of Siglec binding, and the preparation of recombinant Siglec-Fc fusion proteins by transient transfection of mammalian cells. © 2023 Wiley Periodicals LLC. Basic Protocol: Quantitative analysis of Siglec ligands on mammalian cells via flow cytometry with recombinant Siglec-Fc fusion protein Support Protocol 1: Sialidase treatment of mammalian cells Support Protocol 2: Preparation of recombinant Siglec-Fc fusion protein via transient transfection of mammalian cells.


Assuntos
Ácido N-Acetilneuramínico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ligantes , Citometria de Fluxo , Neuraminidase/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Proteínas Recombinantes de Fusão , Proteínas Recombinantes , Polissacarídeos , Mamíferos/metabolismo
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(12): 1125-1131, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38140873

RESUMO

Lectins are proteins responsible for recognizing the signals of sugar molecules in the body. Sialic acid-binding immunoglobulin-like lectins (Siglecs) regulate the innate and adaptive immune responses in the tumor microenvironment by recognizing the glycan structure containing sialic acid and mediating downstream signals through immune receptor tyrosine inhibitory motifs. In recent years, a variety of tumor treatment strategies targeting the sialic acid-Siglecs axis have been introduced, including sialoglycoprotein-mediated drug delivery and antibody mediated inhibition of Siglecs from recognizing tumor surface ligands. In the future, by combining with glycoprotein nanotherapy, antibody therapy and gene therapy, Siglecs can be used to accurately locate tumor targets and release the anti-tumor immunity, so as to achieve the purpose of effective cure of tumors.


Assuntos
Ácido N-Acetilneuramínico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Imunoglobulinas/metabolismo , Receptores Imunológicos , Ligantes
15.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138970

RESUMO

Since the successful introduction of checkpoint inhibitors targeting the adaptive immune system, monoclonal antibodies inhibiting CD47-SIRPα interaction have shown promise in enhancing anti-tumor treatment efficacy. Apart from SIRPα, neutrophils express a broad repertoire of inhibitory receptors, including several members of the sialic acid-binding receptor (SIGLEC) family. Here, we demonstrate that interaction between tumor cell-expressed sialic acids and SIGLEC-5/14 on neutrophils inhibits antibody-dependent cellular cytotoxicity (ADCC). We observed that conjugate formation and trogocytosis, both essential processes for neutrophil ADCC, were limited by the sialic acid-SIGLEC-5/14 interaction. During neutrophil-tumor cell conjugate formation, we found that inhibition of the interaction between tumor-expressed sialic acids and SIGLEC-5/14 on neutrophils increased the CD11b/CD18 high affinity conformation. By dynamic acoustic force measurement, the binding between tumor cells and neutrophils was assessed. The interaction between SIGLEC-5/14 and the sialic acids was shown to inhibit the CD11b/CD18-regulated binding between neutrophils and antibody-opsonized tumor cells. Moreover, the interaction between sialic acids and SIGLEC-5/14-consequently hindered trogocytosis and tumor cell killing. In summary, our results provide evidence that the sialic acid-SIGLEC-5/14 interaction is an additional target for innate checkpoint blockade in the tumor microenvironment.


Assuntos
Neoplasias , Neutrófilos , Humanos , Neutrófilos/metabolismo , Ácido N-Acetilneuramínico , Antígeno de Macrófago 1 , Neoplasias/tratamento farmacológico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Microambiente Tumoral
16.
Sci Adv ; 9(44): eadh4379, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37910620

RESUMO

Ovarian cancer (OC) is a lethal gynecologic malignancy, with modest responses to CPI. Engagement of additional immune arms, such as NK cells, may be of value. We focused on Siglec-7 as a surface antigen for engaging this population. Human antibodies against Siglec-7 were developed and characterized. Coculture of OC cells with PBMCs/NKs and Siglec-7 binding antibodies showed NK-mediated killing of OC lines. Anti-Siglec-7 mAb (DB7.2) enhanced survival in OC-challenged mice. In addition, the combination of DB7.2 and anti-PD-1 demonstrated further improved OC killing in vitro. To use Siglec-7 engagement as an OC-specific strategy, we engineered an NK cell engager (NKCE) to simultaneously engage NK cells through Siglec-7, and OC targets through FSHR. The NKCE demonstrated robust in vitro killing of FSHR+ OC, controlled tumors, and improved survival in OC-challenged mice. These studies support additional investigation of the Siglec-7 targeting approaches as important tools for OC and other recalcitrant cancers.


Assuntos
Produtos Biológicos , Neoplasias Ovarianas , Feminino , Humanos , Camundongos , Animais , Produtos Biológicos/metabolismo , Células Matadoras Naturais , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/metabolismo , Antígenos CD/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
17.
Angew Chem Int Ed Engl ; 62(52): e202312609, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37955317

RESUMO

The percentage of low response and adaptive resistance to current antibody-based immune checkpoint blockade (ICB) therapy requires the development of novel immunotherapy strategies. Here, we developed an aptamer-assisted immune checkpoint blockade (Ap-ICB) against sialic acid-binding immunoglobulin-like lectin-15 (Siglec-15), a novel immune suppressor broadly upregulated on cancer cells and tumor infiltrating myeloid cells, which is mutually exclusive of programmed cell death ligand 1 (PD-L1). Using protein aptamer selection, we identified WXY3 aptamer with high affinity against Siglec-15 protein/Siglec-15 positive cells. We demonstrated that WXY3 aptamer rescued antigen-specific T cell responses in vitro and in vivo. Importantly, the WXY3 Ap-ICB against Siglec-15 amplified anti-tumor immunity in the tumor microenvironment and inhibited tumor growth/metastasis in syngeneic mouse model, which may result from enhanced macrophage and T cell functionality. In addition, by using aptamer-based spherical nucleic acids, we developed a synergetic ICB strategy of multivalent binding and steric hindrance, which further improves the in vivo anti-tumor effect. Taken together, our results support Ap-ICB targeted Siglec-15 as a potential strategy for normalization cancer immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Camundongos , Animais , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Imunoglobulinas/farmacologia , Imunoglobulinas/uso terapêutico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/farmacologia , Ácidos Siálicos/farmacologia , Microambiente Tumoral , Proteínas de Membrana
18.
Biomed Pharmacother ; 165: 115064, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37413904

RESUMO

Tremendous progress has been seen in the study of the role of sialic acid binding im-munoglobulin type lectins (Siglecs) in osteoimmunology in the past two decades. Interest in Siglecs as immune checkpoints has grown from the recognition that Siglecs have relevance to human disease. Siglecs play important roles in inflammation and cancer, and play key roles in immune cell signaling. By recognizing common sialic acid containing glycans on glycoproteins and glycolipids as regulatory receptors for immune cell signals, Siglecs are expressed on most immune cells and play important roles in normal homeostasis and self-tolerance. In this review, we describe the role that the siglec family plays in bone and bone homeostasis, including the regulation of osteoclast differentiation as well as recent advances in inflammation, cancer and osteoporosis. Particular emphasis is placed on the relevant functions of Siglecs in self-tolerance and as pattern recognition receptors in immune responses, thereby potentially providing emerging strategies for the treatment of bone related diseases.


Assuntos
Ácido N-Acetilneuramínico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Humanos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Transdução de Sinais , Osso e Ossos/metabolismo , Inflamação
19.
J Control Release ; 360: 718-733, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451547

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent and lethal disease, and tumor regression rarely occurs in advanced HCC patients due to limited effective therapies. Given the enrichment of macrophages in HCC and their role in tumor immunity, transforming them into chimeric antigen receptor macrophages (CAR-Ms) is thought to increase HCC cell-directed phagocytosis and tumoricidal immunity. To test this hypothesis, mRNA encoding CAR is encapsulated in a lipid nanoparticle (LNP) that targets liver macrophages. Notably, the LNPs adsorb specific plasma proteins that enable them to target HCC-associated macrophages. Moreover, mRNA encoding Siglec-G lacking ITIMs (Siglec-GΔITIMs) is codelivered to liver macrophages by LNP to relieve CD24-mediated CAR-Ms immune suppression. Mice treated with LNPs generating CAR-Ms as well as CD24-Siglec-G blockade significantly elevate the phagocytic function of liver macrophages, reduce tumor burden and increase survival time in an HCC mouse model. Arguably, our work suggests an efficacious and flexible strategy for the treatment of HCC and warrants further rigorous evaluation in clinical trials.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores de Antígenos Quiméricos , Camundongos , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Imunoterapia , Macrófagos/metabolismo , Fagocitose , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
20.
Sci Transl Med ; 15(705): eadf5302, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37467314

RESUMO

Glioblastoma (GBM) is the most aggressive form of primary brain tumor, for which effective therapies are urgently needed. Cancer cells are capable of evading clearance by phagocytes such as microglia- and monocyte-derived cells through engaging tolerogenic programs. Here, we found that high expression of sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) correlates with reduced survival in patients with GBM. Using microglia- and monocyte-derived cell-specific knockouts of Siglec-E, the murine functional homolog of Siglec-9, together with single-cell RNA sequencing, we demonstrated that Siglec-E inhibits phagocytosis by these cells, thereby promoting immune evasion. Loss of Siglec-E on monocyte-derived cells further enhanced antigen cross-presentation and production of pro-inflammatory cytokines, which resulted in more efficient T cell priming. This bridging of innate and adaptive responses delayed tumor growth and resulted in prolonged survival in murine models of GBM. Furthermore, we showed the combinatorial activity of Siglec-E blockade and other immunotherapies demonstrating the potential for targeting Siglec-9 as a treatment for patients with GBM.


Assuntos
Glioblastoma , Ácido N-Acetilneuramínico , Humanos , Camundongos , Animais , Ácido N-Acetilneuramínico/metabolismo , Glioblastoma/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Fagocitose/fisiologia , Microglia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA