Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Parasit Vectors ; 16(1): 282, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580789

RESUMO

BACKGROUND: Leishmaniasis is a zoonotic disease endemic in the Mediterranean region where Leishmania infantum is the causative agent of human and canine infection. Characterization of this parasite at the subspecies level can be useful in epidemiological studies, to evaluate the clinical course of the disease (e.g. resistant strains, visceral and cutaneous forms of leishmaniasis) as well as to identify infection reservoirs. Multilocus enzyme electrophoresis (MLEE), a method currently recognized as the reference method for characterizing and identifying strains of Leishmania, is cumbersome and time-consuming and requires cultured parasites. These disadvantages have led to the development of other methods, such as multilocus microsatellite typing (MLMT) and multilocus sequence typing (MLST), for typing Leishmania parasites; however, these methods have not yet been applied for routine use. In this study, we first used MLST to identify informative polymorphisms on single-copy genes coding for metabolic enzymes, following which we developed two rapid genotyping assays based on high-resolution melting (HRM) analysis to explore these polymorphisms in L. infantum parasites. METHODS: A customized sequencing panel targeting 14 housekeeping genes was designed and MLST analysis was performed on nine L. infantum canine and human strains/isolates. Two quantitative real-time PCR-HRM assays were designed to analyze two informative polymorphisms on malic enzyme (ME) and glucose-6-phosphate isomerase (GPI) genes (390T/G and 1831A/G, respectively). The two assays were applied to 73 clinical samples/isolates from central/southern Italy and Pantelleria island, and the results were confirmed by DNA sequencing in a subset of samples. RESULTS: The MLST analysis, together with sequences available in the Genbank database, enabled the identification of two informative polymorphisms on the genes coding for ME and GPI. The fast screening of these polymorphisms using two HRM-based assays in 73 clinical samples/isolates resulted in the identification of seven genotypes. Overall, genotype 1 (sequence type 390T/1831G) was the most highly represented (45.2%) in the overall sample and correlated with the most common L. infantum zymodemes (MON-1, MON-72). Interestingly, in Pantelleria island, the most prevalent genotype (70.6%) was genotype 6 (sequence type 390T/1831A). CONCLUSIONS: Applying our HRM assays on clinical samples allowed us to identify seven different genotypes without the need for parasite isolation and cultivation. We have demonstrated that these assays could be used as fast, routine and inexpensive tools for epidemiological surveillance of L. infantum or for the identification of new infection reservoirs.


Assuntos
Glucose-6-Fosfato Isomerase , Leishmania infantum , Proteínas de Protozoários , Genótipo , Glucose-6-Fosfato Isomerase/genética , Leishmania infantum/enzimologia , Leishmania infantum/genética , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Protozoários/genética
2.
J Enzyme Inhib Med Chem ; 37(1): 912-929, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35306933

RESUMO

Trypanothione synthetase (TryS) catalyses the synthesis of N1,N8-bis(glutathionyl)spermidine (trypanothione), which is the main low molecular mass thiol supporting several redox functions in trypanosomatids. TryS attracts attention as molecular target for drug development against pathogens causing severe and fatal diseases in mammals. A drug discovery campaign aimed to identify and characterise new inhibitors of TryS with promising biological activity was conducted. A large compound library (n = 51,624), most of them bearing drug-like properties, was primarily screened against TryS from Trypanosoma brucei (TbTryS). With a true-hit rate of 0.056%, several of the TbTryS hits (IC50 from 1.2 to 36 µM) also targeted the homologue enzyme from Leishmania infantum and Trypanosoma cruzi (IC50 values from 2.6 to 40 µM). Calmidazolium chloride and Ebselen stand out for their multi-species anti-TryS activity at low µM concentrations (IC50 from 2.6 to 13.8 µM). The moieties carboxy piperidine amide and amide methyl thiazole phenyl were identified as novel TbTryS inhibitor scaffolds. Several of the TryS hits presented one-digit µM EC50 against T. cruzi and L. donovani amastigotes but proved cytotoxic against the human osteosarcoma and macrophage host cells (selectivity index ≤ 3). In contrast, seven hits showed a significantly higher selectivity against T. b. brucei (selectivity index from 11 to 182). Non-invasive redox assays confirmed that Ebselen, a multi-TryS inhibitor, induces an intracellular oxidative milieu in bloodstream T. b. brucei. Kinetic and mass spectrometry analysis revealed that Ebselen is a slow-binding inhibitor that modifies irreversible a highly conserved cysteine residue from the TryS's synthetase domain. The most potent TbTryS inhibitor (a singleton containing an adamantine moiety) exerted a non-covalent, non-competitive (with any of the substrates) inhibition of the enzyme. These data feed the drug discovery pipeline for trypanosomatids with novel and valuable information on chemical entities with drug potential.


Assuntos
Amida Sintases/antagonistas & inibidores , Antineoplásicos/farmacologia , Antiprotozoários/farmacologia , Leishmania infantum/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Amida Sintases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Antiprotozoários/síntese química , Antiprotozoários/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leishmania infantum/enzimologia , Macrófagos/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Trypanosoma cruzi/enzimologia
3.
Parasit Vectors ; 14(1): 438, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454601

RESUMO

BACKGROUND: The evolution of drug resistance is one of the biggest challenges in leishmaniasis and has prompted the need for new antileishmanial drugs. Repurposing of approved drugs is a faster and very attractive strategy that is gaining supporters worldwide. Different anticancer topoisomerase 1B (TOP1B) inhibitors have shown strong antileishmanial activity and promising selective indices, supporting the potential repurposing of these drugs. However, cancer cells and Leishmania share the ability to become rapidly resistant. The aim of this study was to complete a whole-genome exploration of the effects caused by exposure to topotecan in order to highlight the potential mechanisms deployed by Leishmania to favor its survival in the presence of a TOP1B inhibitor. METHODS: We used a combination of stepwise drug resistance selection, whole-genome sequencing, functional validation, and theoretical approaches to explore the propensity of and potential mechanisms deployed by three independent clones of L. infantum to resist the action of TOP1B inhibitor topotecan. RESULTS: We demonstrated that L. infantum is capable of becoming resistant to high concentrations of topotecan without impaired growth ability. No gene deletions or amplifications were identified from the next-generation sequencing data in any of the three resistant lines, ruling out the overexpression of efflux pumps as the preferred mechanism of topotecan resistance. We identified three different mutations in the large subunit of the leishmanial TOP1B (Top1BF187Y, Top1BG191A, and Top1BW232R). Overexpression of these mutated alleles in the wild-type background led to high levels of resistance to topotecan. Computational molecular dynamics simulations, in both covalent and non-covalent complexes, showed that these mutations have an effect on the arrangement of the catalytic pentad and on the interaction of these residues with surrounding amino acids and DNA. This altered architecture of the binding pocket results in decreased persistence of topotecan in the ternary complex. CONCLUSIONS: This work helps elucidate the previously unclear potential mechanisms of topotecan resistance in Leishmania by mutations in the large subunit of TOP1B and provides a valuable clue for the design of improved inhibitors to combat resistance in both leishmaniasis and cancer. Our data highlights the importance of including drug resistance evaluation in drug discovery cascades.


Assuntos
Antiprotozoários/farmacologia , DNA Topoisomerases Tipo I/genética , Resistência a Medicamentos , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/genética , Mutação , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia , Antineoplásicos/farmacologia , Reposicionamento de Medicamentos , Leishmania infantum/enzimologia , Leishmaniose/parasitologia , Simulação de Dinâmica Molecular , Sequenciamento Completo do Genoma
4.
Molecules ; 26(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206087

RESUMO

Polyphenolic and Terpenoids are potent natural antiparasitic compounds. This study aimed to identify new drug against Leishmania parasites, leishmaniasis's causal agent. A new in silico analysis was accomplished using molecular docking, with the Autodock vina program, to find the binding affinity of two important phytochemical compounds, Masticadienonic acid and the 3-Methoxycarpachromene, towards the trypanothione reductase as target drugs, responsible for the defense mechanism against oxidative stress and virulence of these parasites. There were exciting and new positive results: the molecular docking results show as elective binding profile for ligands inside the active site of this crucial enzyme. The ADMET study suggests that the 3-Methoxycarpachromene has the highest probability of human intestinal absorption. Through this work, 3-Methoxycarpachromene and Masticadienonic acid are shown to be potentially significant in drug discovery, especially in treating leishmaniasis. Hence, drug development should be completed with promising results.


Assuntos
Leishmania infantum/enzimologia , NADH NADPH Oxirredutases/antagonistas & inibidores , Compostos Fitoquímicos/farmacologia , Triterpenos/farmacologia , Domínio Catalítico/efeitos dos fármacos , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Humanos , Absorção Intestinal , Leishmania infantum/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacocinética , Proteínas de Protozoários/antagonistas & inibidores , Relação Estrutura-Atividade , Triterpenos/química , Triterpenos/farmacocinética
5.
Biomed Res Int ; 2020: 2615787, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685457

RESUMO

Leishmania spp. proteases have been proposed as virulence factors contributing to adaptive success these parasites to the mammalian hosts. Since these enzymes are poorly studied in naturally infected dogs, this work aims to show the differences in metalloprotease and cysteine proteases gene expression in ear edge skin of dogs naturally infected by Leishmania (Leishmania) infantum. A cohort of dogs (n = 20) naturally infected by L. (L.) infantum was clinically classified as asymptomatic, oligosymptomatic, and polysymptomatic and the parasite load range estimated. The analysis of proteases expression by RT-PCR in the ear edge skin was also assessed, suggesting more transcripts of proteases in cDNA samples from polysymptomatic dogs than oligosymptomatic and asymptomatic ones. Metalloprotease RT-PCR assays yielded products (202 bp) in all assessed cDNA dog samples. In contrast, cysteine proteases transcripts (227 bp) had shown to be better detected in cDNA samples of polysymptomatic dogs, compared with cDNA samples from asymptomatic and oligosymptomatic dogs. Predictive in silico assays suggested that secondary structures of metalloproteasee mRNAs can be more stable than cysteine proteases at the skin temperature of dogs. Evidence is presented that during natural infection of dogs by L. (L.) infantum, this parasite produces transcripts of metalloprotease and cysteine protease RNA in the skin from asymptomatic, oligosymptomatic, and polysymptomatic dogs.


Assuntos
Cisteína Proteases/genética , Doenças do Cão/parasitologia , Orelha/parasitologia , Leishmania infantum/enzimologia , Leishmaniose Visceral/veterinária , Metaloproteases/genética , RNA/genética , Pele/parasitologia , Animais , Cisteína Proteases/metabolismo , Cães , Regulação Enzimológica da Expressão Gênica , Metaloproteases/metabolismo , Conformação de Ácido Nucleico , Carga Parasitária , RNA/química , RNA/metabolismo , Temperatura
6.
Amino Acids ; 52(2): 247-259, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31037461

RESUMO

Leishmania protozoans are the causative agent of leishmaniasis, a neglected tropical disease consisting of three major clinical forms: visceral leishmaniasis (VL), cutaneous leishmaniasis, and mucocutaneous leishmaniasis. VL is caused by Leishmania donovani in East Africa and the Indian subcontinent and by Leishmania infantum in Europe, North Africa, and Latin America, and causes an estimated 60,000 deaths per year. Trypanothione reductase (TR) is considered to be one of the best targets to find new drugs against leishmaniasis. This enzyme is fundamental for parasite survival in the human host since it reduces trypanothione, a molecule used by the tryparedoxin/tryparedoxin peroxidase system of Leishmania to neutralize the hydrogen peroxide produced by host macrophages during infection. Recently, we solved the X-ray structure of TR in complex with the diaryl sulfide compound RDS 777 (6-(sec-butoxy)-2-((3-chlorophenyl)thio)pyrimidin-4-amine), which impairs the parasite defense against the reactive oxygen species by inhibiting TR with high efficiency. The compound binds to the catalytic site and engages in hydrogen bonds the residues more involved in the catalysis, namely Glu466', Cys57 and Cys52, thereby inhibiting the trypanothione binding. On the basis of the RDS 777-TR complex, we synthesized structurally related diaryl sulfide analogs as TR inhibitors able to compete for trypanothione binding to the enzyme and to kill the promastigote in the micromolar range. One of the most active among these compounds (RDS 562) was able to reduce the trypanothione concentration in cell of about 33% via TR inhibition. RDS 562 inhibits selectively Leishmania TR, while it does not inhibit the human homolog glutathione reductase.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Leishmania infantum/efeitos dos fármacos , Sulfetos/química , Sulfetos/farmacologia , Motivos de Aminoácidos , Domínio Catalítico , Glutationa/análogos & derivados , Glutationa/metabolismo , Humanos , Leishmania infantum/enzimologia , Leishmania infantum/metabolismo , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Modelos Moleculares , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Espermidina/análogos & derivados , Espermidina/metabolismo
7.
Mem. Inst. Oswaldo Cruz ; 115: e190469, 2020. graf
Artigo em Inglês | LILACS, Sec. Est. Saúde SP | ID: biblio-1135243

RESUMO

BACKGROUND Oxidative stress is responsible for generating DNA lesions and the 8-oxoguanine (8-oxoG) is the most commonly lesion found in DNA damage. When this base is incorporated during DNA replication, it could generate double-strand DNA breaks and cellular death. MutT enzyme hydrolyzes the 8-oxoG from the nucleotide pool, preventing its incorporation during DNA replication. OBJECTIVES To investigate the importance of 8-oxoG in Leishmania infantum and L. braziliensis, in this study we analysed the impact of heterologous expression of Escherichia coli MutT (EcMutT) enzyme in drug-resistance phenotype and defense against oxidative stress. METHODS Comparative analysis of L. braziliensis and L. infantum H2O2 tolerance and cell cycle profile were performed. Lines of L. braziliensis and L. infantum expressing EcMutT were generated and evaluated using susceptibility tests to H2O2 and SbIII, cell cycle analysis, γH2A western blotting, and BrdU native detection assay. FINDINGS Comparative analysis of tolerance to oxidative stress generated by H2O2 showed that L. infantum is more tolerant to exogenous H2O2 than L. braziliensis. In addition, cell cycle analysis showed that L. infantum, after treatment with H2O2, remains in G1 phase, returning to its normal growth rate after 72 h. In contrast, after treatment with H2O2, L. braziliensis parasites continue to move to the next stages of the cell cycle. Expression of the E. coli MutT gene in L. braziliensis and L. infantum does not interfere in parasite growth or in susceptibility to SbIII. Interestingly, we observed that L. braziliensis EcMutT-expressing clones were more tolerant to H2O2 treatment, presented lower activation of γH2A, a biomarker of genotoxic stress, and lower replication stress than its parental non-transfected parasites. In contrast, the EcMutT is not involved in protection against oxidative stress generated by H2O2 in L. infantum. MAIN CONCLUSIONS Our results showed that 8-oxoG clearance in L. braziliensis is important to avoid misincorporation during DNA replication after oxidative stress generated by H2O2.


Assuntos
Humanos , Animais , Camundongos , Ratos , Pirofosfatases/genética , Pirofosfatases/metabolismo , Superóxido Dismutase/metabolismo , Leishmania braziliensis/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Escherichia coli , Guanina/análogos & derivados , Antimônio/toxicidade , Coelhos , Superóxido Dismutase/genética , Leishmania braziliensis/enzimologia , Leishmania infantum/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Proteínas de Escherichia coli/metabolismo , Guanina/farmacologia , Peróxido de Hidrogênio/toxicidade , Antiprotozoários/farmacologia
8.
Turkiye Parazitol Derg ; 43(4): 158-164, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31865648

RESUMO

Objective: Current in-silico research was designed and administered for the screening of 20000 Food and Drug Administration-approved drug compounds with the goal of finding promising drugs against lipophosphoglycan (LPG) and γ-glutamylcysteine synthetase (γ-GCS) of Leishmania infantum. Methods: After the protein sequence of both targets was taken, the 3D structures of protein of interest were predicted and validated. Molecular docking was done among the two putative targets (LPG and γ-GCS) and approved compounds were selected using AutoDock 4.2 program to predict ligand-receptor interactions. Results: After docking experiment was done on 20000 drug compounds, a total number of seven ligands, two for γ-GCS receptor and five for LPG receptor, were assigned as novel, potent anti-leishmanial drugs based on their binding affinity and energy. Of those, five ligands possessed cytotoxic and anti-cancer characteristics and showed good binding capacity to LPG receptor with ΔGbinding up to 8.5 kcal/mol more negative; while two compounds showed good binding capacity to glutamyl receptor with ΔGbinding up to 7.8 kcal/mol more negative. Conclusion: The latest software-based methods are powerful tools for scanning and predicting new peptide templates specific to biological targets in organisms for new drug discovery. However, the use of in vitro and in vivo techniques is a requirement for better evaluation of the potential of projected ligands with the help of in-silico approaches, identifying molecular mechanism of action of the more active compounds is possible. This can help in defining the most likely molecular target, so that the subsequent optimization using in vitro and in vivo techniques can be undertaken.


Assuntos
Antiprotozoários/farmacologia , Glutamato-Cisteína Ligase/antagonistas & inibidores , Glicoesfingolipídeos/antagonistas & inibidores , Leishmania infantum/efeitos dos fármacos , Sequência de Aminoácidos , Anfotericina B/farmacologia , Simulação por Computador , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala , Humanos , Leishmania infantum/química , Leishmania infantum/enzimologia , Ligantes , Antimoniato de Meglumina/farmacologia , Simulação de Acoplamento Molecular , Projetos de Pesquisa , Software
9.
Artigo em Inglês | MEDLINE | ID: mdl-31678841

RESUMO

Leishmania is the aethiological agent responsible for the visceral leishmaniasis, a serious parasite-borne disease widely spread all over the World. The emergence of resistant strains makes classical treatments less effective; therefore, new and better drugs are necessary. Naphthoquinones are interesting compounds for which many pharmacological properties have been described, including leishmanicidal activity. This work shows the antileishmanial effect of two series of terpenyl-1,4-naphthoquinones (NQ) and 1,4-anthraquinones (AQ) obtained from natural terpenoids, such as myrcene and myrceocommunic acid. They were evaluated both in vitro and ex vivo against the transgenic iRFP-Leishmania infantum strain and also tested on liver HepG2 cells to determine their selectivity indexes. The results indicated that NQ derivatives showed better antileishmanial activity than AQ analogues, and among them, compounds with a diacetylated hydroquinone moiety provided better results than their corresponding quinones. Regarding the terpenic precursor, compounds obtained from the monoterpenoid myrcene displayed good antiparasitic efficiency and low cytotoxicity for mammalian cells, whereas those derived from the diterpenoid showed better antileishmanial activity without selectivity. In order to explore their mechanism of action, all the compounds have been tested as potential inhibitors of Leishmania type IB DNA topoisomerases, but only some compounds that displayed the quinone ring were able to inhibit the recombinant enzyme in vitro. This fact together with the docking studies performed on LTopIB suggested the existence of another mechanism of action, alternative or complementary to LTopIB inhibition. In silico druglikeness and ADME evaluation of the best leishmanicidal compounds has shown good predictable druggability.


Assuntos
Antiprotozoários/farmacologia , DNA Topoisomerases/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/enzimologia , Quinonas/farmacologia , Animais , Antraquinonas/farmacologia , Camptotecina/química , Camptotecina/farmacologia , DNA Topoisomerases/química , DNA Topoisomerases/genética , Resistência a Medicamentos , Feminino , Células Hep G2/parasitologia , Humanos , Leishmaniose Visceral/tratamento farmacológico , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Naftoquinonas/farmacologia , Quinonas/química , Baço/citologia , Inibidores da Topoisomerase/química , Inibidores da Topoisomerase/farmacologia
10.
BMC Infect Dis ; 19(1): 895, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31660874

RESUMO

BACKGROUND: Leishmania infantum, the etiological agent of visceral leishmaniasis, is a neglected zoonosis that requires validation and standardization of satisfactory diagnostic methodologies. Thus, the aim of the present study was to evaluate the effectiveness of cathepsin L-like protease as a target for making molecular diagnoses and as a phylogenetic marker enabling to understand the intraspecies variations and evolutionary history of L. infantum in Brazil. METHODS: We used 44 isolates of L. infantum. The cathepsin L-like gene fragments were amplified, sequenced, manually aligned and analyzed using inference methods. The sequences generated were used to search and design oligonucleotide primers to be used in reactions specific to the target parasite. RESULTS: The cathepsin L-like gene did not show any intraspecies variability among the isolates analyzed. The pair of primers proposed amplified the target deoxyribonucleic acid (DNA) of L. infantum isolates and were effective for DNA amplification at concentrations of as low as 10- 11 ng/µl. The proposed marker did not present cross-reactions with other hemoparasites. When used for making the diagnosis in a panel of clinical samples from dogs, a positivity rate of 49.03% (102/208) was obtained, versus 14.42% (30/208) for a ribosomal internal transcribed spacer (ITS) marker. In samples from sandflies, the rate was 6.25% and from humans, 14.28%. CONCLUSIONS: The results described in this work allow us to infer that CatLeish-PCR is a sensitive and specific marker for use in diagnostic trials of L. infantum and in clinical and epidemiological surveys.


Assuntos
Catepsinas/genética , Leishmania infantum/enzimologia , Leishmaniose Visceral/diagnóstico , Filogenia , Animais , Sequência de Bases , Biomarcadores , Brasil , Ensaios Enzimáticos Clínicos/normas , Reações Cruzadas/imunologia , Primers do DNA/genética , DNA de Protozoário/genética , Doenças do Cão/parasitologia , Cães , Humanos , Leishmania infantum/classificação , Doenças Negligenciadas , Reação em Cadeia da Polimerase , Psychodidae/parasitologia , Padrões de Referência , Zoonoses/parasitologia
11.
J Enzyme Inhib Med Chem ; 34(1): 1100-1109, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31124384

RESUMO

Inhibition of Leishmania arginase leads to a decrease in parasite growth and infectivity and thus represents an attractive therapeutic strategy. We evaluated the inhibitory potential of selected naturally occurring phenolic substances on Leishmania infantum arginase (ARGLi) and investigated their antileishmanial activity in vivo. ARGLi exhibited a Vmax of 0.28 ± 0.016 mM/min and a Km of 5.1 ± 1.1 mM for L-arginine. The phenylpropanoids rosmarinic acid and caffeic acid (100 µM) showed percentages of inhibition of 71.48 ± 0.85% and 56.98 ± 5.51%, respectively. Moreover, rosmarinic acid and caffeic acid displayed the greatest effects against L. infantum with IC50 values of 57.3 ± 2.65 and 60.8 ± 11 µM for promastigotes, and 7.9 ± 1.7 and 21.9 ± 5.0 µM for intracellular amastigotes, respectively. Only caffeic acid significantly increased nitric oxide production by infected macrophages. Altogether, our results broaden the current spectrum of known arginase inhibitors and revealed promising drug candidates for the therapy of visceral leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Arginase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Leishmania infantum/efeitos dos fármacos , Fenóis/farmacologia , Animais , Antiprotozoários/química , Arginase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Leishmania infantum/enzimologia , Leishmania infantum/crescimento & desenvolvimento , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Fenóis/química , Células RAW 264.7 , Relação Estrutura-Atividade
12.
Exp Parasitol ; 200: 84-91, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30954455

RESUMO

Cysteine proteases are involved in critical cell processes to the protozoa from Leishmania genus, and their inhibition is a therapeutic alternative to treat the disease. In this work, derivatives of dipeptidyl nitriles acting as reversible covalent inhibitors of cysteine proteases were studied as cytostatic agents. The proteolytic activity inside the living and lysed parasite cells was quantified using a selective substrate for cysteine proteases (Z-FR-MCA) from Leishmania amazonensis and L. infantum. The overall proteolytic activity of intact cells and even cell extracts was only marginally affected at high concentrations, with the observation of cytostatic activity and cell cycle arrest of promastigotes. However, the cytotoxic effects were only observed for infected J774 macrophages, which impaired further analysis of the amastigote infection. Therefore, the proteolytic inhibition in intact L. amazonensis and L. infantum promastigotes had no relationship to the cytostatic activity, which emphasizes that these dipeptidyl nitriles act through another mechanism of action.


Assuntos
Antiprotozoários/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Citostáticos/farmacologia , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Nitrilas/farmacologia , Animais , Antiprotozoários/química , Linhagem Celular , Inibidores de Cisteína Proteinase/química , Citostáticos/química , Fibroblastos/efeitos dos fármacos , Citometria de Fluxo , Leishmania infantum/enzimologia , Leishmania mexicana/enzimologia , Macrófagos/efeitos dos fármacos , Camundongos , Nitrilas/química
13.
Exp Parasitol ; 200: 1-6, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30904692

RESUMO

Nucleoside triphosphate diphosphohydrolase (NTPDase) 1 from intracellular amastigotes of Leishmania infantum-infected macrophage was identified by immunocytochemistry and confocal laser scanning microscopy using antibodies that specifically recognize its B-domain. This enzyme was previously characterized in Leishmania promastigote form, and here it is shown to be susceptible to pentamidine isethionate (PEN). In initial assays, this antileishmanial compound (100 µM) reduced 60% phosphohydrolytic activity of promastigotes preparation. An active NTPDase 1 was then isolated by non-denaturing gel electrophoresis, and PEN (10 µM) inhibited 74% and 35% of the ATPase and ADPase activities, respectively, of this pure protein. In addition, PEN 0.1-1 µM inhibited 56% potato apyrase activity, a plant protein that shares high identity with Leishmania NTPDase 1. In contrast, amphotericin B, fluconazole, ketoconazole or allopurinol did not significantly affect phosphohydrolytic activity of either promastigotes preparation or potato apyrase. This work suggests amastigote NTPDase 1 as a new molecular target, and inhibition of its catalytic activity by pentamidine can be part of the mode of action of this drug contributing with the knowledge of its antileishmanial effect.


Assuntos
Antiprotozoários/farmacologia , Apirase/antagonistas & inibidores , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/enzimologia , Pentamidina/farmacologia , Animais , Antígenos CD , Imuno-Histoquímica , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal
14.
Parasit Vectors ; 11(1): 572, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382928

RESUMO

BACKGROUND: Leishmania infantum is the aetiological agent of visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL). Numerous strains and/or zymodemes have been identified and characterized by multilocus enzyme electrophoresis (MLEE). MLEE is considered the reference method for L. infantum parasite typing and it is based upon enzyme electrophoretic mobility analysis from promastigote cultures. However, the MLEE technique is cumbersome, time-consuming and does not detect silent genetic mutations or nucleotide changes that give rise to amino acid changes that do not alter electrophoretic mobility. As a result of these difficulties, many DNA-based typing methods have been developed over the past few years. However, relative to the enzymes utilized in MLEE analysis, we observed a shortage of DNA sequences available in the GenBank database or an absolute lack of sequences belonging to specific zymodemes. The aims of the present study were to (i) implement the number of sequences coding for metabolic enzymes used in MLEE; (ii) identify polymorphisms that characterize L. infantum zymodemes most prevalent in the Mediterranean basin; and (iii) exploit these polymorphisms to develop a rapid screening test that would give results comparable with existing MLEE typing. RESULTS: Partial sequences of seven metabolic enzyme genes (malic enzyme, 6-phosphogluconate dehydrogenase, mitochondrial isocitrate dehydrogenase, glucose-6-phosphate isomerase, glucose-6-phosphate dehydrogenase, phosphoglucomutase and mannose phosphate isomerase) were obtained from 11 L. infantum strains. The comparison of these sequences with those obtained from GenBank allowed for the identification of a few polymorphisms that could distinguish several zymodemes. In particular, the polymorphism 390T>G in the malic enzyme gene has been exploited to develop a high-resolution melt (HRM)-based assay to rapidly differentiate the genotype 390T, associated with zymodemes MON-1, MON-72 and MON-201, evidencing a partial agreement between genotyping results and MLEE. The assay has been successfully applied to L. infantum clinical isolates and clinical samples. CONCLUSIONS: A HRM-based assay for rapid identification of genotypes associated with the most common L. infantum zymodemes in the Mediterranean basin has been developed and its potential application in epidemiological research for L. infantum population screening, without parasite isolation and culturing, has been demonstrated.


Assuntos
Leishmania infantum/genética , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/parasitologia , Polimorfismo Genético/genética , Genótipo , Glucose-6-Fosfato Isomerase/genética , Glucosefosfato Desidrogenase/genética , Proteínas de Helminto/genética , Humanos , Isocitrato Desidrogenase/genética , Isoenzimas/genética , Leishmania infantum/enzimologia , Leishmania infantum/isolamento & purificação , Manose-6-Fosfato Isomerase/genética , Fosfoglucomutase/genética , Fosfogluconato Desidrogenase/genética , Filogenia , Análise de Sequência de DNA
15.
Mol Biochem Parasitol ; 226: 9-19, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30365976

RESUMO

The antifungal agent 6-aminocholestanol targets the production of ergosterol, which is the principle sterol in many fungi and protozoans; ergosterol serves many of the same roles as cholesterol in animals. We found that it also is an effective inhibitor of the translation-initiation factor eIF4AI from mouse (eIF4AIMus) and the Trypanosomatid parasite Leishmania (LieIF4A). The eIF4A proteins belong to the DEAD-box family of RNA helicases, which are ATP-dependent RNA-binding proteins and RNA-dependent ATPases. DEAD-box proteins contain a commonly-shared core structure consisting of two linked domains with structural homology to that of recombinant protein A (RecA) and that contain conserved motifs that are involved in RNA and ATP binding, and in the enzymatic activity. The compound inhibits both the ATPase and helicase activities by perturbing ATP and RNA binding, and it is capable of binding other proteins containing nucleic acid-binding sites as well. We undertook kinetic analyses and found that the Leishmania LieIF4A protein binds 6-aminocholestanol with a higher apparent affinity than for ATP, although multiple binding sites were probably involved. Competition experiments with the individual RecA-like domains indicate that the primary binding sites are on RecA-like domain 1, and they include a cavity that we previously identified by molecular modeling of LieIF4A that involve conserved RNA-binding motifs. The compound affects the mammalian and Leishmania proteins differently, which indicates the binding sites and affinities are not the same. Thus, it is possible to develop drugs that target DEAD-box proteins from different organisms even when they are implicated in the same biological process.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Colesterol/análogos & derivados , Fator de Iniciação 4A em Eucariotos/química , Leishmania infantum/efeitos dos fármacos , Proteínas de Protozoários/química , RNA de Helmintos/antagonistas & inibidores , Tripanossomicidas/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Antifúngicos/química , Antifúngicos/farmacologia , Sítios de Ligação , Ligação Competitiva , Colesterol/química , Colesterol/farmacologia , Clonagem Molecular , Sequência Conservada , Reposicionamento de Medicamentos , Escherichia coli/genética , Escherichia coli/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Leishmania infantum/enzimologia , Leishmania infantum/genética , Leishmania infantum/crescimento & desenvolvimento , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA de Helmintos/química , RNA de Helmintos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tripanossomicidas/farmacologia
16.
Int J Parasitol Drugs Drug Resist ; 8(3): 403-410, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30173105

RESUMO

Leishmania infantum is one of the causative agents of visceral leishmaniasis (VL), a widespread, life-threatening disease. This parasite is responsible for the majority of human VL cases in Brazil, the Middle East, China, Central Asia and the Mediterranean basin. Its main reservoir are domestic dogs which, similar to human patients, may develop severe visceral disease and die if not treated. The drug allopurinol is used for the long-term maintenance of dogs with canine leishmaniasis. Following our report of allopurinol resistance in treated relapsed dogs, we investigated the mechanisms and markers of resistance to this drug. Whole genome sequencing (WGS) of clinical resistant and susceptible strains, and laboratory induced resistant parasites, was carried out in order to detect genetic changes associated with resistance. Significant gene copy number variation (CNV) was found between resistant and susceptible isolates at several loci, including a locus on chromosome 30 containing the genes LinJ.30.3550 through LinJ.30.3580. A reduction in copy number for LinJ.30.3560, encoding the S-adenosylmethionine synthetase (METK) gene, was found in two resistant clinical isolates and four induced resistant clonal strains. Using quantitative real time PCR, this reduction in METK copy number was also found in three additional resistant clinical isolates. Furthermore, inhibition of S-adenosylmethionine synthetase encoded by the METK gene in allopurinol susceptible strains resulted in increased allopurinol resistance, confirming its role in resistance to allopurinol. In conclusion, this study identified genetic changes associated with L. infantum resistance to allopurinol and the reduction in METK copy number identified may serve as a marker for resistance in dogs, and reduced protein activity correlated with increased allopurinol resistance.


Assuntos
Alopurinol/farmacologia , Variações do Número de Cópias de DNA/efeitos dos fármacos , Resistência a Medicamentos/genética , Dosagem de Genes/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/genética , Metionina Adenosiltransferase/genética , Animais , Doenças do Cão/tratamento farmacológico , Cães , Humanos , Leishmania infantum/enzimologia , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Leishmaniose/veterinária , Leishmaniose Visceral/tratamento farmacológico , Reação em Cadeia da Polimerase em Tempo Real , Sequenciamento Completo do Genoma
17.
Eur J Med Chem ; 155: 135-152, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29885575

RESUMO

To study the antiparasitic 8-nitroquinolin-2(1H)-one pharmacophore, a series of 31 derivatives was synthesized in 1-5 steps and evaluated in vitro against both Leishmania infantum and Trypanosoma brucei brucei. In parallel, the reduction potential of all molecules was measured by cyclic voltammetry. Structure-activity relationships first indicated that antileishmanial activity depends on an intramolecular hydrogen bond (described by X-ray diffraction) between the lactam function and the nitro group, which is responsible for an important shift of the redox potential (+0.3 V in comparison with 8-nitroquinoline). With the assistance of computational chemistry, a set of derivatives presenting a large range of redox potentials (from -1.1 to -0.45 V) was designed and provided a list of suitable molecules to be synthesized and tested. This approach highlighted that, in this series, only substrates with a redox potential above -0.6 V display activity toward L. infantum. Nevertheless, such relation between redox potentials and in vitro antiparasitic activities was not observed in T. b. brucei. Compound 22 is a new hit compound in the series, displaying both antileishmanial and antitrypanosomal activity along with a low cytotoxicity on the human HepG2 cell line. Compound 22 is selectively bioactivated by the type 1 nitroreductases (NTR1) of L. donovani and T. brucei brucei. Moreover, despite being mutagenic in the Ames test, as most of nitroaromatic derivatives, compound 22 was not genotoxic in the comet assay. Preliminary in vitro pharmacokinetic parameters were finally determined and pointed out a good in vitro microsomal stability (half-life > 40 min) and a 92% binding to human albumin.


Assuntos
Antiprotozoários/farmacologia , Técnicas Eletroquímicas , Kinetoplastida/efeitos dos fármacos , Nitroquinolinas/farmacologia , Nitrorredutases/metabolismo , Antiprotozoários/síntese química , Antiprotozoários/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Kinetoplastida/enzimologia , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/enzimologia , Estrutura Molecular , Nitroquinolinas/síntese química , Nitroquinolinas/química , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia
18.
Pesqui. vet. bras ; 38(4): 722-725, abr. 2018. graf
Artigo em Português | LILACS, VETINDEX | ID: biblio-955380

RESUMO

As leishmanioses têm como agentes etiológicos parasitas intracelulares obrigatórios pertencentes ao gênero Leishmania capazes de infectar diferentes espécies de mamíferos e nestes se reproduzirem dentro do sistema fagocítico mononuclear. Os cães domésticos são os principais responsáveis pela manutenção da cadeia epidemiológica da doença, podendo apresentar uma grande variedade de perfis clínicos, desde aparentemente sadios a severamente acometidos. Avaliou-se a expressão das citocinas de cães naturalmente infectados com Leishmania (Leishmania) chagasi. Foram coletadas 50 amostras, sendo 20 de animais positivos e sintomáticos para Leishmaniose Visceral Canina (LVC), 20 de animais positivos e assintomáticos e 10 de animais sabidamente negativos para a LVC. As amostras foram analisadas pelo teste imunocromatográfico rápido Dual Path Platform (DPP/Biomanguinhos®) e pelo ELISA (EIE/Biomanguinhos®) indireto para detecção de anticorpos anti-Leishmania. Após as confirmações dos testes, foi realizado o ELISA de captura (R & D Systems) para quantificação das citocinas IL-10 e IFN-γ. Houve diferença estatística entre os grupos observando um aumento nos níveis de IFN-γ nos animais assintomáticos e um aumento de IL-10 nos sintomáticos.(AU)


Leishmaniasis has as obligatory intracellular parasitic etiological agents belonging to the genus Leishmania capable of infecting different species of mammals and reproducing them within the mononuclear phagocytic system. Domestic dogs are the main responsible for maintaining the epidemiological chain of the disease, presenting a wide variety of clinical profiles, from apparently healthy to severely affected. The expression of the cytokines from dogs naturally infected with Leishmania (Leishmania) chagasi was evaluated. Blood samples were collected from 50 animals, 20 from positive and symptomatic dogs for Leishmaniasis Canine (CVL), 20 from positive asymptomatic animals and 10 negative. Samples were analyzed by immunochromatographic test Dual Path Platform (DPP/Biomanguinhos®) and by indirect ELISA (EIE/Biomanguinhos®) for detection of anti-Leishmania antibodies. There was statistical difference between the groups observing an increase in IFN-γ levels in asymptomatic animals and an IL-10 increase in symptomatic.(AU)


Assuntos
Animais , Cães , Interleucina-10 , Leishmania infantum/enzimologia , Interleucina-18/análise , Cães/microbiologia
19.
PLoS Negl Trop Dis ; 12(1): e0006160, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29346371

RESUMO

Leishmaniases are neglected parasitic diseases in spite of the major burden they inflict on public health. The identification of novel drugs and targets constitutes a research priority. For that purpose we used Leishmania infantum initiation factor 4A (LieIF), an essential translation initiation factor that belongs to the DEAD-box proteins family, as a potential drug target. We modeled its structure and identified two potential binding sites. A virtual screening of a diverse chemical library was performed for both sites. The results were analyzed with an in-house version of the Self-Organizing Maps algorithm combined with multiple filters, which led to the selection of 305 molecules. Effects of these molecules on the ATPase activity of LieIF permitted the identification of a promising hit (208) having a half maximal inhibitory concentration (IC50) of 150 ± 15 µM for 1 µM of protein. Ten chemical analogues of compound 208 were identified and two additional inhibitors were selected (20 and 48). These compounds inhibited the mammalian eIF4I with IC50 values within the same range. All three hits affected the viability of the extra-cellular form of L. infantum parasites with IC50 values at low micromolar concentrations. These molecules showed non-significant toxicity toward THP-1 macrophages. Furthermore, their anti-leishmanial activity was validated with experimental assays on L. infantum intramacrophage amastigotes showing IC50 values lower than 4.2 µM. Selected compounds exhibited selectivity indexes between 19 to 38, which reflects their potential as promising anti-Leishmania molecules.


Assuntos
Antiprotozoários/isolamento & purificação , Antiprotozoários/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/enzimologia , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/antagonistas & inibidores , Sítios de Ligação , Fator de Iniciação 4A em Eucariotos/química , Concentração Inibidora 50 , Modelos Moleculares , Simulação de Acoplamento Molecular , Testes de Sensibilidade Parasitária
20.
BMC Struct Biol ; 17(1): 9, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258562

RESUMO

BACKGROUND: The 5'-methylthioadenosine phosphorylase (MTAP), an enzyme involved in purine and polyamine metabolism and in the methionine salvage pathway, is considered as a potential drug target against cancer and trypanosomiasis. In fact, Trypanosoma and Leishmania parasites lack de novo purine pathways and rely on purine salvage pathways to meet their requirements. Herein, we propose the first comprehensive bioinformatic and structural characterization of the putative Leishmania infantum MTAP (LiMTAP), using a comparative computational approach. RESULTS: Sequence analysis showed that LiMTAP shared higher identity rates with the Trypanosoma brucei (TbMTAP) and the human (huMTAP) homologs as compared to the human purine nucleoside phosphorylase (huPNP). Motifs search using MEME identified more common patterns and higher relatedness of the parasite proteins to the huMTAP than to the huPNP. The 3D structures of LiMTAP and TbMTAP were predicted by homology modeling and compared to the crystal structure of the huMTAP. These models presented conserved secondary structures compared to the huMTAP, with a similar topology corresponding to the Rossmann fold. This confirmed that both LiMTAP and TbMTAP are members of the NP-I family. In comparison to the huMTAP, the 3D model of LiMTAP showed an additional α-helix, at the C terminal extremity. One peptide located in this specific region was used to generate a specific antibody to LiMTAP. In comparison with the active site (AS) of huMTAP, the parasite ASs presented significant differences in the shape and the electrostatic potentials (EPs). Molecular docking of 5'-methylthioadenosine (MTA) and 5'-hydroxyethylthio-adenosine (HETA) on the ASs on the three proteins predicted differential binding modes and interactions when comparing the parasite proteins to the human orthologue. CONCLUSIONS: This study highlighted significant structural peculiarities, corresponding to functionally relevant sequence divergence in LiMTAP, making of it a potential drug target against Leishmania.


Assuntos
Leishmania infantum/enzimologia , Simulação de Acoplamento Molecular/métodos , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/metabolismo , Análise de Sequência de DNA/métodos , Trypanosoma brucei brucei/ultraestrutura , Adenosina/análogos & derivados , Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Anticorpos/metabolismo , Sítios de Ligação de Anticorpos , Domínio Catalítico , Desoxiadenosinas/metabolismo , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Homologia de Sequência , Eletricidade Estática , Especificidade por Substrato , Tionucleosídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA