Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Exp Parasitol ; 260: 108745, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521196

RESUMO

Autophagy is a key step involved in many unicellular eukaryotic diseases, including leishmaniasis, for cellular remodelling and differentiation during parasite's lifecycle. Lipids play a significant role in the infection process that begins with Leishmania major invading host cells. MicroRNAs (miRNAs), a family of small, 22-24 nucleotide noncoding regulatory RNAs, target mRNAs to modify gene expression and, subsequently, proteome output may have a regulatory role in altering the host cell processes. We observed miR-146a-3p expression increases in a time-dependent manner post Leishmania major infection. Transfecting miR-146a-3p mimic increases the expression of ATG7, an autophagy gene that encodes an E1-like enzyme in two ubiquitin-like conjugation systems required for autophagosome progression. HPGD (15-hydroxyprostaglandin dehydrogenase) operates as an enzyme, converting prostaglandin to its non-active form. Microarray data and western studies reveal that miR-146a-3p targets and inhibits HPGD, thereby increasing prostaglandin activity in lipid droplets. Herein, our research focuses on miR-146a-3p, which boosts ATG7 expression while reducing HPGD post Leishmania major infections helping us comprehend the intricate network of microRNA, autophagy, and lipid metabolism in leishmaniasis.


Assuntos
Autofagia , Leishmania major , Leishmaniose Cutânea , Metabolismo dos Lipídeos , MicroRNAs , MicroRNAs/metabolismo , MicroRNAs/genética , Leishmania major/genética , Leishmania major/fisiologia , Leishmania major/metabolismo , Leishmaniose Cutânea/parasitologia , Animais , Camundongos , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Camundongos Endogâmicos BALB C , Macrófagos/parasitologia , Macrófagos/metabolismo , Humanos , Transfecção , Western Blotting
2.
Parasitol Res ; 123(2): 146, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418645

RESUMO

Leishmaniasis is a neglected disease mainly affecting low-income populations. Conventional treatment involves several side effects, is expensive, and, in addition, protozoa can develop resistance. Photodynamic therapy (PDT) is a promising alternative in treating the disease. PDT involves applying light at a specific wavelength to activate a photosensitive compound (photosensitizer, PS), to produce reactive oxygen species (ROS). Curcumin and its photochemical characteristics make it a good candidate for photodynamic therapy. Studies evaluating gene expression can help to understand the molecular events involved in the cell death caused by PDT. In the present study, RNA was extracted from promastigotes from the control and treated groups after applying PDT. RT-qPCR was performed to verify the expression of the putative ATPase beta subunit (ATPS), ATP synthase subunit A (F0F1), argininosuccinate synthase 1 (ASS), ATP-binding cassette subfamily G member 2 (ABCG2), glycoprotein 63 (GP63), superoxide dismutase (FeSODA), and glucose-6-phosphate dehydrogenase (G6PDH) genes (QR). The results suggest that PDT altered the expression of genes that participate in oxidative stress and cell death pathways, such as ATPS, FeSODA, and G6PD. The ATP-F0F1, ASS, and GP63 genes did not have their expression altered. However, it is essential to highlight that other genes may be involved in the molecular mechanisms of oxidative stress and, consequently, in the death of parasites.


Assuntos
Curcumina , Leishmania major , Fotoquimioterapia , Curcumina/farmacologia , Fotoquimioterapia/métodos , Leishmania major/genética , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Trifosfato de Adenosina , Linhagem Celular Tumoral
3.
Acta Parasitol ; 69(1): 549-558, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231310

RESUMO

PURPOSE: Leishmania major is main causative agent and Phlebotomus papatasi is only proven vector of Zoonotic Cutaneous Leishmaniasis (ZCL) in Iran. Human leishmaniasis is mostly susceptible to climatic conditions and molecular variations of Leishmania parasites within sandflies. METHODS: L. major was analyzed based on geographical, environmental, climatic changes and haplotype variations within P. papatasi. Molecular tools and different geographical aspects were employed using Arc-GIS software for mapping the geographic distribution of samples and other statistics tests. Fragments of ITS-rDNA, k-DNA, and microsatellite genes of Leishmania were used for PCR, RFLP, sequencing, and phylogenetic analyses. RESULTS: Totally 81 out of 1083 female P. papatasi were detected with Leishmania parasites: 70 and five were L. major and L. turanica, respectively. Golestan and Fars provinces had the highest (13.64%) and lowest (4.55%) infection rates, respectively. The infection rate among female P. papatasi collected from gerbil burrows was significantly higher (15.15%) than animal shelters, yards, and inside houses (4.48%) (P < 0.0%). Microsatellite was more sensitive (22.72%) than k-DNA (18.8%) and ITS-rDNA (7.48%). More molecular variations of L. major were found in Isfahan province. CONCLUSIONS: Arc-GIS software and other statistics tests were employed to find Leishmania positive and haplotype variations among sand flies. Geographical situations, altitude, climate, precipitation, humidity, temperature, urbanization, migrations, regional divergences, deforestation, global warming, genome instability, ecology, and biology of the sand flies intrinsically, and the reservoir hosts and neighboring infected locations could be reasons for increasing or decreasing the rate of Leishmania infection and haplotype variations.


Assuntos
Haplótipos , Leishmania major , Leishmaniose Cutânea , Phlebotomus , Animais , Leishmania major/genética , Leishmania major/isolamento & purificação , Phlebotomus/parasitologia , Phlebotomus/genética , Irã (Geográfico)/epidemiologia , Feminino , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/transmissão , Filogenia , Variação Genética , Repetições de Microssatélites , Insetos Vetores/parasitologia , Insetos Vetores/genética , DNA de Protozoário/genética , Gerbillinae/parasitologia , Humanos
4.
Acta Parasitol ; 69(1): 526-532, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38227108

RESUMO

BACKGROUND: Cutaneous leishmaniasis is among the neglected diseases in the world. Pentavalent antimonial compounds are considered the first-line treatment for this disease. However, using alternative natural products has received great attention due to the side effects of chemical drugs and drug resistance of the Leishmania parasite. The present study aims to investigate the effect of Satureja khuzestanica essential oil (SKEO) on MDR1 gene expression. METHODS: In this study, standard strains of Leishmania major promastigotes were exposed to 5, 10, 15, and 20 µg/ml of SKEO. MDR1 gene expression of parasites exposed to essential oil was evaluated using real-time PCR. GAPDH was employed as the housekeeping gene for internal control. RESULTS: Despite the increase, no statistically significant difference was observed in the relative expression of the MDR1 gene between the control group and the groups containing 5, 10, and 20 µg/ml of SKEO (P > 0.05). The relative expression of the MDR1 gene significantly increased in the group containing 15 µg/ml of essential oil compared to the control one (P < 0.05). CONCLUSION: This study showed that the use of essential oil of Satureja khuzestanica plant can have an increasing effect on the expression of MDR1 gene of Leishmania promastigotes, which is the best case if Satureja khuzestanica essential oil reduces the expression of MDR1 gene. So it seems that the use of essential oil of Satoria plant is effective in controlling Leishmania parasite, but its concentrations induce drug resistance. As a result, concentrations of essential oil should be used that have a controlling effect on the growth and proliferation of Leishmania parasite and also have the least effect on the induction of MDR1 gene expression.


Assuntos
Leishmania major , Óleos Voláteis , Satureja , Leishmania major/efeitos dos fármacos , Leishmania major/genética , Óleos Voláteis/farmacologia , Satureja/química , Expressão Gênica/efeitos dos fármacos , Óleos de Plantas/farmacologia , Antiprotozoários/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo
5.
PLoS One ; 19(1): e0295495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165973

RESUMO

Cutaneous leishmaniasis (CL) is the most common form of the disease which can cause malignant lesions on the skin. Vaccination for the prevention and treatment of leishmaniasis can be the most effective way to combat this disease. In this study, we designed a novel multi-epitope vaccine against Leishmania major (L. major) using immunoinformatics tools to assess its efficacy in silico. Sequences of Leish-F1 protein (TSA, Leif, and LMSTI1) of L. major were taken from GenBank. The helper T (Th) and cytotoxic T (Tc) epitopes of the protein were predicted. The final multi-epitope consisted of 18 CTL epitopes joined by AAY linker. There were also nine HTL epitopes in the structure of the vaccine construct, joined by GPGPG linker. The profilin adjuvant (the toll-like receptor 11 agonist) was also added into the construct by AAY Linker. There were 613 residues in the structure of the vaccine construct. The multi-epitope vaccine candidate was stable and non-allergic. The data obtained from the binding of final multi-epitope vaccine-TLR11 residues (band lengths and weighted scores) unveiled the ligand and the receptor high score of binding affinity. Moreover, in silico assessment of the vaccine construct cloning achieved its suitable expression in E. coli host. Based on these results, the current multi-epitope vaccine prevents L. major infection in silico, while further confirmatory assessments are required.


Assuntos
Leishmania major , Vacinas Virais , Leishmania major/genética , Epitopos de Linfócito T , Escherichia coli , Epitopos de Linfócito B , Biologia Computacional/métodos , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas
6.
Mol Biochem Parasitol ; 255: 111574, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37150327

RESUMO

Leishmania parasites undergo morphological changes during their infectious life cycle, including developmental transitions within the sandfly vector, culminating in metacyclic stages that are pre-adapted for infection. Upon entering vertebrate host phagocytes, Leishmania differentiate into intracellular amastigotes, the form that is ultimately transmitted back to the vector to complete the life cycle. Although environmental conditions that induce these cellular transitions are well-established, molecular mechanisms governing Leishmania morphologic differentiation in response to these cues remain largely uncharacterized. Previous studies indicate a key role for HSP83 in both promastigote metacyclogenesis and amastigote differentiation. To further elucidate HSP83 functions in the Leishmania lifecycle, we examined the biological impact of experimentally elevating HSP83 gene expression in Leishmania. Significantly, HSP83 overexpression was associated with altered metacyclic morphology, increased protein kinase A (PKA) activity and decreased expression of the Leishmania major surface protease, GP63. Corroborating these findings, overexpression of the L. amazonensis PKA catalytic subunit resulted in a largely similar phenotype. Our findings demonstrate for the first time in Leishmania, a functional link between HSP83 and PKA in the control of Leishmania gene expression, replication and morphogenesis.


Assuntos
Leishmania major , Leishmania mexicana , Animais , Peptídeo Hidrolases , Proteínas de Choque Térmico , Leishmania mexicana/genética , Leishmania major/genética , Animais Geneticamente Modificados , Proteínas Quinases Dependentes de AMP Cíclico
7.
PLoS One ; 18(4): e0284240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37053214

RESUMO

Cutaneous leishmaniasis (CL) is a prevalent infectious disease with considerable morbidity annually. Here, we aimed to investigate the likely variations in gene expression of glycoprotein63 (gp63), heat shock protein 70 (HSP70), histone, arginase, cysteine protease B (CPB), Leishmania homologue of receptors for activated C kinase (LACK), small hydrophilic endoplasmic reticulum-associated protein (SHERP) in metacyclic promastigotes of L. major isolated from Phlebotomus papatasi sand flies and promastigotes excessively cultured in culture medium. The parasites were collected from suspected CL cases in Pasteur Institute of Iran, cultured and inoculated into the female BALB/c mice (2×106 promastigotes). Sand flies were trapped in Qom province, fed with the blood of euthanized infected mice and subsequently dissected in order to isolate the midgut including stomodeal valve. The metacyclic promastigotes were isolated from Ph. papatasi (Pro-Ppap) using peanut agglutinin test (PNA), then continuously cultured in RPMI-1640 medium enriched with fetal bovine serum, penicillin (100 U/ml) and streptomycin (100 mg/ml) to reach stationary phase (Pro-Stat). The gene expression was evaluated in both parasitic stages (Pro-Ppap and Pro-Stat) using qRT-PCR. Out results showed a significant increased gene expression at Pro-Ppap stage for gp63 (P = 0.002), SHERP (P = 0.001) and histone (P = 0.026) genes, in comparison with Pro-Stat stage. Noticeably, significant changes were, also, demonstrated in 10th to 15th passages [gp63 (P = 0.041), arginase (P = 0.016), LACK (P = 0.025)] and in 5th to 20th passage (SHERP) (P = 0.029). In conclusion, the findings of the present study seem to be essential in designing Leishmania studies, in particular regarding host-parasite interaction, immunization and infectivity studies.


Assuntos
Leishmania major , Leishmaniose Cutânea , Phlebotomus , Psychodidae , Feminino , Animais , Camundongos , Phlebotomus/genética , Phlebotomus/parasitologia , Leishmania major/genética , Virulência/genética , Histonas , Arginase , Psychodidae/parasitologia , Leishmaniose Cutânea/parasitologia
8.
Arch Microbiol ; 205(4): 125, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941487

RESUMO

With unidentified chemical triggers and novel-effectors, cAMP signaling is broadly noncanonical in kinetoplastida parasites. Though novel protein kinase A regulatory subunits (PKAR) have been identified earlier, cAMP Response Proteins (CARPs) have been identified as a unique and definite cAMP effector of trypanosomatids. CARP1-CARP4 emerged as critical regulatory components of cAMP signaling pathway in Trypanosoma with evidences that CARP3 can directly interact with a flagellar adenylate cyclase (AC). CARP-mediated regulations, identified so far, reflects the mechanistic diversity of cAMP signaling. Albeit the function of the orthologous is not yet delineated, in kinetoplastids like Leishmania, presence of CARP1, 2 and 4 orthologues suggests existence of conserved effector mechanisms. Targeting CARP orthologues in Leishmania, a comprehensive evolutionary analysis of CARPs have been aimed in this study which revealed phylogenetic relationship, codon adaptation and structural heterogeneity among the orthologues, warranting functional analysis in future to explore their involvement in infectivity.


Assuntos
Carpas , Leishmania major , Animais , Leishmania major/genética , Leishmania major/metabolismo , AMP Cíclico/metabolismo , Filogenia , Transdução de Sinais/fisiologia
9.
Exp Parasitol ; 246: 108459, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36596336

RESUMO

Cutaneous leishmaniasis (CL) is one of the most important infectious parasitic diseases in the world caused by the Leishmania parasite. In recent decades, the presence of a virus from the Totiviridae family has been proven in some Leishmania species. Although the existence of LRV2 in the Old world Leishmania species has been confirmed, almost no studies have been done to determine the potential impact of LRV2 on the immunopathogenicity of the Leishmania parasite. In this preliminary study, we measured the expression of target genes, including Glycoprotein 63 (gp63), Heat Shock Protein 70 (hsp70), Cysteine Protease b (cpb), Interleukin 1 beta (IL-1ß), IL8 and IL-12 in LRV2 positive Leishmania major strain (LRV2+L. major) and LRV2 negative L. major strain (LRV2-L. major). We exposed THP-1, a human leukemia monocytic cell line, to promastigotes of both strains. After the initial infection, RNA was extracted at different time points, and the relative gene expression was determined using a real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Findings showed that the presence of LRV2 in L. major was able to increase the expression of gp63, hsp70, and cpb genes; also, we observed lower levels of expression in cytokine genes of IL-1ß, IL-8, IL-12 in the presence of LRV2+, which are critical factors in the host's immune response against leishmaniasis. These changes could suggest that the presence of LRV2 in L. major parasite may change the outcome of the disease and increase the probability of Leishmania survival; nevertheless, further studies are needed to confirm our results.


Assuntos
Leishmania major , Leishmaniose Cutânea , Vírus de RNA , Humanos , Citocinas/genética , Expressão Gênica , Interleucina-12/genética , Leishmania major/genética , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/microbiologia , Macrófagos/microbiologia , Vírus de RNA/patogenicidade , Fatores de Virulência/genética
10.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36361992

RESUMO

Around 15% of cancer cases are attributable to infectious agents. Epidemiological studies suggest that an association between leishmaniasis and cancer does exist. Recently, the homologue of PES1 in Leishmania major (LmjPES) was described to be involved in parasite infectivity. Mammalian PES1 protein has been implicated in cellular processes like cell cycle regulation. Its BRCT domain has been identified as a key factor in DNA damage-responsive checkpoints. This work aimed to elucidate the hypothetical oncogenic implication of BRCT domain from LmjPES in host cells. We generated a lentivirus carrying this BRCT domain sequence (lentiBRCT) and a lentivirus expressing the luciferase protein (lentiLuc), as control. Then, HEK293T and NIH/3T3 mammalian cells were infected with these lentiviruses. We observed that the expression of BRCT domain from LmjPES conferred to mammal cells in vitro a greater replication rate and higher survival. In in vivo experiments, we observed faster tumor growth in mice inoculated with lentiBRCT respect to lentiLuc HEK293T infected cells. Moreover, the lentiBRCT infected cells were less sensitive to the genotoxic drugs. Accordingly, gene expression profiling analysis revealed that BRCT domain from LmjPES protein altered the expression of proliferation- (DTX3L, CPA4, BHLHE41, BMP2, DHRS2, S100A1 and PARP9), survival- (BMP2 and CARD9) and chemoresistance-related genes (DPYD, Dok3, DTX3L, PARP9 and DHRS2). Altogether, our results reinforced the idea that in eukaryotes, horizontal gene transfer might be also achieved by parasitism like Leishmania infection driving therefore to some crucial biological changes such as proliferation and drug resistance.


Assuntos
Carcinogênese , Resistencia a Medicamentos Antineoplásicos , Leishmania major , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Células HEK293 , Leishmania major/genética , Leishmania major/metabolismo , Mamíferos/metabolismo , Oncogenes , Proteínas/metabolismo , Proteínas de Ligação a RNA/genética , Leishmaniose/complicações , Resistencia a Medicamentos Antineoplásicos/genética , Carcinogênese/genética
11.
mBio ; 13(6): e0285822, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36394334

RESUMO

Genetic exchange between different Leishmania strains in the sand fly vector has been experimentally demonstrated and is supported by population genetic studies. In nature, opportunities for Leishmania interstrain mating are restricted to flies biting multiply infected hosts or through multiple bites of different hosts. In contrast, self-mating could occur in any infected sand fly. By crossing two recombinant lines derived from the same Leishmania major strain, each expressing a different drug-resistance marker, self-hybridization in L. major was confirmed in a natural sand fly vector, Phlebotomus duboscqi, and in frequencies comparable to interstrain crosses. We provide the first high resolution, whole-genome sequencing analysis of large numbers of selfing progeny, their parents, and parental subclones. Genetic exchange consistent with classical meiosis is supported by the biallelic inheritance of the rare homozygous single nucleotide polymorphisms (SNPs) that arose by mutation during the generation of the parental clones. In contrast, heterozygous SNPs largely failed to be transmitted in Mendelian ratios for reasons not understood. SNPs that were heterozygous in both parents, however, recombined to produce homozygous alleles in some hybrids. For trisomic chromosomes present in both parents, transmittal to the progeny was only altered by self-hybridization, involving a gain or loss of somy in frequencies predicted by a meiotic process. Whole-genome polyploidization was also observed in the selfing progeny. Thus, self-hybridization in Leishmania, with its potential to occur in any infected sand fly, may be an important source of karyotype variation, loss of heterozygosity, and functional diversity. IMPORTANCE Leishmania are parasitic protozoa that cause a wide spectrum of diseases collectively known as the leishmaniases. Sexual reproduction in Leishmania has been proposed as an important source of genetic diversity and has been formally demonstrated to occur inside the sand fly vector midgut. Nevertheless, in the wild, opportunities for genetic exchange between different Leishmania species or strains are restricted by the capacity of different Leishmania strains to colonize the same sand fly. In this work, we report the first high resolution, whole-genome sequence analysis of intraclonal genetic exchange as a type of self-mating in Leishmania. Our data reveal that self-hybridization can occur with comparable frequency as interstrain mating under experimental lab conditions, leading to important genomic alterations that can potentially take place within every naturally infected sand fly.


Assuntos
Leishmania major , Phlebotomus , Psychodidae , Animais , Leishmania major/genética , Phlebotomus/parasitologia , Psychodidae/parasitologia , Reprodução , Mutação
12.
Cell Biol Int ; 46(7): 1169-1174, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35312138

RESUMO

Leishmania major is the causative agent of cutaneous leishmaniasis. It is one of the most studied Leishmania species not only during vector interaction but also in the vertebrate host. Lipophosphoglycan (LPG) is the Leishmania multifunctional virulence factor during host-parasite interaction, whose polymorphisms are involved in the immunopathology of leishmaniasis. Although natural hybrids occur in nature, hybridization of L. major strains in the laboratory was successfully demonstrated. However, LPG expression in the hybrids remains unknown. LPGs from parental (Friedlin, Fn and Seidman, Sd) and hybrids (FnSd3, FnSd4A, FnSd4B, and FnSd6F) were extracted, purified, and their repeat units analyzed by immunoblotting and fluorophore-assisted carbohydrate electrophoresis. Parental strains have distinct profiles in LPG expression, and a mixed profile was observed for all hybrids. Variable levels of NO production by macrophages were detected after LPG exposure (parental and hybrids) and were strain specific.


Assuntos
Leishmania major , Leishmaniose Cutânea , Glicoesfingolipídeos/metabolismo , Humanos , Leishmania major/genética , Leishmania major/metabolismo , Leishmaniose Cutânea/parasitologia , Macrófagos/metabolismo
13.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830469

RESUMO

Leishmaniasis is a neglected tropical disease caused by Leishmania spp. The improvement of existing treatments and the discovery of new drugs remain ones of the major goals in control and eradication of this disease. From the parasite genome, we have identified the homologue of the human oncogene PES1 in Leishmania major (LmjPES). It has been demonstrated that PES1 is involved in several processes such as ribosome biogenesis, cell proliferation and genetic transcription. Our phylogenetic studies showed that LmjPES encodes a highly conserved protein containing three main domains: PES N-terminus (shared with proteins involved in ribosomal biogenesis), BRCT (found in proteins related to DNA repair processes) and MAEBL-type domain (C-terminus, related to erythrocyte invasion in apicomplexan). This gene showed its highest expression level in metacyclic promastigotes, the infective forms; by fluorescence microscopy assay, we demonstrated the nuclear localization of LmjPES protein. After generating mutant parasites overexpressing LmjPES, we observed that these clones displayed a dramatic increase in the ratio of cell infection within macrophages. Furthermore, BALB/c mice infected with these transgenic parasites exhibited higher footpad inflammation compared to those inoculated with non-overexpressing parasites.


Assuntos
Leishmania major/genética , Leishmaniose/genética , Doenças Parasitárias/genética , Proteínas/genética , Animais , Sequência Conservada/genética , Humanos , Leishmania major/patogenicidade , Leishmaniose/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Doenças Parasitárias/parasitologia , Proteínas de Ligação a RNA/genética
14.
PLoS Negl Trop Dis ; 15(10): e0009224, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710089

RESUMO

Leishmaniasis is a neglected tropical disease with diverse outcomes ranging from self-healing lesions, to progressive non-healing lesions, to metastatic spread and destruction of mucous membranes. Although resolution of cutaneous leishmaniasis is a classic example of type-1 immunity leading to self-healing lesions, an excess of type-1 related inflammation can contribute to immunopathology and metastatic spread. Leishmania genetic diversity can contribute to variation in polarization and robustness of the immune response through differences in both pathogen sensing by the host and immune evasion by the parasite. In this study, we observed a difference in parasite chemokine suppression between the Leishmania (L.) subgenus and the Viannia (V.) subgenus, which is associated with severe immune-mediated pathology such as mucocutaneous leishmaniasis. While Leishmania (L.) subgenus parasites utilize the virulence factor and metalloprotease glycoprotein-63 (gp63) to suppress the type-1 associated host chemokine CXCL10, L. (V.) panamensis did not suppress CXCL10. To understand the molecular basis for the inter-species variation in chemokine suppression, we used in silico modeling to identify a putative CXCL10-binding site on GP63. The putative CXCL10 binding site is in a region of gp63 under significant positive selection, and it varies from the L. major wild-type sequence in all gp63 alleles identified in the L. (V.) panamensis reference genome. Mutating wild-type L. (L.) major gp63 to the L. (V.) panamensis sequence at the putative binding site impaired cleavage of CXCL10 but not a non-specific protease substrate. Notably, Viannia clinical isolates confirmed that L. (V.) panamensis primarily encodes non-CXCL10-cleaving gp63 alleles. In contrast, L. (V.) braziliensis has an intermediate level of activity, consistent with this species having more equal proportions of both alleles. Our results demonstrate how parasite genetic diversity can contribute to variation in immune responses to Leishmania spp. infection that may play critical roles in the outcome of infection.


Assuntos
Quimiocina CXCL10/metabolismo , Leishmania major/enzimologia , Leishmaniose/metabolismo , Metaloendopeptidases/metabolismo , Sítios de Ligação , Quimiocina CXCL10/química , Quimiocina CXCL10/genética , Interações Hospedeiro-Parasita , Humanos , Leishmania major/química , Leishmania major/genética , Leishmaniose/genética , Leishmaniose/parasitologia , Leishmaniose/fisiopatologia , Metaloendopeptidases/química , Metaloendopeptidases/genética , Ligação Proteica , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
15.
Turkiye Parazitol Derg ; 45(2): 88-94, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34103283

RESUMO

Objective: This study aimed to determine the differences between the gene expression profiles of Leismania major and Leishmania infantum promastigotes through comparative analysis of gene expressions. Methods: Cell culture of L. major (MHOM/IL/80) and L. infantum (MHOM/MA/67/ITMAP/263) cell lines was performed. Afterwards, total RNA isolation and cDNA synthesis were performed and fold changes in the expression levels of 30 genes that play a role in metabolic pathways and nucleic acid synthesis and co-expressed in two species were evaluated by reverse transcriptase polymerase chain reaction. Functions of genes were determined using LeishDB and KEGG databases. Results: In this study, profiles of protein-coding 30 genes expressed in L. major and L. infantum promastigotes were evaluated and significant differences were found between the two species (p<0.001). There was a significant fold change in the expression levels of 29% of genes common in the two species. The expression levels of nine genes in L. major were found to be markedly higher than those of L. infantum (fold change >1). These genes include phosphoglycan beta 1.3 galactosyltransferase-like, lathosterol oxidase-like, fatty acid elongase, 3-oxo-5 alpha-steroid 4-dehydrogenase, calpain-like cysteine peptidase, acetyl-coA synthetase, 3'-nucleotidase/nuclease, 3'-nucleotidase/nuclease precursor and 3-ketoacyl-coA thiolase-like. When the functions of the proteins that correspond to the genes common in the two species were examined in detail using the databases, it was determined that these genes play role in lipid, protein, carbohydrate and nucleic acid metabolic functions of the parasite. Conclusion: Alterations in the expression profiles of genes common to L. major and L. infantum species may cause differences in the virulence, pathogenesis, clinical features and treatment modality between these parasite species. In addition, evaluation of gene profiles is important in the selection of species-specific or common targets for vaccine and drug studies.


Assuntos
Leishmania infantum/genética , Leishmania major/genética , Estágios do Ciclo de Vida/genética , Transcriptoma , Animais , Humanos , Leishmania infantum/crescimento & desenvolvimento , Leishmania major/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Especificidade da Espécie
16.
FEBS J ; 288(13): 4129-4152, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33464696

RESUMO

Leishmania has a remarkable ability to proliferate under widely fluctuating levels of essential nutrients, such as glucose. For this, the parasite is heavily dependent on its gluconeogenic machinery. One perplexing aspect of gluconeogenesis in Leishmania is the lack of the crucial gene for pyruvate carboxylase (PC). PC-catalyzed conversion of pyruvate to oxaloacetate is a key entry point through which gluconeogenic amino acids are funneled into this pathway. The absence of PC in Leishmania thus raises question about the mechanism of pyruvate entry into the gluconeogenic route. In the present study, we report that this task is accomplished in Leishmania major through a novel functional partnership between its mitochondrial malic enzyme (LmME) and carbonic anhydrase 1 (LmCA1). Using a combination of pharmacological inhibition studies with genetic manipulation, we show that both of these enzymes are necessary for promoting gluconeogenesis and supporting parasite growth under glucose-limiting conditions. Functional cross-talk between LmME and LmCA1 was evident when it was observed that the growth retardation caused by inhibition of any one of these enzymes could be protected to a significant extent by overexpressing the other enzyme. We also found that, although LmCA1 exhibited constitutive expression, the LmME protein level was strongly upregulated under low glucose conditions. Notably, both LmME and LmCA1 were found to be important for survival of Leishmania amastigotes within host macrophages. Taken together, our results indicate that LmCA1 by virtue of its CO2 concentrating ability stimulates LmME-catalyzed pyruvate carboxylation, thereby driving gluconeogenesis through the pyruvate-malate-oxaloacetate bypass pathway. Additionally, our study establishes LmCA1 and LmME as promising therapeutic targets.


Assuntos
Anidrases Carbônicas/metabolismo , Gluconeogênese , Leishmania major/metabolismo , Malato Desidrogenase/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Anidrases Carbônicas/genética , Linhagem Celular , Glucose/metabolismo , Interações Hospedeiro-Parasita , Leishmania major/genética , Leishmania major/fisiologia , Macrófagos/parasitologia , Malato Desidrogenase/genética , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Oxirredução , Proteínas de Protozoários/genética , Piruvato Carboxilase/genética , Piruvato Carboxilase/metabolismo , Ácido Pirúvico/metabolismo
17.
Nat Commun ; 11(1): 3461, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651371

RESUMO

Leishmaniasis is a neglected tropical disease caused by Leishmania protozoa transmitted by infected sand flies. Vaccination through leishmanization with live Leishmania major has been used successfully but is no longer practiced because it resulted in occasional skin lesions. A second generation leishmanization is described here using a CRISPR genome edited L. major strain (LmCen-/-). Notably, LmCen-/- is a genetically engineered centrin gene knock-out mutant strain that is antibiotic resistant marker free and does not have detectable off-target mutations. Mice immunized with LmCen-/- have no visible lesions following challenge with L. major-infected sand flies, while non-immunized animals develop large and progressive lesions with a 2-log fold higher parasite burden. LmCen-/- immunization results in protection and an immune response comparable to leishmanization. LmCen-/- is safe since it is unable to cause disease in immunocompromised mice, induces robust host protection against vector sand fly challenge and because it is marker free, can be advanced to human vaccine trials.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Leishmania major/genética , Leishmania major/patogenicidade , Vacinas Atenuadas/uso terapêutico , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Dexametasona/farmacologia , Feminino , Citometria de Fluxo , Edição de Genes , Engenharia Genética , Humanos , Terapia de Imunossupressão , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Psychodidae/parasitologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
mBio ; 11(3)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487758

RESUMO

Leishmania spp. are protozoan parasites that cause a spectrum of important diseases in humans. These parasites develop as extracellular promastigotes in the digestive tract of their insect vectors and as obligate intracellular amastigotes that infect macrophages and other phagocytic cells in their vertebrate hosts. Promastigote-to-amastigote differentiation is associated with marked changes in metabolism, including the upregulation of enzymes involved in fatty acid ß-oxidation, which may reflect adaptation to the intracellular niche. Here, we have investigated the function of one of these enzymes, a putative 2,4-dienoyl-coenzyme A (CoA) reductase (DECR), which is specifically required for the ß-oxidation of polyunsaturated fatty acids. The Leishmania DECR shows close homology to bacterial DECR proteins, suggesting that it was acquired by lateral gene transfer. It is present in other trypanosomatids that have obligate intracellular stages (i.e., Trypanosoma cruzi and Angomonas) but is absent from dixenous parasites with an exclusively extracellular lifestyle (i.e., Trypanosoma brucei). A DECR-green fluorescent protein (GFP) fusion protein was localized to the mitochondrion in both promastigote and amastigote stages, and the levels of expression increased in the latter stages. A Leishmania major Δdecr null mutant was unable to catabolize unsaturated fatty acids and accumulated the intermediate 2,4-decadienoyl-CoA, confirming DECR's role in ß-oxidation. Strikingly, the L. major Δdecr mutant was unable to survive in macrophages and was avirulent in BALB/c mice. These findings suggest that ß-oxidation of polyunsaturated fatty acids is essential for intracellular parasite survival and that the bacterial origin of key enzymes in this pathway could be exploited in developing new therapies.IMPORTANCE The Trypanosomatidae are protozoan parasites that infect insects, plants, and animals and have evolved complex monoxenous (single host) and dixenous (two hosts) lifestyles. A number of species of Trypanosomatidae, including Leishmania spp., have evolved the capacity to survive within intracellular niches in vertebrate hosts. The adaptations, metabolic and other, that are associated with development of intracellular lifestyles remain poorly defined. We show that genomes of Leishmania and Trypanosomatidae that can survive intracellularly encode a 2,4-dienoyl-CoA reductase that is involved in catabolism of a subclass of fatty acids. The trypanosomatid enzyme shows closest similarity to the corresponding bacterial enzymes and is located in the mitochondrion and essential for intracellular growth of Leishmania The findings suggest that acquisition of this gene by lateral gene transfer from bacteria by ancestral monoxenous Trypanosomatidae likely contributed to the development of a dixenous lifestyle of these parasites.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Leishmania major/enzimologia , Leishmania major/genética , Sequência de Aminoácidos , Animais , Ácidos Graxos Dessaturases/genética , Feminino , Leishmania major/crescimento & desenvolvimento , Leishmania mexicana/genética , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oxirredução , Filogenia
19.
Nucleic Acids Res ; 47(22): 11637-11648, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31722422

RESUMO

Immunopathologies caused by Leishmania cause severe human morbidity and mortality. This protozoan parasite invades and persists inside host cells, resulting in disease development. Leishmania modifies the epigenomic status of the host cells, thus probably averting the host cell defense mechanism. To accomplish this, Leishmania may change the host cell chromatin structure. However, the mechanism by which the parasite changes the host cell chromatin has not been characterized. In the present study, we found that ectopically produced Leishmania histone H3, LmaH3, which mimics the secreted LmaH3 in infected cells, is incorporated into chromatin in human cells. A crystallographic analysis revealed that LmaH3 forms nucleosomes with human histones H2A, H2B and H4. We found that LmaH3 was less stably incorporated into the nucleosome, as compared to human H3.1. Consistently, we observed that LmaH3-H4 association was remarkably weakened. Mutational analyses revealed that the specific LmaH3 Trp35, Gln57 and Met98 residues, which correspond to the H3.1 Tyr41, Arg63 and Phe104 residues, might be responsible for the instability of the LmaH3 nucleosome. Nucleosomes containing LmaH3 resisted the Mg2+-mediated compaction of the chromatin fiber. These distinct physical characteristics of LmaH3 support the possibility that histones secreted by parasites during infection may modulate the host chromatin structure.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Leishmania major/imunologia , Nucleossomos/metabolismo , Linhagem Celular Tumoral , Células HeLa , Histonas/genética , Humanos , Leishmania major/genética , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Processamento de Proteína Pós-Traducional/fisiologia
20.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31527128

RESUMO

The molecular mechanisms underlying biological differences between two Leishmania species that cause cutaneous disease, L. major and L. amazonensis, are poorly understood. In L. amazonensis, reactive oxygen species (ROS) signaling drives differentiation of nonvirulent promastigotes into forms capable of infecting host macrophages. Tight spatial and temporal regulation of H2O2 is key to this signaling mechanism, suggesting a role for ascorbate-dependent peroxidase (APX), which degrades mitochondrial H2O2 Earlier studies showed that APX-null L. major parasites are viable, accumulate higher levels of H2O2, generate a greater yield of infective metacyclic promastigotes, and have increased virulence. In contrast, we found that in L. amazonensis, the ROS-inducible APX is essential for survival of all life cycle stages. APX-null promastigotes could not be generated, and parasites carrying a single APX allele were impaired in their ability to infect macrophages and induce cutaneous lesions in mice. Similar to what was reported for L. major, APX depletion in L. amazonensis enhanced differentiation of metacyclic promastigotes and amastigotes, but the parasites failed to replicate after infecting macrophages. APX expression restored APX single-knockout infectivity, while expression of catalytically inactive APX drastically reduced virulence. APX overexpression in wild-type promastigotes reduced metacyclogenesis, but enhanced intracellular survival following macrophage infection or inoculation into mice. Collectively, our data support a role for APX-regulated mitochondrial H2O2 in promoting differentiation of virulent forms in both L. major and L. amazonensis Our results also uncover a unique requirement for APX-mediated control of ROS levels for survival and successful intracellular replication of L. amazonensis.


Assuntos
Ascorbato Peroxidases/metabolismo , Leishmania major/patogenicidade , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/patologia , Macrófagos/parasitologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Ascorbato Peroxidases/genética , Células Cultivadas , Leishmania major/genética , Leishmania major/metabolismo , Leishmania mexicana/genética , Leishmania mexicana/metabolismo , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA