Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Parasitol Int ; 85: 102423, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34298165

RESUMO

Infections caused by Leishmania amazonensis are characterized by a persistent parasitemia due to the ability of the parasite to modulate the immune response of macrophages. It has been proposed that ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDases) could be able to suppress the host immune defense by reducing the ATP and ADP levels. The AMP generated from E-NTPDase activity can be subsequently hydrolyzed by ecto-nucleotidases, increasing the levels of adenosine, which can reduce the inflammatory response. In the present work, we provide new information about the role of E-NTPDases on infectivity and virulence of L. amazonensis. Our data demonstrate that not only the E-NTPDase activity is differentially regulated during the parasite development but also the expression of the genes ntpd1 and ntpd2. E-NTPDase activity increases significantly in axenic amastigotes and metacyclic promastigotes, both infective forms in mammalian host. A similar profile was found for mRNA levels of the ntpd1 and ntpd2 genes. Using parasites overexpressing the genes ntpd1 and ntpd2, we could demonstrate that L. amazonensis promastigotes overexpressing ntpd2 gene show a remarkable increase in their ability to interact with macrophages compared to controls. In addition, both ntpd1 and ntpd2-overexpressing parasites were more infective to macrophages than controls. The kinetics of lesion formation by transfected parasites were similar to controls until the second week. However, twenty days post-infection, mice infected with ntpd1 and ntpd2-overexpressing parasites presented significantly reduced lesions compared to controls. Interestingly, parasite load reached similar levels among the different experimental groups. Thus, our data show a non-linear relationship between higher E-NTPDase activity and lesion formation. Previous studies have correlated increased ecto-NTPDase activity with virulence and infectivity of Leishmania parasites. Based in our results, we are suggesting that the induced overexpression of E-NTPDases in L. amazonensis could increase extracellular adenosine levels, interfering with the balance of the immune response to promote the pathogen clearance and maintain the host protection.


Assuntos
Regulação da Expressão Gênica , Leishmania mexicana/genética , Leishmania mexicana/patogenicidade , Leishmaniose Tegumentar Difusa/fisiopatologia , Proteínas de Protozoários/genética , Pirofosfatases/genética , Animais , Leishmania mexicana/enzimologia , Camundongos , Proteínas de Protozoários/metabolismo , Pirofosfatases/metabolismo , Virulência
2.
Immunol Lett ; 237: 58-65, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34246712

RESUMO

Type 2 Diabetes is a chronic disease resulting from insulin dysfunction that triggers a low-grade inflammatory state and immune impairment. Leishmaniasis is an infectious disease characterized by chronic inflammation resulted from the parasite's immunomodulation ability. Thus, due to the delicate immune balance required in the combat and resistance to Leishmania infection and the chronic deregulation of the inflammatory response observed in type 2 diabetes, we evaluated the response of PBMC from diabetic patients to in vitro Leishmania amazonensis infection. For that, peripheral blood was collected from 25 diabetic patients and 25 healthy controls matched for age for cells extraction and subsequent experimental infection for 2 or 24 h and analyzed for phagocytic and leishmanicidal capacity by optical microscopy, oxidative stress by GSSG generation, labeling of intracellular mediators by enzyme-Linked immunosorbent assay, and cytokines measurement with cytometric beads array technique. We found that the diabetic group had a higher percentage of infected cells and a greater number of amastigotes per cell. Also, even inducing NF-kB phosphorylation and increasing TNF production after infection, cells from diabetic patients were unable to downregulate NRF2 and generate oxidative stress, which may be associated with the exacerbated levels of IL-6 observed. PBMC of diabetic individuals are more susceptible to infection by L. amazonensis and fail to control the infection over time due to the inability to generate effector microbicidal molecules.


Assuntos
Citocinas/fisiologia , Diabetes Mellitus Tipo 2/imunologia , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/etiologia , Leucócitos Mononucleares/parasitologia , Fator 2 Relacionado a NF-E2/deficiência , Idoso , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Suscetibilidade a Doenças , Feminino , Glutationa/sangue , Hemoglobinas Glicadas/análise , Humanos , Imunocompetência , Técnicas In Vitro , Inflamação , Interleucina-6/fisiologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Masculino , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/fisiologia , Óxido Nítrico/metabolismo , Estresse Oxidativo , Explosão Respiratória , Fator de Necrose Tumoral alfa/fisiologia
3.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31527128

RESUMO

The molecular mechanisms underlying biological differences between two Leishmania species that cause cutaneous disease, L. major and L. amazonensis, are poorly understood. In L. amazonensis, reactive oxygen species (ROS) signaling drives differentiation of nonvirulent promastigotes into forms capable of infecting host macrophages. Tight spatial and temporal regulation of H2O2 is key to this signaling mechanism, suggesting a role for ascorbate-dependent peroxidase (APX), which degrades mitochondrial H2O2 Earlier studies showed that APX-null L. major parasites are viable, accumulate higher levels of H2O2, generate a greater yield of infective metacyclic promastigotes, and have increased virulence. In contrast, we found that in L. amazonensis, the ROS-inducible APX is essential for survival of all life cycle stages. APX-null promastigotes could not be generated, and parasites carrying a single APX allele were impaired in their ability to infect macrophages and induce cutaneous lesions in mice. Similar to what was reported for L. major, APX depletion in L. amazonensis enhanced differentiation of metacyclic promastigotes and amastigotes, but the parasites failed to replicate after infecting macrophages. APX expression restored APX single-knockout infectivity, while expression of catalytically inactive APX drastically reduced virulence. APX overexpression in wild-type promastigotes reduced metacyclogenesis, but enhanced intracellular survival following macrophage infection or inoculation into mice. Collectively, our data support a role for APX-regulated mitochondrial H2O2 in promoting differentiation of virulent forms in both L. major and L. amazonensis Our results also uncover a unique requirement for APX-mediated control of ROS levels for survival and successful intracellular replication of L. amazonensis.


Assuntos
Ascorbato Peroxidases/metabolismo , Leishmania major/patogenicidade , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/patologia , Macrófagos/parasitologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Ascorbato Peroxidases/genética , Células Cultivadas , Leishmania major/genética , Leishmania major/metabolismo , Leishmania mexicana/genética , Leishmania mexicana/metabolismo , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Virulência
4.
Biochimie ; 166: 150-160, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31472179

RESUMO

Leishmania mexicana is one of the causative agents of cutaneous leishmaniasis in humans. There is an urgent need to identify new drug targets to combat the disease. Cysteine peptidases play crucial role in pathogenicity and virulence in Leishmania spp. and are promising targets for developing new anti-leishmanial drugs. Genetic drug target validation has been performed on a number of cysteine peptidases, but others have yet to be characterized. We targeted 16 L. mexicana cysteine peptidases for gene deletion and tagging using CRISPR-Cas9 in order to identify essential genes and ascertain their cellular localization. Our analysis indicates that two clan CA, family C2 calpains (LmCAL27.1, LmCAL31.6) and clan CD, family C11 PNT1 are essential for survival in the promastigote stage. The other peptidases analysed, namely calpains LmCAL4.1, LmCAL25.1, and members of clan CA C51, C78, C85 and clan CP C97 were found to be non-essential. We generated a gene deletion mutant (Δpnt1) which was severely compromised in its cell growth and a conditional gene deletion mutant of PNT1 (Δpnt1: PNT1flox/Δ pnt1:HYG [SSU DiCRE]). PNT1 localizes to distinct foci on the flagellum and on the surface of the parasite. The conditional gene deletion of PNT1 induced blebs and pits on the cell surface and eventual cell death. Over-expression of PNT1, but not an active site mutant PNT1C134A, was lethal, suggesting that active PNT1 peptidase is required for parasite survival. Overall, our data suggests that PNT1 is an essential gene and one of a number of cysteine peptidases that are potential drug targets in Leishmania.


Assuntos
Cisteína Endopeptidases/genética , Cisteína Endopeptidases/fisiologia , Leishmania mexicana/enzimologia , Leishmaniose Cutânea/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Deleção de Genes , Genes Essenciais , Humanos , Leishmania mexicana/genética , Leishmania mexicana/patogenicidade , Virulência/genética
5.
mSphere ; 4(5)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484740

RESUMO

The genomes of Leishmania and trypanosomes encode six paralogs of the eIF4E cap-binding protein, known in other eukaryotes to anchor the translation initiation complex. In line with the heteroxenous nature of these parasites, the different LeishIF4E paralogs vary in their biophysical features and their biological behavior. We therefore hypothesize that each has a specialized function, not limited to protein synthesis. Of the six paralogs, LeishIF4E-3 has a weak cap-binding activity. It participates in the assembly of granules that store inactive transcripts and ribosomal proteins during nutritional stress that is experienced in the sand fly. We investigated the role of LeishIF4E-3 in Leishmania mexicana promastigotes using the CRISPR-Cas9 system. We deleted one of the two LeishIF4E-3 alleles, generating a heterologous deletion mutant with reduced LeishIF4E-3 expression. The mutant showed a decline in de novo protein synthesis and growth kinetics, altered morphology, and impaired infectivity. The mutant cells were rounded and failed to transform into the nectomonad-like form, in response to purine starvation. Furthermore, the infectivity of macrophage cells by the LeishIF4E-3(+/-) mutant was severely reduced. These phenotypic features were not observed in the addback cells, in which expression of LeishIF4E-3 was restored. The observed phenotypic changes correlated with the profile of transcripts associated with LeishIF4E-3. These were enriched for cytoskeleton- and flagellum-encoding genes, along with genes for RNA binding proteins. Our data illustrate the importance of LeishIF4E-3 in translation and in the parasite virulence.IMPORTANCELeishmania species are the causative agents of a spectrum of diseases. Available drug treatment is toxic and expensive, with drug resistance a growing concern. Leishmania parasites migrate between transmitting sand flies and mammalian hosts, experiencing unfavorable extreme conditions. The parasites therefore developed unique mechanisms for promoting a stage-specific program for gene expression, with translation playing a central role. There are six paralogs of the cap-binding protein eIF4E, which vary in their function, expression profiles, and assemblages. Using the CRISPR-Cas9 system for Leishmania, we deleted one of the two LeishIF4E-3 alleles. Expression of LeishIF4E-3 in the deletion mutant was low, leading to reduction in global translation and growth of the mutant cells. Cell morphology also changed, affecting flagellum growth, cell shape, and infectivity. The importance of this study is in highlighting that LeishIF4E-3 is essential for completion of the parasite life cycle. Our study gives new insight into how parasite virulence is determined.


Assuntos
Alelos , Sistemas CRISPR-Cas , Deleção de Genes , Leishmania mexicana/patogenicidade , Proteínas de Protozoários/genética , Animais , Leishmania mexicana/genética , Macrófagos/parasitologia , Camundongos , Mutação , Células RAW 264.7
6.
Molecules ; 24(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875854

RESUMO

New anti-infective agents are urgently needed to fight microbial resistance. Methicillin-resistant Staphylococcus aureus (MRSA) strains are particularly responsible for complicated pathologies that are difficult to treat due to their virulence and the formation of persistent biofilms forming a complex protecting shell. Parasitic infections caused by Trypanosoma brucei and Leishmania mexicana are also of global concern, because of the mortality due to the low number of safe and effective treatments. Female inflorescences of hop produce specialized metabolites known for their antimicrobial effects but underexploited to fight against drug-resistant microorganisms. In this study, we assessed the antimicrobial potential of phenolic compounds against MRSA clinical isolates, T. brucei and L. mexicana. By fractionation process, we purified the major prenylated chalcones and acylphloroglucinols, which were quantified by UHPLC-UV in different plant parts, showing their higher content in the active flowers extract. Their potent antibacterial action (MIC < 1 µg/mL for the most active compound) was demonstrated against MRSA strains, through kill curves, post-antibiotic effects, anti-biofilm assays and synergy studies with antibiotics. An antiparasitic activity was also shown for some purified compounds, particularly on T. brucei (IC50 < 1 to 11 µg/mL). Their cytotoxic activity was assessed both on cancer and non-cancer human cell lines.


Assuntos
Anti-Infecciosos/química , Produtos Biológicos/química , Humulus/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Biofilmes/efeitos dos fármacos , Produtos Biológicos/farmacologia , Humanos , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/patogenicidade , Staphylococcus aureus Resistente à Meticilina/química , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Testes de Sensibilidade Microbiana , Doenças Parasitárias/tratamento farmacológico , Doenças Parasitárias/parasitologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/patogenicidade
7.
Sci Rep ; 9(1): 438, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679614

RESUMO

The limited success of recent phenotypic anti-leishmanial drug screening campaigns calls for new screening strategies for the discovery of clinically relevant hits. Here we present such a novel strategy based on physiologically relevant, ex vivo biology. We established high content phenotypic assays that combine primary murine macrophages and lesion-derived, virulent L. donovani and L. amazonensis amastigotes, which we applied to validate previously identified, anti-leishmanial hit compounds referred to as 'GSK Leish-Box'. Together with secondary screens using cultured promastigotes, our pipeline distinguished stage- and/or species-specific compounds, including 20 hits with broad activity at 10 µM against intracellular amastigotes of both viscerotropic and dermotropic Leishmania. Even though the GSK Leish-Box hits were identified by phenotypic screening using THP-1 macrophage-like cells hosting culture-derived L. donovani LdBob parasites, our ex vivo assays only validated anti-leishmanial activity at 10 µM on intra-macrophagic L. donovani for 23 out of the 188 GSK Leish-Box hits. In conclusion, our comparative approach allowed the identification of hits with broad anti-leishmanial activity that represent interesting novel candidates to be tested in animal models. Physiologically more relevant screening approaches such as described here may reduce the very high attrition rate observed during pre-clinical and clinical phases of the drug development process.


Assuntos
Antiprotozoários/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Leishmania donovani/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/prevenção & controle , Leishmaniose Visceral/prevenção & controle , Animais , Antiprotozoários/química , Células Cultivadas , Humanos , Leishmania donovani/patogenicidade , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos Endogâmicos BALB C , Estrutura Molecular , Fenótipo , Especificidade da Espécie , Células THP-1 , Virulência/efeitos dos fármacos
8.
mSphere ; 3(4)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068561

RESUMO

Glucose transporters are important for viability and infectivity of the disease-causing amastigote stages of Leishmania mexicana The Δgt1-3 null mutant, in which the 3 clustered glucose transporter genes, GT1, GT2, and GT3, have been deleted, is strongly impaired in growth inside macrophages in vitro We have now demonstrated that this null mutant is also impaired in virulence in the BALB/c murine model of infection and forms lesions considerably more slowly than wild-type parasites. Previously, we established that amplification of the PIFTC3 gene, which encodes an intraflagellar transport protein, both facilitated and accompanied the isolation of the original Δgt1-3 null mutant generated in extracellular insect-stage promastigotes. We have now isolated Δgt1-3 null mutants without coamplification of PIFTC3 These amplicon-negative null mutants are further impaired in growth as promastigotes, compared to the previously described null mutants containing the PIFTC3 amplification. In contrast, the GT3 glucose transporter plays an especially important role in promoting amastigote viability. A line that expresses only the single glucose transporter GT3 grows as well inside macrophages and induces lesions in animals as robustly as do wild-type amastigotes, but lines expressing only the GT1 or GT2 transporters replicate poorly in macrophages. Strikingly, GT3 is restricted largely to the endoplasmic reticulum in intracellular amastigotes. This observation raises the possibility that GT3 may play an important role as an intracellular glucose transporter in the infectious stage of the parasite life cycle.IMPORTANCE Glucose transport plays important roles for in vitro growth of insect-stage promastigotes and especially for viability of intramacrophage mammalian host-stage amastigotes of Leishmania mexicana However, the roles of the three distinct glucose transporters, GT1, GT2, and GT3, in parasite viability inside macrophages and virulence in mice have not been fully explored. Parasite lines expressing GT1 or GT2 alone were strongly impaired in growth inside macrophages, but lines expressing GT3 alone infected macrophages and caused lesions in mice as robustly as wild-type parasites. Notably, GT3 localizes to the endoplasmic reticulum of intracellular amastigotes, suggesting a potential role for salvage of glucose from that organelle for viability of infectious amastigotes. This study establishes the unique role of GT3 for parasite survival inside host macrophages and for robust virulence in infected animals.


Assuntos
Retículo Endoplasmático/parasitologia , Proteínas Facilitadoras de Transporte de Glucose/genética , Leishmania mexicana/patogenicidade , Proteínas de Protozoários/genética , Animais , Linhagem Celular , Feminino , Técnicas de Inativação de Genes , Leishmania mexicana/genética , Estágios do Ciclo de Vida , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Mutação , Virulência
9.
Mol Microbiol ; 108(2): 143-158, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29411460

RESUMO

Leishmania parasites target macrophages in their mammalian hosts and proliferate within the mature phagolysosome compartment of these cells. Intracellular amastigote stages are dependent on sugars as a major carbon source in vivo, but retain the capacity to utilize other carbon sources. To investigate whether amastigotes can switch to using other carbon sources, we have screened for suppressor strains of the L. mexicana Δlmxgt1-3 mutant which lacks the major glucose transporters LmxGT1-3. We identified a novel suppressor line (Δlmxgt1-3s2 ) that has restored growth in rich culture medium and virulence in ex vivo infected macrophages, but failed to induce lesions in mice. Δlmxgt1-3s2 amastigotes had lower rates of glucose utilization than the parental line and primarily catabolized non-essential amino acids. The increased mitochondrial metabolism of this line was associated with elevated levels of intracellular reactive oxygen species, as well as increased sensitivity to inhibitors of the tricarboxylic acid (TCA) cycle, including nitric oxide. These results suggest that hardwired sugar addiction of Leishmania amastigotes contributes to the intrinsic resistance of this stage to macrophage microbicidal processes in vivo, and that these stages have limited capacity to switch to using other carbon sources.


Assuntos
Aminoácidos/metabolismo , Leishmania mexicana/metabolismo , Leishmaniose Cutânea/parasitologia , Macrófagos/parasitologia , Animais , Carbono/metabolismo , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Humanos , Leishmania mexicana/genética , Leishmania mexicana/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Virulência
10.
Parasite Immunol ; 40(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29272044

RESUMO

A strong sex-associated susceptibility towards Leishmania has been reported in males, yet little is known on the effect of hormones in Leishmania physiopathogenicity. Due to the enhanced susceptibility of males to Leishmania mexicana infections, we were interested in analysing the effect exerted by the main androgen produced in males (DHT) on L. mexicana promastigotes. Thus, the aim of this study was to assess the regulation exerted by dihydrotestosterone (DHT) on L. mexicana replication, infectivity, survival and development of tissue lesions. Experiments included growth curves of L. mexicana promastigotes incubated with different doses of DHT, their infection rate, intracellular survival and lesion development in BALB/c mice. Our data show that DHT significantly enhances parasite replication, infection rate and survival in bone marrow-derived macrophages (BMMФ). Promastigotes in the presence of DHT produced significantly larger lesions in BALB/c earlobes. These results suggest that DHT probably plays a critical role during L. mexicana infections, and the higher susceptibility of males possibly relates to benefits gained by the parasite from host-derived hormones. Our data shed new light on the physiopathology of Leishmania infections and are the first attempt to understand the direct interaction between Leishmania and androgens, particularly DHT. Understanding this trans-regulation process employed by parasites to exploit host molecules sheds new light on L. mexicana physiopathogenesis and opens a possible field for studies on drug development.


Assuntos
Di-Hidrotestosterona/metabolismo , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/patogenicidade , Leishmaniose/parasitologia , Animais , Interações Hospedeiro-Parasita , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
11.
PLoS Negl Trop Dis ; 11(7): e0005782, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28742133

RESUMO

BACKGROUND: Leishmania virulence factors responsible for the complicated epidemiology of the various leishmaniases remain mainly unidentified. This study is a characterization of a gene previously identified as upregulated in two of three overlapping datasets containing putative factors important for Leishmania's ability to establish mammalian intracellular infection and to colonize the gut of an insect vector. METHODOLOGY/PRINCIPAL FINDINGS: The investigated gene encodes ATP/GTP binding motif-containing protein related to Leishmania development 1 (ALD1), a cytosolic protein that contains a cryptic ATP/GTP binding P-loop. We compared differentiation, growth rates, and infective abilities of wild-type and ALD1 null mutant cell lines of L. mexicana. Loss of ALD1 results in retarded growth kinetics but not defects in differentiation in axenic culture. Similarly, when mice and the sand fly vector were infected with the ALD1 null mutant, the primary difference in infection and colonization phenotype relative to wild type was an inability to achieve maximal host pathogenicity. While ability of the ALD1 null mutant cells to infect macrophages in vitro was not affected, replication within macrophages was clearly curtailed. CONCLUSIONS/SIGNIFICANCE: L. mexicana ALD1, encoding a protein with no assigned functional domains or motifs, was identified utilizing multiple comparative analyses with the related and often experimentally overlooked monoxenous flagellates. We found that it plays a role in Leishmania infection and colonization in vitro and in vivo. Results suggest that ALD1 functions in L. mexicana's general metabolic network, rather than function in specific aspect of virulence as anticipated from the compared datasets. This result validates our comparative genomics approach for finding relevant factors, yet highlights the importance of quality laboratory-based analysis of genes tagged by these methods.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Leishmania mexicana/patogenicidade , Macrófagos/parasitologia , Proteínas de Protozoários/metabolismo , Psychodidae/parasitologia , Animais , Feminino , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica no Desenvolvimento , Insetos Vetores/parasitologia , Leishmania mexicana/genética , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/genética , Virulência
12.
J Biol Chem ; 292(29): 12324-12338, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28550086

RESUMO

Leishmaniasis is one of the leading globally neglected diseases, affecting millions of people worldwide. Leishmania infection depends on the ability of insect-transmitted metacyclic promastigotes to invade mammalian hosts, differentiate into amastigotes, and replicate inside macrophages. To counter the hostile oxidative environment inside macrophages, these protozoans contain anti-oxidant systems that include iron-dependent superoxide dismutases (SODs) in mitochondria and glycosomes. Increasing evidence suggests that in addition to this protective role, Leishmania mitochondrial SOD may also initiate H2O2-mediated redox signaling that regulates gene expression and metabolic changes associated with differentiation into virulent forms. To investigate this hypothesis, we examined the specific role of SODA, the mitochondrial SOD isoform in Leishmania amazonensis Our inability to generate L. amazonensis SODA null mutants and the lethal phenotype observed following RNAi-mediated silencing of the Trypanosoma brucei SODA ortholog suggests that SODA is essential for trypanosomatid survival. L. amazonensis metacyclic promastigotes lacking one SODA allele failed to replicate in macrophages and were severely attenuated in their ability to generate cutaneous lesions in mice. Reduced expression of SODA also resulted in mitochondrial oxidative damage and failure of SODA/ΔsodA promastigotes to differentiate into axenic amastigotes. SODA expression above a critical threshold was also required for the development of metacyclic promastigotes, as SODA/ΔsodA cultures were strongly depleted in this infective form and more susceptible to reactive oxygen species (ROS)-induced stress. Collectively, our data suggest that SODA promotes Leishmania virulence by protecting the parasites against mitochondrion-generated oxidative stress and by initiating ROS-mediated signaling mechanisms required for the differentiation of infective forms.


Assuntos
Ferro/metabolismo , Leishmania mexicana/enzimologia , Mitocôndrias/enzimologia , Proteínas de Protozoários/metabolismo , Superóxido Dismutase/metabolismo , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/parasitologia , Células da Medula Óssea/patologia , Linhagem Celular , Células Cultivadas , Células Clonais , Feminino , Técnicas de Inativação de Genes , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/patogenicidade , Leishmania mexicana/ultraestrutura , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Carga Parasitária , Transporte Proteico , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Interferência de RNA , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/genética , Virulência
13.
Mem Inst Oswaldo Cruz ; 112(1): 44-52, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28076468

RESUMO

Leishmania are protozoan parasites that show remarkable diversity, as revealed by the various clinical forms of leishmaniasis, which can range from mild skin lesions to severe metastatic cutaneous/mucosal lesions. The exact nature and extent of Leishmania phenotypic diversity in establishing infection is not fully understood. In order to try to understand some aspects of this diversity, we subcutaneously infected BALB/c mice with first and second generation subclones of a L. amazonensis strain isolated from a patient (BA125) and examined in vivo lesion growth rate and antimony susceptibility. In vivo fast-, medium- and slow-growing subclones were obtained; moreover, fast-growing subclones could generate slow-growing subclones and inversely, revealing the continuous generation of diversity after passage into mice. No antimony-resistant subclone appeared, probably a rare occurrence. By tagging subclone cells with a L. amazonensis genomic cosmid library, we found that only a very small number of founding cells could produce lesions. Leishmania clones transfected with in vivo selected individual cosmids were also diverse in terms of lesion growth rate, revealing the cosmid-independent intrinsic characteristics of each clone. Our results suggest that only a few of the infecting parasites are able to grow and produce lesions; later, within the cell mixture of each lesion, there coexist several parasite populations with different potentialities to grow lesions during the next infection round. This may reflect a sort of programmed heterogeneity of individual parasites, favoring the survival of some individuals in various environmental conditions.


Assuntos
Leishmania mexicana/genética , Leishmaniose Cutânea/parasitologia , Animais , Modelos Animais de Doenças , Feminino , Leishmania mexicana/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Fatores de Tempo
14.
Mem. Inst. Oswaldo Cruz ; 112(1): 44-52, Jan. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-841754

RESUMO

Leishmania are protozoan parasites that show remarkable diversity, as revealed by the various clinical forms of leishmaniasis, which can range from mild skin lesions to severe metastatic cutaneous/mucosal lesions. The exact nature and extent of Leishmania phenotypic diversity in establishing infection is not fully understood. In order to try to understand some aspects of this diversity, we subcutaneously infected BALB/c mice with first and second generation subclones of a L. amazonensis strain isolated from a patient (BA125) and examined in vivo lesion growth rate and antimony susceptibility. In vivo fast-, medium- and slow-growing subclones were obtained; moreover, fast-growing subclones could generate slow-growing subclones and inversely, revealing the continuous generation of diversity after passage into mice. No antimony-resistant subclone appeared, probably a rare occurrence. By tagging subclone cells with a L. amazonensis genomic cosmid library, we found that only a very small number of founding cells could produce lesions. Leishmania clones transfected with in vivo selected individual cosmids were also diverse in terms of lesion growth rate, revealing the cosmid-independent intrinsic characteristics of each clone. Our results suggest that only a few of the infecting parasites are able to grow and produce lesions; later, within the cell mixture of each lesion, there coexist several parasite populations with different potentialities to grow lesions during the next infection round. This may reflect a sort of programmed heterogeneity of individual parasites, favoring the survival of some individuals in various environmental conditions.


Assuntos
Animais , Feminino , Leishmania mexicana/genética , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/parasitologia , Modelos Animais de Doenças , Fenótipo , Fatores de Tempo , Camundongos Endogâmicos BALB C
15.
Curr Protein Pept Sci ; 18(10): 1035-1042, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27526930

RESUMO

The number of protein folds in nature is limited, thus is not surprising that proteins with the same fold are able to exert different functions. The cysteine protease inhibitors that adopt an immunoglobulin- like fold (Ig-ICPs) are inhibitors encoded in bacteria and protozoan parasites. Structural studies indicate that these inhibitors resemble the structure of archetypical proteins with an Ig fold, like antibodies, cadherins or cell receptors. The structure of Ig-ICPs from four different protozoan parasites clearly shows the presence of three loops that form part of a protein-ligand interaction surface that resembles the antigen binding sites of antibodies. Thus, Ig-ICPs bind to different cysteine proteases using a tripartite mechanism in which their BC, DE and FG loops are responsible for the main interactions with the target cysteine protease. Ig-ICPs from different protozoan parasites regulate the enzymatic activity of host or parasite's proteases and thus regulate virulence and pathogenesis.


Assuntos
Inibidores de Cisteína Proteinase/química , Entamoeba histolytica/genética , Imunoglobulinas/química , Leishmania mexicana/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Trypanosoma cruzi/genética , Sítios de Ligação , Inibidores de Cisteína Proteinase/metabolismo , Entamoeba histolytica/metabolismo , Entamoeba histolytica/patogenicidade , Expressão Gênica , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Leishmania mexicana/metabolismo , Leishmania mexicana/patogenicidade , Ligantes , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/patogenicidade , Virulência
16.
Cell Microbiol ; 19(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27641840

RESUMO

Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self-healing skin lesions to fatal visceralizing disease. As the host cells of choice for all species of Leishmania, macrophages are critical for the establishment of infections. How macrophages contribute to parasite homing to specific tissues and how parasites modulate macrophage function are still poorly understood. In this study, we show that Leishmania amazonensis infection inhibits macrophage roaming motility. The reduction in macrophage speed is not dependent on particle load or on factors released by infected macrophages. L. amazonensis-infected macrophages also show reduced directional migration in response to the chemokine MCP-1. We found that infected macrophages have lower levels of total paxillin, phosphorylated paxillin, and phosphorylated focal adhesion kinase when compared to noninfected macrophages, indicating abnormalities in the formation of signaling adhesion complexes that regulate motility. Analysis of the dynamics of actin polymerization at peripheral sites also revealed a markedly enhanced F-actin turnover frequency in L. amazonensis-infected macrophages. Thus, Leishmania infection inhibits macrophage motility by altering actin dynamics and impairing the expression of proteins that function in plasma membrane-extracellular matrix interactions.


Assuntos
Actinas/metabolismo , Movimento Celular , Leishmania mexicana/patogenicidade , Macrófagos/fisiologia , Macrófagos/parasitologia , Proteína-Tirosina Quinases de Adesão Focal/análise , Macrófagos/química , Paxilina/análise
17.
Salvador; s.n; 2017. 77 p. ilus, map.
Tese em Português | LILACS | ID: biblio-1001004

RESUMO

A Leishmaniose Cutânea Difusa (LCD) é uma manifestação clínica. rara causada pela Leishmania amazonensis que é caracterizada por uma resposta celular. parasitária ineficiente e macrófagos intensamente parasitados nas lesões cutâneas.. Mediadores lipídicos e seus precursores desempenham um papel crucial durante a. infecção por Leishmania. Estudos prévios demonstram que pacientes com leishmaniose. tegumentar, exibem um distinto balanço de eicosanoides in situ e sistêmico.. Recentemente, demonstrou-se que mediadores lipídicos especializados na pró-resolução. desempenham um papel crítico na redução de processos inflamatórios patológicos. induzindo a restauração da homeostasia em diferentes modelos experimentais. Entre. esses mediadores, as resolvinas da série D exibem potente atividade anti-inflamatória e. imuno-regulatória que inclui a inibição da quimiotaxia leucocitária e bloqueio na. produção de citocinas pró-inflamatórias. No entanto, ainda é desconhecido se as. resolvinas desempenham um papel significativo no estabelecimento e persistência da. infecção por Leishmania. OBJETIVO: Nesse estudo, avaliamos os níveis circulantes. de Resolvina D1 (RvD1) em pacientes com leishmaniose tegumentar apresentando a. forma clínica cutânea localizada (LCL) ou difusa. RESULTADOS: Nossos resultados. demonstram que pacientes com LCD apresentam maiores níveis plasmáticos de RvD1. quando comparados a LCL ou controles endêmicos. Além disso, os níveis séricos de. RvD1 em pacientes com LCD se correlacionam positivamente com a Arginase I e TGF-. β, enquanto que inversamente com os níveis sistêmicos de TNF-α. Experimentos. adicionais in vitro utilizando macrófagos humanos revelaram que a RvD1 promove a. replicação intracelular da L. amazonensis por um mecanismo associado a indução da. enzima heme oxigenase-1. CONCLUSÃO: Os resultados sugerem que a via de. produção da RvD1 pode servir como uma potencial estratégia terapêutica para os. pacientes com LCD.


INTRODUCTION: Diffuse Cutaneous Leishmaniasis (DCL) is a rare clinical manifestation caused by Leishmania amazonensis that is characterized by an inefficient parasite-specific cellular responses and heavily parasitized macrophages in skin lesions. Lipid mediators and their precursors play a crucial role during Leishmania infection. Previous works have shown that patients with cutaneous leishmaniasis exhibit a distinct in situ and systemic balance of this eicosanoids. Recently, pro-resolution lipid mediators have been shown to play critical role in dampening pathological inflammatory processes to reestablish homeostasis in a diverse range of experimental settings. Among these mediators, resolvins from D series have been described to exhibit potent antiinflammatory and immune-regulatory activities that include inhibition of leukocyte chemotaxis and blockage on the production of proinflammatory cytokines. However, whether resolvins play significant roles in establishment and persistence of Leishmania infection is currently unknown. AIM: We addressed this question by assessing circulating levels of resolvin D1 (RvD1) in tegumentary leishmaniasis patients presenting localized cutaneous leishmaniasis (LCL) or diffuse disease. RESULTS: We found that DCL patients have higher plasma levels of RvD1 when compared with LCL patients or endemic controls. In addition, the levels of this mediator were positively correlated with arginase-I and TGF-β and were negatively correlated with TNF-α levels. Additional in vitro experiments using primary human macrophages revealed that resolvin D1 promotes the intracellular L. amazonensis replication for a mechanism dependent on induction of heme oxygenase-1 enzyme. CONCLUSION: These results indicate that targeting RvD1 could serve as potential strategy for DCL patients.


Assuntos
Humanos , Leishmania mexicana/patogenicidade , Leishmaniose Tegumentar Difusa/diagnóstico , Leishmaniose Tegumentar Difusa/imunologia , Leishmaniose Tegumentar Difusa/parasitologia , Leishmaniose Tegumentar Difusa/patologia , Leishmaniose Tegumentar Difusa/prevenção & controle , Leishmaniose Tegumentar Difusa/sangue , Leishmaniose Tegumentar Difusa/transmissão
18.
PLoS Pathog ; 12(5): e1005658, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27191844

RESUMO

Cysteine peptidases play a central role in the biology of Leishmania. In this work, we sought to further elucidate the mechanism(s) by which the cysteine peptidase CPB contributes to L. mexicana virulence and whether CPB participates in the formation of large communal parasitophorous vacuoles induced by these parasites. We initially examined the impact of L. mexicana infection on the trafficking of VAMP3 and VAMP8, two endocytic SNARE proteins associated with phagolysosome biogenesis and function. Using a CPB-deficient mutant, we found that both VAMP3 and VAMP8 were down-modulated in a CPB-dependent manner. We also discovered that expression of the virulence-associated GPI-anchored metalloprotease GP63 was inhibited in the absence of CPB. Expression of GP63 in the CPB-deficient mutant was sufficient to down-modulate VAMP3 and VAMP8. Similarly, episomal expression of GP63 enabled the CPB-deficient mutant to establish infection in macrophages, induce the formation of large communal parasitophorous vacuoles, and cause lesions in mice. These findings implicate CPB in the regulation of GP63 expression and provide evidence that both GP63 and CPB are key virulence factors in L. mexicana.


Assuntos
Regulação da Expressão Gênica/fisiologia , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/metabolismo , Metaloendopeptidases/biossíntese , Proteínas de Protozoários/metabolismo , Animais , Western Blotting , Cisteína/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Peptídeo Hidrolases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência , Fatores de Virulência/metabolismo
19.
Bioorg Med Chem Lett ; 26(10): 2551-2556, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27048943

RESUMO

Arylimidamide (AIA) compounds containing two pyridylimidamide terminal groups (bis-AIAs) possess outstanding in vitro antileishmanial activity, and the frontrunner bis-AIA DB766 (2,5-bis[2-(2-isopropoxy)-4-(2-pyridylimino)aminophenyl]furan) is active in visceral leishmaniasis models when given orally. Eighteen compounds containing a single pyridylimidamide terminal group (mono-AIAs) were synthesized and evaluated for their antileishmanial potential. Six of these compounds exhibited sub-micromolar potency against both intracellular Leishmania donovani and Leishmania amazonensis amastigotes, and three of these compounds also displayed selectivity indexes of 25 or greater for the parasites compared to a J774 macrophage cell line. When given orally at a dose of 100mg/kg/day for five days, compound 1b (N-(3-isopropoxy-4-(5-phenylfuran-2-yl)phenyl)picolinimidamide methanesulfonate) reduced liver parasitemia by 46% in L. donovani-infected mice. Mono-AIAs are thus a new class of candidate molecules for antileishmanial drug development.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Administração Oral , Animais , Antiprotozoários/síntese química , Técnicas de Química Sintética , Avaliação Pré-Clínica de Medicamentos/métodos , Furanos/química , Concentração Inibidora 50 , Leishmania donovani/patogenicidade , Leishmania mexicana/patogenicidade , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos Endogâmicos BALB C , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Relação Estrutura-Atividade
20.
Antimicrob Agents Chemother ; 60(5): 2732-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26883711

RESUMO

Little has been done during the past 100 years to develop new antileishmanial drugs. Most infected individuals live in poor countries and have a low cash income to be attractive targets to pharmaceutical corporations. Two heterosidic steroids, solamargine and solasonine, initially identified as major components of the Brazilian plant Solanum lycocarpum, were tested for leishmanicidal activity. Both alkaloids killed intracellular and extracellular Leishmania mexicana parasites more efficiently than the reference drug sodium stibogluconate. A total of 10 µM each individual alkaloid significantly reduced parasite counts in infected macrophages and dendritic cells. In vivo treatment of C57BL/6 mice with a standardized topical preparation containing solamargine (45.1%) and solasonine (44.4%) gave significant reductions in lesion sizes and parasite counts recovered from lesions. Alkaloids present different immunochemical pathways in macrophages and dendritic cells. We conclude that this topical preparation is effective and a potential new and inexpensive treatment for cutaneous leishmaniasis.


Assuntos
Gluconato de Antimônio e Sódio/uso terapêutico , Antiprotozoários/uso terapêutico , Extratos Vegetais/uso terapêutico , Alcaloides de Solanáceas/uso terapêutico , Alcaloides/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/parasitologia , Feminino , Citometria de Fluxo , Frutas/química , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/patogenicidade , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA