Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132289, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735607

RESUMO

S-Adenosyl-l-homocysteine hydrolase (SAHH) is a crucial enzyme that governs S-adenosyl methionine (SAM)-dependent methylation reactions within cells and regulates the intracellular concentration of SAH. Legionella pneumophila, the causative pathogen of Legionnaires' disease, encodes Lpg2021, which is the first identified dimeric SAHH in bacteria and is a promising target for drug development. Here, we report the structure of Lpg2021 in its ligand-free state and in complexes with adenine (ADE), adenosine (ADO), and 3-Deazaneplanocin A (DZNep). X-ray crystallography, isothermal titration calorimetry (ITC), and molecular docking were used to elucidate the binding mechanisms of Lpg2021 to its substrates and inhibitors. Virtual screening was performed to identify potential Lpg2021 inhibitors. This study contributes a novel perspective to the understanding of SAHH evolution and establishes a structural framework for designing specific inhibitors targeting pathogenic Legionella pneumophila SAHH.


Assuntos
Adenosil-Homocisteinase , Legionella pneumophila , Simulação de Acoplamento Molecular , Legionella pneumophila/enzimologia , Especificidade por Substrato , Adenosil-Homocisteinase/metabolismo , Adenosil-Homocisteinase/antagonistas & inibidores , Adenosil-Homocisteinase/química , Cristalografia por Raios X , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/química , Adenina/química , Adenina/metabolismo , Adenina/análogos & derivados , Ligação Proteica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , N-Glicosil Hidrolases
2.
Nature ; 631(8020): 393-401, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776962

RESUMO

AMPylation is a post-translational modification in which AMP is added to the amino acid side chains of proteins1,2. Here we show that, with ATP as the ligand and actin as the host activator, the effector protein LnaB of Legionella pneumophila exhibits AMPylase activity towards the phosphoryl group of phosphoribose on PRR42-Ub that is generated by the SidE family of effectors, and deubiquitinases DupA and DupB in an E1- and E2-independent ubiquitination process3-7. The product of LnaB is further hydrolysed by an ADP-ribosylhydrolase, MavL, to Ub, thereby preventing the accumulation of PRR42-Ub and ADPRR42-Ub and protecting canonical ubiquitination in host cells. LnaB represents a large family of AMPylases that adopt a common structural fold, distinct from those of the previously known AMPylases, and LnaB homologues are found in more than 20 species of bacterial pathogens. Moreover, LnaB also exhibits robust phosphoryl AMPylase activity towards phosphorylated residues and produces unique ADPylation modifications in proteins. During infection, LnaB AMPylates the conserved phosphorylated tyrosine residues in the activation loop of the Src family of kinases8,9, which dampens downstream phosphorylation signalling in the host. Structural studies reveal the actin-dependent activation and catalytic mechanisms of the LnaB family of AMPylases. This study identifies, to our knowledge, an unprecedented molecular regulation mechanism in bacterial pathogenesis and protein phosphorylation.


Assuntos
Monofosfato de Adenosina , Proteínas de Bactérias , Legionella pneumophila , Fosfotirosina , Transdução de Sinais , Humanos , Actinas/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , ADP-Ribosilação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Hidrólise , Legionella pneumophila/enzimologia , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidade , Ligantes , Modelos Moleculares , N-Glicosil Hidrolases/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Tirosina/metabolismo , Tirosina/química , Ubiquitina/metabolismo , Ubiquitinação , Enzimas Desubiquitinantes/metabolismo , Dobramento de Proteína , Fosfotirosina/química , Fosfotirosina/metabolismo
3.
Arch Biochem Biophys ; 745: 109704, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527700

RESUMO

Sodium dodecyl sulfate (SDS) is a well-known protein denaturing agent. A less known property of this detergent is that it can activate or inactivate some enzymes at sub-denaturing concentrations. In this work we explore the effect of SDS on the ATPase activity of a hyper-thermophilic and a mesophilic Cu(I) ATPases reconstituted in mixed micelles of phospholipids and a non-denaturing detergent. An iterative procedure was used to evaluate the partition of SDS between the aqueous and the micellar phases, allowing to determine the composition of micelles prepared from phospholipid/detergent mixtures. The incubation of enzymes with SDS in the presence of different amounts of phospholipids reveals that higher SDS concentrations are required to obtain the same degree of inactivation when the initial concentration of phospholipids is increased. Remarkably, we found that, if represented as a function of the mole fraction of SDS in the micelle, the degree of inactivation obtained at different amounts of amphiphiles converges to a single inactivation curve. To interpret this result, we propose a simple model involving active and inactive enzyme molecules in equilibrium. This model allowed us to estimate the Gibbs free energy change for the inactivation process and its derivative with respect to the mole fraction of SDS in the micellar phase, the latter being a measure of the susceptibility of the enzyme to SDS. Our results showed that the inactivation free energy changes are similar for both proteins. Conversely, susceptibility to SDS is significantly lower for the hyperthermophilic ATPase, suggesting an inverse relation between thermophilicity and susceptibility to SDS.


Assuntos
Adenosina Trifosfatases , Biocatálise , Cobre , Detergentes , Micelas , Dodecilsulfato de Sódio , Adenosina Trifosfatases/metabolismo , Archaeoglobus fulgidus/enzimologia , Biocatálise/efeitos dos fármacos , Calorimetria , Cobre/metabolismo , Detergentes/farmacologia , Hidrólise/efeitos dos fármacos , Legionella pneumophila/enzimologia , Dodecilsulfato de Sódio/farmacologia , Temperatura , Termodinâmica
4.
J Biol Chem ; 298(10): 102414, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36007613

RESUMO

Legionella pneumophila, a bacterial pathogen that causes a severe pneumonia known as Legionnaires' disease, extensively exploits the ubiquitin (Ub) pathway in the infected host cells through certain virulence effectors excreted by the Dot/Icm system. To date, several Dot/Icm effectors have been found to act as Ub ligases, and four effectors, including LotA, LotB, LotC, and Ceg7, have been identified as deubiquitinases (DUBs) from the ovarian tumor (OTU) domain family. LotA is unique among other OTU DUBs because it possesses two distinct DUB domains and exclusively exhibits catalytic activity against K6-linked diUb and polyUb chains. However, the structure of LotA and the molecular mechanism for the dual DUB activity remains elusive. In this study, we solved the structure of LotA in complex with proximally bound Ub and distal covalently bound Ub. Both Ub molecules are bound to the DUB1 domain and mimic a K6-linked diUb. Structural analysis reveals that the DUB1 domain utilizes a distinct mechanism for recognition of the K6-linked diUb within a large S1' binding site that is uncommon to OTU DUBs. Structural fold of the LotA DUB2 domain closely resembles LotB and LotC, similarly containing an extra α-helix lobe that has been demonstrated to play an important role in Ub binding. Collectively, our study uncovers the structural basis for the dual catalytic activity of the unique OTU family DUB LotA.


Assuntos
Proteínas de Bactérias , Enzimas Desubiquitinantes , Legionella pneumophila , Proteínas de Bactérias/química , Enzimas Desubiquitinantes/química , Legionella pneumophila/enzimologia , Ubiquitina/metabolismo , Catálise , Domínios Proteicos , Conformação Proteica em alfa-Hélice
5.
J Bacteriol ; 204(1): e0037621, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34633867

RESUMO

Pathogenic bacteria have acquired a vast array of eukaryotic-protein-like proteins via intimate interaction with host cells. Bacterial effector proteins that function as ubiquitin ligases and deubiquitinases (DUBs) are remarkable examples of such molecular mimicry. LotA, a Legionella pneumophila effector, belongs to the ovarian tumor (OTU) superfamily, which regulates diverse ubiquitin signals by their DUB activities. LotA harbors two OTU domains that have distinct reactivities; the first one is responsible for the cleavage of the K6-linked ubiquitin chain, and the second one shows an uncommon preference for long chains of ubiquitin. Here, we report the crystal structure of a middle domain of LotA (LotAM), which contains the second OTU domain. LotAM consists of two distinct subdomains, a catalytic domain having high structural similarity with human OTU DUBs and an extended helical lobe (EHL) domain, which is characteristically conserved only in Legionella OTU DUBs. The docking simulation of LotAM with ubiquitin suggested that hydrophobic and electrostatic interactions between the EHL of LotAM and the C-terminal region of ubiquitin are crucial for the binding of ubiquitin to LotAM. The structure-based mutagenesis demonstrated that the acidic residue in the characteristic short helical segment termed the "helical arm" is essential for the enzymatic activity of LotAM. The EHL domain of the three Legionella OTU DUBs, LotA, LotB, and LotC, share the "helical arm" structure, suggesting that the EHL domain defines the Lot-OTUs as a unique class of DUBs. IMPORTANCE To successfully colonize, some pathogenic bacteria hijack the host ubiquitin system. Legionella OTU-like-DUBs (Lot-DUBs) are novel bacterial deubiquitinases found in effector proteins of L. pneumophila. LotA is a member of Lot-DUBs and has two OTU domains (OTU1 and OTU2). We determined the structure of a middle fragment of LotA (LotAM), which includes OTU2. LotAM consists of the conserved catalytic domain and the Legionella OTUs-specific EHL domain. The docking simulation with ubiquitin and the mutational analysis suggested that the acidic surface in the EHL is essential for enzymatic activity. The structure of the EHL differs from those of other Lot-DUBs, suggesting that the variation of the EHL is related to the variable cleaving specificity of each DUB.


Assuntos
Proteínas de Bactérias/metabolismo , Enzimas Desubiquitinantes/metabolismo , Legionella pneumophila/enzimologia , Ubiquitina/metabolismo , Proteínas de Bactérias/genética , Cristalização , Enzimas Desubiquitinantes/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
6.
Biochim Biophys Acta Biomembr ; 1864(2): 183822, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826402

RESUMO

Cu+-ATPases are integral membrane proteins belonging to the IB subfamily of the P-type ATPases that couple Cu+ transport to the hydrolysis of ATP. As some structural and functional particularities arise for Cu+-ATPases, several authors suggest that some of the reaction steps of the Albers-Post model postulated for other P-ATPases may be different. In this work we describe a functional characterization of Legionella pneumophila Cu+-ATPase (LpCopA), the first PIB-ATPase whose structure was determined by X-ray crystallography. Cu+-ATPase activity of the enzyme presents a maximum at ∼37 °C and pH 6.6-6.8. Phospholipids enhance LpCopA Cu+-ATPase activity in a non-essential mode where optimal activity is achieved at an asolectin molar fraction of 0.15 and an amphiphile-protein ratio of ~30,000. As described for other P-ATPases, Mg2+ acts as an essential activator. Furthermore, Cu+-ATPase activity dependence on [Cu+] and [ATP] can both be described by a sum of two hyperbolic functions. Based on that, and the [Cu+] and [ATP] dependencies of the best fitting parameters of the hyperbolae pointed above, we propose a minimal reaction scheme for the catalytic mechanism that shares the basic reaction steps of the Albers-Post model for P-type ATPases. The reaction scheme postulated contemplates two different binding affinities for a single ATP (apparent affinities of 0.66 and 550 µM at [Cu+] â†’ ∞) and binding of at least 2 Cu+ with different affinities as well (apparent affinities of 1.4 and 102.5 µM at [ATP] â†’ ∞).


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Legionella pneumophila/enzimologia , Transporte de Íons , Cinética , Modelos Moleculares , Ligação Proteica
7.
Biomolecules ; 11(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34944446

RESUMO

Legionella pneumophila is a Gram-negative intracellular pathogen that causes Legionnaires' disease in elderly or immunocompromised individuals. This bacterium relies on the Dot/Icm (Defective in organelle trafficking/Intracellular multiplication) Type IV Secretion System (T4SS) and a large (>330) set of effector proteins to colonize the host cell. The structural variability of these effectors allows them to disrupt many host processes. Herein, we report the crystal structure of MavL to 2.65 Å resolution. MavL adopts an ADP-ribosyltransferase (ART) fold and contains the distinctive ligand-binding cleft of ART proteins. Indeed, MavL binds ADP-ribose with Kd of 13 µM. Structural overlay of MavL with poly-(ADP-ribose) glycohydrolases (PARGs) revealed a pair of aspartate residues in MavL that align with the catalytic glutamates in PARGs. MavL also aligns with ADP-ribose "reader" proteins (proteins that recognize ADP-ribose). Since no glycohydrolase activity was observed when incubated in the presence of ADP-ribosylated PARP1, MavL may play a role as a signaling protein that binds ADP-ribose. An interaction between MavL and the mammalian ubiquitin-conjugating enzyme UBE2Q1 was revealed by yeast two-hybrid and co-immunoprecipitation experiments. This work provides structural and molecular insights to guide biochemical studies aimed at elucidating the function of MavL. Our findings support the notion that ubiquitination and ADP-ribosylation are global modifications exploited by L. pneumophila.


Assuntos
Legionella pneumophila/crescimento & desenvolvimento , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Adenosina Difosfato Ribose/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/enzimologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Células THP-1 , Ubiquitinação
8.
Science ; 372(6545): 935-941, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33927055

RESUMO

During infection, intracellular bacterial pathogens translocate a variety of effectors into host cells that modify host membrane trafficking for their benefit. We found a self-organizing system consisting of a bacterial phosphoinositide kinase and its opposing phosphatase that formed spatiotemporal patterns, including traveling waves, to remodel host cellular membranes. The Legionella effector MavQ, a phosphatidylinositol (PI) 3-kinase, was targeted to the endoplasmic reticulum (ER). MavQ and the Legionella PI 3-phosphatase SidP, even in the absence of other bacterial components, drove rapid PI 3-phosphate turnover on the ER and spontaneously formed traveling waves that spread along ER subdomains inducing vesicle and tubule budding. Thus, bacteria can exploit a self-organizing membrane-targeting mechanism to hijack host cellular structures for survival.


Assuntos
Proteínas de Bactérias/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Legionella pneumophila/fisiologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Proteínas de Bactérias/química , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/ultraestrutura , Retroalimentação Fisiológica , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Membranas Intracelulares/ultraestrutura , Legionella pneumophila/enzimologia , Legionella pneumophila/genética , Legionella pneumophila/crescimento & desenvolvimento , Camundongos , Mutação , Fosfatidilinositol 3-Quinase/química , Fosfatos de Fosfatidilinositol/química , Monoéster Fosfórico Hidrolases/metabolismo , Domínios Proteicos , Células RAW 264.7
9.
Protein Sci ; 30(5): 940-955, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33660322

RESUMO

Legionella pneumophila is an intracellular pathogen that causes Legionnaire's disease in humans. This bacterium can be found in freshwater environments as a free-living organism, but it is also an intracellular parasite of protozoa. Human infection occurs when inhaled aerosolized pathogen comes into contact with the alveolar mucosa and replicates in alveolar macrophages. Legionella enters the host cell by phagocytosis and redirects the Legionella-containing phagosomes from the phagocytic maturation pathway. These nascent phagosomes fuse with ER-derived secretory vesicles and membranes forming the Legionella-containing vacuole. Legionella subverts many host cellular processes by secreting over 300 effector proteins into the host cell via the Dot/Icm type IV secretion system. The cellular function for many Dot/Icm effectors is still unknown. Here, we present a structural and functional study of L. pneumophila effector RavA (Lpg0008). Structural analysis revealed that the RavA consists of four ~85 residue long α-helical domains with similar folds, which show only a low level of structural similarity to other protein domains. The ~90 residues long C-terminal segment is predicted to be natively unfolded. We show that during L. pneumophila infection of human cells, RavA localizes to the Golgi apparatus and to the plasma membrane. The same localization is observed when RavA is expressed in human cells. The localization signal resides within the C-terminal sequence C409 WTSFCGLF417 . Yeast-two-hybrid screen using RavA as bait identified RAB11A as a potential binding partner. RavA is present in L. pneumophila strains but only distant homologs are found in other Legionella species, where the number of repeats varies.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Legionella pneumophila/enzimologia , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Células HEK293 , Humanos , Legionella pneumophila/genética , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
10.
PLoS Pathog ; 16(8): e1008734, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32853279

RESUMO

AMPylation, the post-translational modification with adenosine monophosphate (AMP), is catalyzed by effector proteins from a variety of pathogens. Legionella pneumophila is thus far the only known pathogen that, in addition to encoding an AMPylase (SidM/DrrA), also encodes a deAMPylase, called SidD, that reverses SidM-mediated AMPylation of the vesicle transport GTPase Rab1. DeAMPylation is catalyzed by the N-terminal phosphatase-like domain of SidD. Here, we determined the crystal structure of full length SidD including the uncharacterized C-terminal domain (CTD). A flexible loop rich in aromatic residues within the CTD was required to target SidD to model membranes in vitro and to the Golgi apparatus within mammalian cells. Deletion of the loop (Δloop) or substitution of its aromatic phenylalanine residues rendered SidD cytosolic, showing that the hydrophobic loop is the primary membrane-targeting determinant of SidD. Notably, deletion of the two terminal alpha helices resulted in a CTD variant incapable of discriminating between membranes of different composition. Moreover, a L. pneumophila strain producing SidDΔloop phenocopied a L. pneumophila ΔsidD strain during growth in mouse macrophages and displayed prolonged co-localization of AMPylated Rab1 with LCVs, thus revealing that membrane targeting of SidD via its CTD is a critical prerequisite for its ability to catalyze Rab1 deAMPylation during L. pneumophila infection.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/microbiologia , Legionella pneumophila/enzimologia , Doença dos Legionários/microbiologia , Monofosfato de Adenosina/metabolismo , Animais , Proteínas de Bactérias/genética , Feminino , Complexo de Golgi/metabolismo , Humanos , Legionella pneumophila/química , Legionella pneumophila/genética , Camundongos , Domínios Proteicos
11.
Chembiochem ; 21(20): 2903-2907, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32421893

RESUMO

Stable NAD+ analogues carrying single atom substitutions in either the furanose ring or the nicotinamide part have proven their value as inhibitors for NAD+ -consuming enzymes. To investigate the potential of such compounds to inhibit the adenosine diphosphate ribosyl (ADPr) transferase activity of the Legionella SdeC enzyme, we prepared three NAD+ analogues, namely carbanicotinamide adenosine dinucleotide (c-NAD+ ), thionicotinamide adenosine dinucleotide (S-NAD+ ) and benzamide adenosine dinucleotide (BAD). We optimized the chemical synthesis of thionicotinamide riboside and for the first time used an enzymatic approach to convert all three ribosides into the corresponding NAD+ mimics. We thus expanded the known scope of substrates for the NRK1/NMNAT1 enzyme combination by turning all three modified ribosides into NAD+ analogues in a scalable manner. We then compared the three NAD+ mimics side-by-side in a single assay for enzyme inhibition on Legionella effector enzyme SdeC. The class of SidE enzymes to which SdeC belongs was recently identified to be important in bacterial virulence, and we found SdeC to be inhibited by S-NAD+ and BAD with IC50 values of 28 and 39 µM, respectively.


Assuntos
Legionella pneumophila/enzimologia , NAD/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Modelos Moleculares , Conformação Molecular , NAD/síntese química , NAD/química , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química
12.
Front Immunol ; 11: 25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117224

RESUMO

Legionella pneumophila is the causative agent of a severe pneumonia called Legionnaires' disease. The environmental bacterium replicates in free-living amoebae as well as in lung macrophages in a distinct compartment, the Legionella-containing vacuole (LCV). The LCV communicates with a number of cellular vesicle trafficking pathways and is formed by a plethora of secreted bacterial effector proteins, which target host cell proteins and lipids. Phosphoinositide (PI) lipids are pivotal determinants of organelle identity, membrane dynamics and vesicle trafficking. Accordingly, eukaryotic cells tightly regulate the production, turnover, interconversion, and localization of PI lipids. L. pneumophila modulates the PI pattern in infected cells for its own benefit by (i) recruiting PI-decorated vesicles, (ii) producing effectors acting as PI interactors, phosphatases, kinases or phospholipases, and (iii) subverting host PI metabolizing enzymes. The PI conversion from PtdIns(3)P to PtdIns(4)P represents a decisive step during LCV maturation. In this review, we summarize recent progress on elucidating the strategies, by which L. pneumophila subverts host PI lipids to promote LCV formation and intracellular replication.


Assuntos
Interações Hospedeiro-Patógeno , Legionella pneumophila/enzimologia , Doença dos Legionários/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Fosfatidilinositóis/metabolismo , Vacúolos/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/microbiologia , Humanos , Doença dos Legionários/microbiologia , Vesículas Secretórias/metabolismo , Vesículas Transportadoras/metabolismo
13.
Nature ; 572(7769): 387-391, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31330531

RESUMO

The bacterial pathogen Legionella pneumophila creates an intracellular niche permissive for its replication by extensively modulating host-cell functions using hundreds of effector proteins delivered by its Dot/Icm secretion system1. Among these, members of the SidE family (SidEs) regulate several cellular processes through a unique phosphoribosyl ubiquitination mechanism that bypasses the canonical ubiquitination machinery2-4. The activity of SidEs is regulated by another Dot/Icm effector known as SidJ5; however, the mechanism of this regulation is not completely understood6,7. Here we demonstrate that SidJ inhibits the activity of SidEs by inducing the covalent attachment of glutamate moieties to SdeA-a member of the SidE family-at E860, one of the catalytic residues that is required for the mono-ADP-ribosyltransferase activity involved in ubiquitin activation2. This inhibition by SidJ is spatially restricted in host cells because its activity requires the eukaryote-specific protein calmodulin (CaM). We solved a structure of SidJ-CaM in complex with AMP and found that the ATP used in this reaction is cleaved at the α-phosphate position by SidJ, which-in the absence of glutamate or modifiable SdeA-undergoes self-AMPylation. Our results reveal a mechanism of regulation in bacterial pathogenicity in which a glutamylation reaction that inhibits the activity of virulence factors is activated by host-factor-dependent acyl-adenylation.


Assuntos
Calmodulina/metabolismo , Ácido Glutâmico/metabolismo , Legionella pneumophila/enzimologia , Legionella pneumophila/metabolismo , Ubiquitinação , ADP-Ribosilação , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Coenzimas/metabolismo , Células HEK293 , Humanos , Legionella pneumophila/citologia , Modelos Moleculares , Ubiquitina/química , Ubiquitina/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(30): 15013-15022, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31278151

RESUMO

Phosphorylation reactions, driven by competing kinases and phosphatases, are central elements of cellular signal transduction. We reconstituted a native eukaryotic lipid kinase-phosphatase reaction that drives the interconversion of phosphatidylinositol-4-phosphate [PI(4)P] and phosphatidylinositol-4,5-phosphate [PI(4,5)P2] on membrane surfaces. This system exhibited bistability and formed spatial composition patterns on supported membranes. In smaller confined regions of membrane, rapid diffusion ensures the system remains spatially homogeneous, but the final outcome-a predominantly PI(4)P or PI(4,5)P2 membrane composition-was governed by the size of the reaction environment. In larger confined regions, interplay between the reactions, diffusion, and confinement created a variety of differentially patterned states, including polarization. Experiments and kinetic modeling reveal how these geometric confinement effects arise from a mechanism based on stochastic fluctuations in the copy number of membrane-bound kinases and phosphatases. The underlying requirements for such behavior are unexpectedly simple and likely to occur in natural biological signaling systems.


Assuntos
Proteínas de Bactérias/química , Fatores de Troca do Nucleotídeo Guanina/química , Fosfatidilinositol 4,5-Difosfato/química , Fosfatos de Fosfatidilinositol/química , Monoéster Fosfórico Hidrolases/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Proteínas de Bactérias/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Cinética , Legionella pneumophila/química , Legionella pneumophila/enzimologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipase C delta/química , Fosfolipase C delta/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Imagem Individual de Molécula , Processos Estocásticos , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
15.
Science ; 364(6442): 787-792, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31123136

RESUMO

Enzymes with a protein kinase fold transfer phosphate from adenosine 5'-triphosphate (ATP) to substrates in a process known as phosphorylation. Here, we show that the Legionella meta-effector SidJ adopts a protein kinase fold, yet unexpectedly catalyzes protein polyglutamylation. SidJ is activated by host-cell calmodulin to polyglutamylate the SidE family of ubiquitin (Ub) ligases. Crystal structures of the SidJ-calmodulin complex reveal a protein kinase fold that catalyzes ATP-dependent isopeptide bond formation between the amino group of free glutamate and the γ-carboxyl group of an active-site glutamate in SidE. We show that SidJ polyglutamylation of SidE, and the consequent inactivation of Ub ligase activity, is required for successful Legionella replication in a viable eukaryotic host cell.


Assuntos
Proteínas de Bactérias/metabolismo , Legionella pneumophila/enzimologia , Ácido Poliglutâmico/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Fatores de Virulência/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Calmodulina/química , Calmodulina/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Células HEK293 , Humanos , Legionella pneumophila/genética , Legionella pneumophila/patogenicidade , Fosforilação , Ácido Poliglutâmico/química , Ácido Poliglutâmico/genética , Domínios Proteicos/genética , Proteínas Quinases/química , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética , Fatores de Virulência/química , Fatores de Virulência/genética
16.
Cell Microbiol ; 21(6): e13014, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30702192

RESUMO

The major virulence determinant of Legionella pneumophila is the type IVB secretion system (T4BSS), which delivers approximately 330 effector proteins into the host cell to modulate various cellular processes. However, the functions of most effector proteins remain unclear. WipA, an effector, was the first phosphotyrosine phosphatase of Legionella with unknown function. In this study, we found that WipA induced relatively strong growth defects in yeast in a phosphatase activity-dependent manner. Phosphoproteomics data showed that WipA was likely involved into endocytosis, FcγR-mediated phagocytosis, tight junction, and regulation of actin cytoskeleton pathways. Western blotting further confirmed WipA dephosphorylates several proteins associated with actin polymerisation, such as p-N-WASP, p-ARP3, p-ACK1, and p-NCK1. Thus, we hypothesised that WipA targets N-WASP/ARP2/3 complex signalling pathway, leading to disturbance of actin polymerisation. Indeed, we demonstrated that WipA inhibits host F-actin polymerisation by reducing the G-actin to F-actin transition during L. penumophila infection. Furthermore, the intracellular proliferation of wipA/legK2 double mutant was significantly impaired at the late stage of infection, although the absence of WipA does not confer any further effect on actin polymerisation to the legK2 mutant. Collectively, this study provides unique insights into the WipA-mediated regulation of host actin polymerisation and assists us to elucidate the pathogenic mechanisms of L. pnuemophila infection.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Legionella pneumophila/enzimologia , Macrófagos/metabolismo , Fosfotirosina/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Fatores de Virulência/metabolismo , Citoesqueleto de Actina/microbiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/química , Animais , Cromatografia Líquida , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidade , Doença dos Legionários/metabolismo , Macrófagos/microbiologia , Camundongos , Fagocitose/genética , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/toxicidade , Proteômica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Espectrometria de Massas em Tandem , Junções Íntimas/metabolismo
17.
Infect Immun ; 87(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30323027

RESUMO

The gammaproteobacterium Legionella pneumophila is the causative agent of Legionnaires' disease, an atypical pneumonia that manifests itself with severe lung damage. L. pneumophila, a common inhabitant of freshwater environments, replicates in free-living amoebae and persists in biofilms in natural and man-made water systems. Its environmental versatility is reflected in its ability to survive and grow within a broad temperature range as well as its capability to colonize and infect a wide range of hosts, including protozoa and humans. Peptidyl-prolyl-cis/trans-isomerases (PPIases) are multifunctional proteins that are mainly involved in protein folding and secretion in bacteria. In L. pneumophila the surface-associated PPIase Mip was shown to facilitate the establishment of the intracellular infection cycle in its early stages. The cytoplasmic PpiB was shown to promote cold tolerance. Here, we set out to analyze the interrelationship of these two relevant PPIases in the context of environmental fitness and infection. We demonstrate that the PPIases Mip and PpiB are important for surfactant-dependent sliding motility and adaptation to suboptimal temperatures, features that contribute to the environmental fitness of L. pneumophila Furthermore, they contribute to infection of the natural host Acanthamoeba castellanii as well as human macrophages and human explanted lung tissue. These effects were additive in the case of sliding motility or synergistic in the case of temperature tolerance and infection, as assessed by the behavior of the double mutant. Accordingly, we propose that Mip and PpiB are virulence modulators of L. pneumophila with compensatory action and pleiotropic effects.


Assuntos
Acanthamoeba castellanii/microbiologia , Proteínas de Bactérias/metabolismo , Ciclofilinas/metabolismo , Endocitose , Legionella pneumophila/fisiologia , Locomoção , Macrófagos/microbiologia , Peptidilprolil Isomerase/metabolismo , Temperatura Baixa , Humanos , Legionella pneumophila/enzimologia , Legionella pneumophila/efeitos da radiação , Doença dos Legionários/microbiologia , Pulmão/microbiologia , Modelos Teóricos
18.
Naunyn Schmiedebergs Arch Pharmacol ; 392(1): 69-79, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30225797

RESUMO

Legionella pneumophila glucosyltransferase SetA, which is introduced into target cells by a type IV secretion system, affects the intracellular traffic of host cells. Here, we characterized the enzyme activity of the Legionella effector. We report that Asp118 and Arg121 of SetA are essential for glucohydrolase and glucotransferase activities. Exchange of Trp36 to alanine reduced the enzyme activity of SetA. All three amino acids were crucial for the cytotoxic effects of SetA in yeast. We observed that phosphatidylinositol-3-phosphate (PI3P) increased the glucosyltransferase activity of SetA severalfold, while the glucohydrolase activity was not affected. In the presence of PI3P, we observed the glucosylation of actin, vimentin and the chaperonin CCT5 in the cytosolic fraction of target cells. Studies on the functional consequences of glucosylation of skeletal muscle α-actin in vitro revealed inhibition of actin polymerization by glucosylation.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosiltransferases/metabolismo , Legionella pneumophila/enzimologia , Fosfatos de Fosfatidilinositol/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Proteínas de Bactérias/genética , Células CHO , Cricetulus , Escherichia coli/genética , Glucosiltransferases/genética , Humanos , Células Jurkat , Mutagênese Sítio-Dirigida , Fosfatos de Fosfatidilinositol/genética , Saccharomyces cerevisiae/genética
19.
Cell Host Microbe ; 24(3): 429-438.e6, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30212651

RESUMO

The intracellular pathogen Legionella pneumophila encodes translocated effector proteins that modify host cell processes to support bacterial survival and growth. Here, we show that the L. pneumophila effector protein LegK7 hijacks the conserved Hippo signaling pathway by molecularly mimicking host Hippo kinase (MST1 in mammals), which is the key regulator of pathway activation. LegK7, like Hippo/MST1, phosphorylates the scaffolding protein MOB1, which triggers a signaling cascade resulting in the degradation of the transcriptional regulators TAZ and YAP1. Transcriptome analysis revealed that LegK7-mediated targeting of TAZ and YAP1 alters the transcriptional profile of mammalian macrophages, a key cellular target of L. pneumophila infection. Specifically, genes targeted by the transcription factor PPARγ, which is regulated by TAZ, displayed altered expression, and continuous interference with PPARγ activity rendered macrophages less permissive to L. pneumophila intracellular growth. Thus, a conserved L. pneumophila effector kinase exploits the Hippo pathway to promote bacterial growth and infection.


Assuntos
Proteínas de Bactérias/metabolismo , Legionella pneumophila/enzimologia , Doença dos Legionários/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Legionella pneumophila/química , Legionella pneumophila/genética , Legionella pneumophila/crescimento & desenvolvimento , Doença dos Legionários/genética , Doença dos Legionários/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , PPAR gama , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteólise , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
20.
Biochemistry ; 57(28): 4063-4073, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29894640

RESUMO

Phospholipids and sterols play multiple roles in cells. In addition to establishing barriers between compartments, they also provide the matrix for assembly and function of a large variety of catalytic processes. Lipid composition is a highly regulated feature of biological membranes, yet its implications for membrane proteins are difficult problems to approach. One obstacle is the inherent complexity of observing and describing these interactions and their dynamics at a molecular and atomic level. However, lipid interactions are pivotal for membrane protein function and should be acknowledged. The enzymatic activity of several different P-type ATPases, one of the major families of ion pumping primary active transporters, has previously been shown to exhibit a strong dependence on phospholipids; however, distinguishing the effects of annular and specific lipid interactions is challenging. Here we show that the hydrolytic activity of a bacterial Cu(I)-transporting P-type ATPase (LpCopA) is stimulated by the bacterial, anionic phospholipid cardiolipin and to some extent by phosphatidylglycerol. Furthermore, multiscale molecular dynamics simulations pinpoint lipid hot spots on the membrane-spanning domain of LpCopA. Thus, using two independent methods, our study shows converging evidence that the lipid membrane composition plays an important role for LpCopA.


Assuntos
Proteínas de Bactérias/metabolismo , Cardiolipinas/metabolismo , ATPases Transportadoras de Cobre/metabolismo , Legionella pneumophila/enzimologia , Fosfatidilgliceróis/metabolismo , Proteínas de Bactérias/química , ATPases Transportadoras de Cobre/química , Humanos , Hidrólise , Legionella pneumophila/química , Legionella pneumophila/metabolismo , Doença dos Legionários/microbiologia , Lipídeos de Membrana/metabolismo , Simulação de Dinâmica Molecular , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA