Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Parasite Immunol ; 46(8-9): e13066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39310969

RESUMO

Obligate intracellular protozoan parasite, Leishmania donovani, causative agent of visceral leishmaniasis, led to impaired macrophage functions. It is well documented that many of these changes were induced by parasite-mediated reduction in macrophage cholesterol content. Leishmania-mediated alteration in the other lipids has not been explored in detail yet. Here, we found that the expression of key cholesterol biosynthetic genes and total cellular cholesterol were reduced during L. donovani infection. Further, we have also identified that this reduction in the cholesterol led to increased membrane fluidity and inhibition of antigen-presenting potential of macrophages. In addition to this, we studied the relative changes in different lipids in THP-1-derived macrophages during L. donovani infection through liquid chromatography-mass spectrometry. We found that Sphingomyelin (16:0) and ceramide (20:1, 26:0 and 26:1) were significantly reduced in infected macrophages. We further observed that the majority of different sub-classes of phospholipids were downregulated significantly. Overall ratio of phosphatidylcholine versus phosphotidylethanolamine was decreased which indicated the compensatory mechanism of cell in response to cholesterol reduction. The observed Leishmania-mediated alteration in macrophage-lipidome provided the novel insights into mechanism of host-pathogen interactions.


Assuntos
Colesterol , Leishmania donovani , Leishmaniose Visceral , Lipidômica , Macrófagos , Leishmania donovani/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Macrófagos/metabolismo , Humanos , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/metabolismo , Colesterol/metabolismo , Células THP-1 , Interações Hospedeiro-Patógeno/imunologia , Metabolismo dos Lipídeos , Fluidez de Membrana
2.
Cytokine ; 183: 156757, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39288647

RESUMO

OBJECTIVE: Visceral leishmaniasis is a neglected tropical disease that can be lethal if not treated. The available medicines have severe side effects, such as toxicity and drug resistance. Various investigations are looking into new anti-leishmanial compounds from natural products that have little impact on host cells. Lupeol, a triterpenoid present in the flora of many edible plants, has been shown to have antimicrobial properties. The present study investigated the immunomodulatory effects of lupeol on U937 macrophages infected with Leishmania donovani, focusing on the expression of key cytokines and enzymes involved in the immune response. METHODS: U937 macrophages were infected with Leishmania donovani amastigotes and treated with varying concentrations of lupeol throughout three days. The expression levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), and interleukin-10 (IL-10) were measured using real-time polymerase chain reaction (RT-PCR). A positive simulation of gene expression was estimated using ΔΔCT to assess relative expression. RESULTS: The results demonstrated that lupeol significantly upregulated iNOS and TNF-α expression, especially at higher concentrations, indicating enhanced pro-inflammatory and anti-leishmanial activity. Interestingly, IL-10 expression also increased, suggesting a complex immunomodulatory role of lupeol that involves both pro-inflammatory and anti-inflammatory pathways. Pearson correlation analysis revealed a strong association between iNOS and TNF-α (0.97692), as well as a moderate correlation between iNOS and IL-10 (0.51603). CONCLUSION: These findings suggest that lupeol may promote a balanced immune response, enhancing the body's ability to combat L. donovani while potentially mitigating excessive inflammation. Lupeol can potentially serve as a novel therapeutic agent against visceral leishmaniasis.


Assuntos
Interleucina-10 , Leishmania donovani , Macrófagos , Óxido Nítrico Sintase Tipo II , Triterpenos Pentacíclicos , Fator de Necrose Tumoral alfa , Leishmania donovani/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células U937 , Interleucina-10/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/metabolismo , Lupanos
3.
Cell Rep ; 43(9): 114720, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39244752

RESUMO

Macrophages are major host cells for the protozoan Leishmania parasite. Depending on their activation state, they either contribute to the detection and elimination of Leishmania spp. or promote parasite resilience. Here, we report that the activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in macrophages plays a pivotal role in the progression of Leishmania infantum infection by controlling inflammation and redox balance of macrophages. We also highlight the involvement of the NOX2/reactive oxygen species (ROS) axis in early Nrf2 activation and, subsequently, prostaglandin E2 (PGE2)/EP2r signaling in the sustenance of Nrf2 activation upon infection. Moreover, we establish a ferroptosis-like process within macrophages as a cell death program of L. infantum and the protective effect of Nrf2 in macrophages against L. infantum death. Altogether, these results identify Nrf2 as a critical factor for the susceptibility of L. infantum infection, highlighting Nrf2 as a promising pharmacological target for the development of therapeutic approaches for the treatment of visceral leishmaniasis.


Assuntos
Ferroptose , Leishmania infantum , Leishmaniose Visceral , Macrófagos , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Fator 2 Relacionado a NF-E2/metabolismo , Macrófagos/metabolismo , Macrófagos/parasitologia , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/patologia , Transdução de Sinais , Morte Celular , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Humanos , Camundongos Endogâmicos C57BL , Dinoprostona/metabolismo , Feminino
4.
J Biol Chem ; 300(6): 107366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750790

RESUMO

Host anti-inflammatory responses are critical for the progression of visceral leishmaniasis, and the pleiotropic cytokine interleukin (IL)-33 was found to be upregulated in infection. Here, we documented that IL-33 induction is a consequence of elevated cAMP-mediated exchange protein activated by cAMP (EPAC)/calcineurin-dependent signaling and essential for the sustenance of infection. Leishmania donovani-infected macrophages showed upregulation of IL-33 and its neutralization resulted in decreased parasite survival and increased inflammatory responses. Infection-induced cAMP was involved in IL-33 production and of its downstream effectors PKA and EPAC, only the latter was responsible for elevated IL-33 level. EPAC initiated Rap-dependent phospholipase C activation, which triggered the release of intracellular calcium followed by calcium/calmodulin complex formation. Screening of calmodulin-dependent enzymes affirmed involvement of the phosphatase calcineurin in cAMP/EPAC/calcium/calmodulin signaling-induced IL-33 production and parasite survival. Activated calcineurin ensured nuclear localization of the transcription factors, nuclear factor of activated T cell 1 and hypoxia-inducible factor 1 alpha required for IL-33 transcription, and we further confirmed this by chromatin immunoprecipitation assay. Administering specific inhibitors of nuclear factor of activated T cell 1 and hypoxia-inducible factor 1 alpha in BALB/c mouse model of visceral leishmaniasis decreased liver and spleen parasite burden along with reduction in IL-33 level. Splenocyte supernatants of inhibitor-treated infected mice further documented an increase in tumor necrosis factor alpha and IL-12 level with simultaneous decrease of IL-10, thereby indicating an overall disease-escalating effect of IL-33. Thus, this study demonstrates that cAMP/EPAC/calcineurin signaling is crucial for the activation of IL-33 and in effect creates anti-inflammatory responses, essential for infection.


Assuntos
Calcineurina , AMP Cíclico , Interleucina-33 , Leishmania donovani , Leishmaniose Visceral , Camundongos Endogâmicos BALB C , Transdução de Sinais , Animais , Camundongos , Calcineurina/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Interleucina-33/metabolismo , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia
5.
Sci Rep ; 14(1): 11236, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755198

RESUMO

Berardinelli-Seip congenital lipodystrophy (CGL), a rare autosomal recessive disorder, is characterized by a lack of adipose tissue. Infections are one of the major causes of CGL individuals' premature death. The mechanisms that predispose to infections are poorly understood. We used Leishmania infantum as an in vitro model of intracellular infection to explore mechanisms underlying the CGL infection processes, and to understand the impact of host mutations on Leishmania survival, since this pathogen enters macrophages through specialized membrane lipid domains. The transcriptomic profiles of both uninfected and infected monocyte-derived macrophages (MDMs) from CGL (types 1 and 2) and controls were studied. MDMs infected with L. infantum showed significantly downregulated expression of genes associated with infection-response pathways (MHC-I, TCR-CD3, and granzymes). There was a transcriptomic signature in CGL cells associated with impaired membrane trafficking and signaling in response to infection, with concomitant changes in the expression of membrane-associated genes in parasites (e.g. δ-amastins). We identified pathways suggesting the lipid storage dysfunction led to changes in phospholipids expression and impaired responses to infection, including immune synapse (antigen presentation, IFN-γ signaling, JAK/STAT); endocytosis; NF-kappaB signaling; and phosphatidylinositol biosynthesis. In summary, lipid metabolism of the host plays an important role in determining antigen presentation pathways.


Assuntos
Leishmania infantum , Lipodistrofia Generalizada Congênita , Macrófagos , Transdução de Sinais , Humanos , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/imunologia , Lipodistrofia Generalizada Congênita/genética , Lipodistrofia Generalizada Congênita/metabolismo , Leishmania infantum/genética , Transcriptoma , Masculino , Feminino , Perfilação da Expressão Gênica , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/genética , Leishmaniose Visceral/metabolismo
6.
J Proteome Res ; 22(7): 2256-2270, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37339249

RESUMO

Leishmania donovani infection of macrophages drives profound changes in the metabolism of both the host macrophage and the parasite, which undergoes different phases of development culminating in replication and propagation. However, the dynamics of this parasite-macrophage cometabolome are poorly understood. In this study, a multiplatform metabolomics pipeline combining untargeted, high-resolution CE-TOF/MS and LC-QTOF/MS with targeted LC-QqQ/MS was followed to characterize the metabolome alterations induced in L. donovani-infected human monocyte-derived macrophages from different donors at 12, 36, and 72 h post-infection. The set of alterations known to occur during Leishmania infection of macrophages, substantially expanded in this investigation, characterized the dynamics of the glycerophospholipid, sphingolipid, purine, pentose phosphate, glycolytic, TCA, and amino acid metabolism. Our results showed that only citrulline, arginine, and glutamine exhibited constant trends across all studied infection time points, while most metabolite alterations underwent a partial recovery during amastigote maturation. We determined a major metabolite response pointing to an early induction of sphingomyelinase and phospholipase activities and correlated with amino acid depletion. These data represent a comprehensive overview of the metabolome alterations occurring during promastigote-to-amastigote differentiation and maturation of L. donovani inside macrophages that contributes to our understanding of the relationship between L. donovani pathogenesis and metabolic dysregulation.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , Leishmania donovani/metabolismo , Macrófagos/metabolismo , Metaboloma , Metabolômica , Aminoácidos/metabolismo , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia
7.
J Bone Miner Res ; 38(1): 86-102, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332102

RESUMO

Vector-borne infections of humans with the protozoan parasite Leishmania (L.) infantum can cause a systemic and potentially lethal disease termed visceral leishmaniasis. In the corresponding mouse model, an intravenous infection with L. infantum leads to the persistence of parasites in various organs, including bone marrow (BM). Considering the anatomical proximity between the BM and the cortical bone, we investigated whether a chronic infection with L. infantum affected bone homeostasis. Unexpectedly, chronic infection with L. infantum caused an increase in bone mass in mice. In vivo, an increased number of osteoblasts and osteocytes and a decreased maturation of osteoclasts characterized the phenotype. Confocal laser scanning fluorescence microscopy confirmed the infection of BM macrophages but also revealed the presence of parasites in osteoclasts. In vitro, mature osteoclasts took up L. infantum parasites. However, infection of osteoclast progenitors abolished their differentiation and function. In addition, secretory products of infected BM-derived macrophages inhibited the maturation of osteoclasts. Both in vitro and in vivo, infected macrophages and osteoclasts showed an enhanced expression of the anti-osteoclastogenic chemokine CCL5 (RANTES). Neutralization of CCL5 prevented the inhibition of osteoclast generation seen in the presence of culture supernatants from L. infantum-infected macrophages. Altogether, our study shows that chronic infection with Leishmania increases bone mass by inducing bone formation and impairing osteoclast differentiation and function. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Leishmania infantum , Leishmaniose Visceral , Humanos , Animais , Camundongos , Leishmania infantum/genética , Infecção Persistente , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/prevenção & controle , Macrófagos/metabolismo , Medula Óssea
8.
Microbiol Spectr ; 10(6): e0269922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264252

RESUMO

Infection with Leishmania donovani reduces cellular cholesterol and thus deprives the host cells by inhibiting its synthesis and uptake. Changes in cholesterol levels increase the chance of attachment and internalization of L. donovani in macrophages (Mϕ). Retinoic acid (RA), an important micronutrient, restores the lysosomal uptake of cholesterol in L. donovani-infected Mϕ. Importantly, mammalian (or mechanistic) target of rapamycin complex 1 (mTORC1) increases the cellular cholesterol level by increasing expression of sterol regulatory element-binding protein 2 (SREBP2). Whether the efficacy of RA in L. donovani-infected Mϕ is mediated by mTOR is not yet established. Moreover, there are contradicting reports suggesting potential activation and inhibition of mTOR in L. donovani-infected Mϕ. Intrigued by this, we attempted to understand the RA-mediated restoration of cholesterol as well as the possible roles of mTORC1, if any. Our findings suggest that L. donovani infection impairs the synthesis of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), uptake of low-density lipoprotein receptor (LDLR), and secretion of ATP-binding cassette transporter (ABCA1) in Mϕ. L. donovani infection possibly impairs mTORC1 formation, as it inhibits the expression of regulatory-associated protein of mammalian target of rapamycin (RAPTOR). Importantly, all these are restored upon RA supplementation. RA also restores the levels of SREBP2 in L. donovani-infected Mϕ, resulting in increased cellular cholesterol and thus reducing the parasite burden. When mTORC1 was inhibited, RA exerted a similar response in L. donovani-infected Mϕ; i.e., it restored cholesterol levels and reduced the parasite burden. In summary, RA restores cholesterol levels in L. donovani-infected Mϕ and reduces the parasite burden in an mTOR-independent manner. IMPORTANCE People who reside in regions where leishmaniasis is endemic and who lack proteins, iron, zinc, and vitamin A in their diet are more prone to develop visceral leishmaniasis (VL) as a full-blown disease. Vitamin A deficiency favors the development of a parasitic infection in the human host, and the WHO recommends administering 200,000-IU doses to VL patients on admission. Additionally, Leishmania entry and its survival inside the host are achieved by utilizing host cholesterol, as all trypanosomatids lack de novo synthesis of sterol. We have already shown that RA regulates cellular cholesterol levels associated with an efficient immune response. A deficiency of retinoic acid (RA) favors the parasite in Leishmania donovani-infected macrophages by downregulating the immune response. In the present work, we observed that RA restores cellular cholesterol levels in Leishmania donovani-infected macrophages. This study proposes using RA as an immune potentiator along with standard therapy.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , Leishmania donovani/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia , Macrófagos , Serina-Treonina Quinases TOR/metabolismo , Colesterol/metabolismo , Esteróis/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
9.
Mol Immunol ; 141: 70-78, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34814056

RESUMO

This study compared the therapeutic potential of the chemotherapy using meglumine antimoniate encapsulated in a mixture of conventional and PEGylated liposomes (Nano Sbv) and immunotherapy with anti-canine IL-10 receptor-blocking monoclonal antibody (Anti IL-10R) on canine visceral leishmaniasis (CVL). Twenty mongrel dogs naturally infected by L. infantum, displaying clinical signs of visceral leishmaniasis were randomly divided in two groups. In the first one, nine dogs received six intravenous doses of a mixture of conventional and PEGylated liposomes containing meglumine antimoniate at 6.5 mg Sb/kg/dose. In the second one, eleven dogs received two intramuscular doses of 4 mg of anti-canine IL-10 receptor-blocking monoclonal antibody. The animals were evaluated before (T0) and 30, 90, and 180 days after treatments. Our major results demonstrated that both treatments were able to maintain hematological and biochemical parameters, increase circulating T lymphocytes subpopulations, increase the IFN-γ producing T-CD4 lymphocytes, restore the lymphoproliferative capacity and improve the clinical status. However, although these improvements were observed in the initial post-treatment times, they did not maintain until the end of the experimental follow-up. We believe that the use of booster doses or the association of chemotherapy and immunotherapy (immunochemotherapy) is promising to improve the effectiveness of treating CVL for improving the clinical signs and possibly reducing the parasite burden in dogs infected with Leishmania infantum.


Assuntos
Anticorpos Monoclonais/farmacologia , Doenças do Cão/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológico , Lipossomos/química , Antimoniato de Meglumina/farmacologia , Polietilenoglicóis/química , Receptores de Interleucina-10/antagonistas & inibidores , Alopurinol/farmacologia , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Doenças do Cão/metabolismo , Cães , Fatores Imunológicos/metabolismo , Imunoterapia/métodos , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/metabolismo , Compostos Organometálicos/farmacologia
10.
Mol Immunol ; 141: 328-337, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953281

RESUMO

Recently unfolded mechanisms showed lipid droplet helps in pathogen survival and paralyzes host immune response. In the present study, we showed the extent of lipid droplet(LD) generation in Leishmania donovani infection, the signaling involved, and their function concerning pathogenicity. RAW 264.7 and J774A.1 cells were used to infect with L. donovani and then flow cytometry and confocal microscopy were used to detect lipid droplet generation and subsequent assays. In this study, we showed that L. donovani AG83 (AG83/MHOM/1983) triggers lipid droplet formation in macrophages in a time-dependent manner. We provide novel insight into the signaling molecules which is responsible for LD accumulation. Interestingly, LPG deficient attenuated Leishmania strain UR6 (UR6/MHOM/1978) failed to fuel LD generation. But inhibition of phagosome maturation drastically stimulates LD accumulation in UR6 infected MΦs. Aspirin treatment in AG83 infected MΦs does not only lower LD load but also favors phagolysosome biogenesis and corrects cytokine balance. Employing strategies to circumvent halt in phagosome maturation using drugs that manipulate lipid droplet generation could be used as a therapeutic tool to resist parasite growth in the early hour of infection.


Assuntos
Leishmania donovani/patogenicidade , Leishmaniose Visceral/metabolismo , Gotículas Lipídicas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Macrófagos/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Camundongos , Fagocitose/fisiologia , Células RAW 264.7
11.
Front Immunol ; 12: 773983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777391

RESUMO

Visceral leishmaniasis (VL) is a chronic and often fatal disease caused by protozoans of the genus Leishmania that affects millions of people worldwide. Patients with symptomatic VL have an impaired anti-Leishmania-specific CD4+ T-cell response, which is reversed after clinical cure. In contrast, the quality of the CD4+ and CD8+ T-cell responses involved in resistance and/or cure of VL relies on the capability of these cells to activate polyfunctional and memory responses, which are associated with the simultaneous production of three cytokines: IFN-γ, IL-2, and TNF-α. Models for the development of CD4 and CD8 T-cell quality in memory and protection to leishmaniasis have been described previously. We aimed to assess the functionality of the T cells involved in the recovery of the immune suppression throughout the VL treatment. Therefore, we cultured peripheral blood mononuclear cells (PBMCs) from VL patients and healthy controls in vitro with soluble Leishmania antigen (SLA). Cell surface markers and intracellular cytokine production were determined on days 7, 14, 21, 30, 60, 90, and 180 after the beginning of chemotherapy. We observed that the frequencies of CD4+TNF-α+IFN-γ+ and the multifunctional CD4+IL-2+TNF-α+IFN-γ+, together with CD4+TNF-α+ and CD4+IFN-γ+ T cells, increased throughout and at the end of the treatment, respectively. In addition, enhanced frequencies of CD8+IL-2+TNF-α+IFN-γ+ and CD8+TNF-α+IFN-γ T cells were also relevant in the healing process. Noteworthy, the frequencies of the CD4+ and CD8 central-memory T cells, which produce IL-2, TNF-α, and IFN-γ and ensure the memory response against parasite reinfection, are significantly enhanced in cured patients. In addition, the subset of the non-functional CD8Low population is predominant in VL untreated patients and decreases along the chemotherapy treatment. In contrast, a CD8High subset increased towards the cure. Furthermore, the cure due to treatment with meglumine antimoniate or with liposomal amphotericin B was associated with the recovery of the T-cell immune responses. We described the evolution and participation of functional T cells during the treatment of patients with VL. Our results disclosed that the clinical improvement of patients is significantly associated with the participation of the CD4+ and CD8+ cytokine-secreting T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Interferon gama/biossíntese , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Adulto , Antígenos de Protozoários/imunologia , Biomarcadores , Feminino , Interações Hospedeiro-Parasita , Humanos , Leishmaniose Visceral/parasitologia , Masculino , Células T de Memória , Pessoa de Meia-Idade , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto Jovem
12.
Biochimie ; 189: 158-167, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34216704

RESUMO

Leishmaniasis is a neglected parasitic disease for which the conventional treatment can be considered inefficient and extremely aggressive, generating several and severe side effects. Therefore, the discovery of new drug candidates is important for the improvement in the quality of life of patients. Previously, we reported the promising results of isopentyl caffeate (ICaf) against Leishmania chagasi (agent of visceral leishmaniasis) and Leishmania amazonensis (agent of cutaneous leishmaniasis) promastigotes, displaying IC50 of 1.56 and 1.71 µM, respectively. Herein, we aimed to decipher the mechanisms of anti-Leishmania action of ICaf. Light and scanning electron microscopy assays showed relevant morphological changes in promastigotes when treated with ICaf, including rounding of the parasite body, shortening of the flagellum, blebs on the plasma membrane and cellular aggregation. The parasite mitochondrion was targeted by ICaf, resulting in a significant reduction in its metabolic activity and electric membrane potential followed by an increase in the production of reactive oxygen species, which culminated in the loss of plasma membrane integrity and parasite death. Relevantly, ICaf also had a potent anti-amastigote action. The IC50 values calculated for intracellular amastigotes of L. amazonensis were 3.27, 1.60 and 1.52 µM, while for L. chagasi the values were 2.48, 1.84 and 1.60 µM, respectively, after treating the infected macrophages with ICaf for 24, 48 and 72 h. ICaf was well tolerated by THP-1 macrophages, which gave rise to excellent selectivity indexes considering both Leishmania species. The current results suggest that ICaf may emerge as a chemotherapeutic alternative for the treatment of leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Ácidos Cafeicos/farmacologia , Leishmania infantum/metabolismo , Leishmaniose Visceral/tratamento farmacológico , Macrófagos , Humanos , Leishmaniose Visceral/metabolismo , Macrófagos/metabolismo , Macrófagos/parasitologia , Células THP-1
13.
Biomed Res Int ; 2021: 8845826, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095312

RESUMO

Immunotherapy, a treatment based on host immune system activation, has been shown to provide a substitute for marginally effective conventional chemotherapy in controlling visceral leishmaniasis (VL), the deadliest form of leishmaniasis. As the majority of endemic inhabitants exhibit either subclinical or asymptomatic infection which often develops into the active disease state, therapeutic intervention seems to be an important avenue for combating infections by stimulating the natural defense system of infected individuals. With this perspective, the present study focuses on two immunodominant Leishmania (L.) donovani antigens (triosephosphate isomerase and enolase) previously proved to be potent prophylactic VL vaccine candidates, for generating a recombinant chimeric antigen. This is based on the premise that in a heterogeneous population, a multivalent antigen vaccine would be required for an effective response against leishmaniasis (a complex parasitic disease). The resulting molecule rLdT-E chimeric protein was evaluated for its immunogenicity and immunotherapeutic efficacy. A Th1 stimulating adjuvant BCG was employed with the protein which showed a remarkable 70% inhibition of splenic parasitic multiplication positively correlated with boosted Th1 dominant immune response against lethal L. donovani challenge in hamsters as evidenced by high IFN-γ and TNF-α and low IL-10. In addition, immunological analysis of antibody subclass presented IgG2-based humoral response besides considerable delayed-type hypersensitivity and lymphocyte proliferative responses in rLdT-E/BCG-treated animals. Our observations indicate the potential of the chimera towards its candidature for an effective vaccine against Leishmania donovani infection.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Células Th1 , Animais , Cricetinae , Feminino , Imunidade Adaptativa/imunologia , Antígenos de Protozoários/imunologia , Citocinas/metabolismo , Fatores Imunológicos/metabolismo , Imunoterapia/métodos , Leishmania donovani/genética , Leishmania donovani/imunologia , Leishmania donovani/patogenicidade , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/terapia , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária/imunologia , Linfócitos/metabolismo , Fosfopiruvato Hidratase/imunologia , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/metabolismo , Células Th1/imunologia , Triose-Fosfato Isomerase/imunologia , Vacinas/farmacologia
14.
Infect Immun ; 89(7): e0076420, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33820818

RESUMO

We showed previously that antioxidant enzyme heme oxygenase 1 (HO-1) is critical for Leishmania survival in visceral leishmaniasis. HO-1 inhibits host oxidative burst and inflammatory cytokine production, leading to parasite persistence. In the present study, screening of reported HO-1 transcription factors revealed that infection upregulated (4.1-fold compared to control [P < 0.001]) nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2). Silencing of NRF2 reduced both HO-1 expression and parasite survival. Investigation revealed that infection-induced transient reactive oxygen species (ROS) production dissociated NRF2 from its inhibitor KEAP1 and enabled phosphorylation-dependent nuclear translocation. Both NRF2 and HO-1 silencing in infection increased production of proinflammatory cytokines. But the level was greater in NRF2-silenced cells than in HO-1-silenced ones, suggesting the presence of other targets of NRF2. Another stress responsive transcription factor ATF3 is also induced (4.6-fold compared to control [P < 0.001]) by NRF2 during infection. Silencing of ATF3 reduced parasite survival (59.3% decrease compared to control [P < 0.001]) and increased proinflammatory cytokines. Infection-induced ATF3 recruited HDAC1 into the promoter sites of tumor necrosis factor alpha (TNF-α) and interleukin 12b (IL-12b) genes. Resulting deacetylated histones prevented NF-κB promoter binding, thereby reducing transcription of inflammatory cytokines. Administering the NRF2 inhibitor trigonelline hydrochloride to infected BALB/c mice resulted in reduced HO-1 and ATF3 expression, decreased spleen and liver parasite burdens, and increased proinflammatory cytokine levels. These results suggest that Leishmania upregulates NRF2 to activate both HO-1 and ATF3 for disease progression.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Heme Oxigenase-1/metabolismo , Interações Hospedeiro-Patógeno , Leishmania donovani/fisiologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/microbiologia , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Mediadores da Inflamação/metabolismo , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
15.
Front Immunol ; 12: 626110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763070

RESUMO

TLR4 activates two distinct signaling pathways involving adaptors MyD88 and TRIF to produce proinflammatory cytokines and type-I interferon respectively. How Leishmania donovani suppresses these pathways is not well studied. We earlier reported, TLR4 is hypersialylated due to reduced membrane-bound neuraminidase (Neu1) on infected-macrophages. We hypothesized that such enhanced sialoglycoconjugates on host cells may modulate the interactions with siglecs- which are the inhibitory receptors. Here, we examined the impact of such sialylation on overall TLR4 activation both in murine cell line J774A.1 and primary bone marrow derived macrophages (BMDM). Supporting this hypothesis, we demonstrated siglec-E engages hypersialylated TLR4 during infection. Such sialic acids-siglec-E interaction enhanced siglec-E phosphorylation that mediated its strong association with SHP1/SHP2 and also upregulated their phosphorylation in both types of macrophages. Pre-treatment of parasites and host cells with neuraminidase reduced SHP1/SHP2 phosphorylation and triggered TLR4 activation respectively through enhanced nuclear translocation of p-65. Moreover, a reciprocal interplay between Neu1 and siglec-E differentially regulates MyD88- and TRIF-pathways through sialic acids on TLR4 as their common substrate during infection. Correspondingly, Neu1 overexpression enhanced MyD88-signaling while still suppressing TRIF-activation. However, silencing siglec-E specifically activated TRIF-signaling. Pro-inflammatory cytokines corresponding to MyD88 and TRIF pathways were also upregulated respectively. Additionally, Neu1 overexpression or siglec-E silencing prevented TLR4 ubiquitination and subsequent degradation by Triad3A. Neu1-overexpression and siglec-E-silencing together followed by infection activated both MyD88 and TRIF-signaling through their enhanced TLR4-association. This elevated the MyD88-specific cytokines and TRIF-mediated IRF3 and IFN-ß genes, thus upregulating the pro-inflammatory cytokines and nitric oxide levels and reduced anti-inflammatory cytokines. All these significantly inhibited parasite survival in macrophages thus demonstrating a previously unidentified dualistic regulation of TLR4signaling pathways activation through sialic acids by interplay of Neu1 and siglec-E during Leishmania infection.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Leishmania donovani/patogenicidade , Leishmaniose Visceral/parasitologia , Macrófagos/parasitologia , Fator 88 de Diferenciação Mieloide/metabolismo , Neuraminidase/metabolismo , Ácidos Siálicos/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B/genética , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Imunidade Inata , Mediadores da Inflamação/metabolismo , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Mesocricetus , Camundongos Endogâmicos BALB C , Neuraminidase/genética , Óxido Nítrico/metabolismo , Fosforilação , Transdução de Sinais
16.
Cell Immunol ; 361: 104272, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33445051

RESUMO

Visceral leishmaniasis (VL) is a potentially fatal parasitic disease causing high morbidity and mortality in developing countries. Vaccination is considered the most effective and powerful tool for blocking transmission and control of diseases. However, no vaccine is available so far in the market for humans. In the present study, we characterized the hypothetical protein LDBPK_252400 of Leishmania donovani (LdHyP) and explored its prophylactic behavior as a potential vaccine candidate against VL. We found reduced hepato-splenomegaly along with more than 50% parasite reduction in spleen and liver after vaccination in mice. Protection in vaccinated mice after the antigen challenge correlated with the stimulation of antigen specific IFN-γ expressing CD4+T cell (~4.6 fold) and CD8+T cells (~2.1 fold) in vaccinated mice in compared to infected mice, even after 2-3 months of immunization. Importantly, antigen-mediated humoral immunity correlated with high antigen specific IgG2/IgG1 responses in vaccinated mice. In vitro re-stimulation of splenocytes with LdHyP enhances the expression of TNF-α, IFN-γ, IL-12 and IL-10 cytokines along with lower IL-4 cytokine and IL-10/IFN-γ ratio in vaccinated mice. Importantly, we observed ~3.5 fold high NO production through activated macrophages validates antigen mediated cellular immunity induction, which is critical in controlling infection progression. These findings suggest that immunization with LdHyP mount a very robust immunity (from IL-10 towards TFN-γ mediated responses) against L. donovani infection and could be explored further as a putative vaccine candidate against VL.


Assuntos
Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/tratamento farmacológico , Animais , Antígenos de Protozoários/imunologia , Citocinas/imunologia , Imunidade Celular/imunologia , Imunização/métodos , Leishmania donovani/imunologia , Leishmania donovani/patogenicidade , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia , Vacinação/métodos
17.
J Cell Physiol ; 236(4): 2255-2267, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33345353

RESUMO

Neutrophils with their array of microbicidal activities are the first innate immune cells to guard against infection. They are also most crucial for the host's initial defense against Leishmania parasites which cause clinically diverse diseases ranging from self-healing cutaneous leishmaniasis (CL) to a more severe visceral form, visceral leishmaniasis (VL). Neutrophils are recruited in large numbers at the infection site after bite of sandfly, which is the vector for the disease. The initial interaction of neutrophils with the parasites may modulate the subsequent innate and adaptive immune responses and hence affect the disease outcome. The purpose of this review is to comprehensively appraise the role of neutrophils during the early stages of Leishmania infection with a focus on the visceral form of the disease. In the past decade, new insights regarding the role of neutrophils in VL have surfaced which have been extensively elaborated in the present review. In addition, since much of the information regarding neutrophil-Leishmania early interaction has accumulated through studies on mouse models of CL, these studies are also revisited. We begin by reviewing the factors which drive the recruitment of neutrophils at the site of injection by the sandfly. We then discuss the studies delineating the molecular mechanisms involved in the uptake of the Leishmania parasite by neutrophils and how the parasite subverts their microbicidal functions. In the end, the interaction of infected neutrophils with macrophages and dendritic cells is summarized.


Assuntos
Células Dendríticas/imunologia , Imunidade Inata , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Animais , Comunicação Celular , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Interações Hospedeiro-Patógeno , Humanos , Insetos Vetores , Leishmania donovani/patogenicidade , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/transmissão , Macrófagos/metabolismo , Macrófagos/parasitologia , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Psychodidae/parasitologia
18.
Front Immunol ; 12: 795554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975901

RESUMO

Increasing evidence suggests that in hosts infected with parasites of the Leishmania donovani complex, transmission of infection to the sand fly vector is linked to parasite repositories in the host skin. However, a detailed understanding of the dispersal (the mechanism of spread) and dispersion (the observed state of spread) of these obligatory-intracellular parasites and their host phagocytes in the skin is lacking. Using endogenously fluorescent parasites as a proxy, we apply image analysis combined with spatial point pattern models borrowed from ecology to characterize dispersion of parasitized myeloid cells (including ManR+ and CD11c+ cells) and predict dispersal mechanisms in a previously described immunodeficient model of L. donovani infection. Our results suggest that after initial seeding of infection in the skin, heavily parasite-infected myeloid cells are found in patches that resemble innate granulomas. Spread of parasites from these initial patches subsequently occurs through infection of recruited myeloid cells, ultimately leading to self-propagating networks of patch clusters. This combination of imaging and ecological pattern analysis to identify mechanisms driving the skin parasite landscape offers new perspectives on myeloid cell behavior following parasitism by L. donovani and may also be applicable to elucidating the behavior of other intracellular tissue-resident pathogens and their host cells.


Assuntos
Processamento de Imagem Assistida por Computador , Leishmania donovani/patogenicidade , Leishmaniose Visceral/parasitologia , Microscopia Confocal , Microscopia de Fluorescência , Células Mieloides/parasitologia , Pele/parasitologia , Análise Espacial , Animais , Antígenos CD11/metabolismo , Análise por Conglomerados , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Parasita , Insetos Vetores/parasitologia , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/transmissão , Receptor de Manose/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Teóricos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Phlebotomus/parasitologia , Pele/imunologia , Pele/metabolismo
19.
PLoS Pathog ; 16(10): e1008994, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33049000

RESUMO

Inflammation is critical for controlling pathogens, but also responsible for symptoms of infectious diseases. IL-27 is an important regulator of inflammation and can limit development of IFNγ-producing Tbet+ CD4+ T (Th1) cells. IL-27 is thought to do this by stimulating IL-10 production by CD4+ T cells, but the underlying mechanisms of these immunoregulatory pathways are not clear. Here we studied the role of IL-27 signalling in experimental visceral leishmaniasis (VL) caused by infection of C57BL/6 mice with the human pathogen Leishmania donovani. We found IL-27 signalling was critical for the development of IL-10-producing Th1 (Tr1) cells during infection. Furthermore, in the absence of IL-27 signalling, there was improved control of parasite growth, but accelerated splenic pathology characterised by the loss of marginal zone macrophages. Critically, we discovered that IL-27 signalling limited glycolysis in Th1 cells during infection that in turn attenuated inflammation. Furthermore, the modulation of glycolysis in the absence of IL-27 signalling restricted tissue pathology without compromising anti-parasitic immunity. Together, these findings identify a novel mechanism by which IL-27 mediates immune regulation during disease by regulating cellular metabolism.


Assuntos
Interleucinas/metabolismo , Leishmaniose Visceral/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Feminino , Glicólise , Interferon gama/imunologia , Interleucinas/imunologia , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Baço/imunologia
20.
Genes (Basel) ; 11(9)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887454

RESUMO

Leishmania infantum causes visceral leishmaniasis (kala-azar), the most severe form of leishmaniasis, which is lethal if untreated. A few years ago, the re-sequencing and de novo assembling of the L. infantum (JPCM5 strain) genome was accomplished, and now we aimed to describe and characterize the experimental proteome of this species. In this work, we performed a proteomic analysis from axenic cultured promastigotes and carried out a detailed comparison with other Leishmania experimental proteomes published to date. We identified 2352 proteins based on a search of mass spectrometry data against a database built from the six-frame translated genome sequence of L. infantum. We detected many proteins belonging to organelles such as glycosomes, mitochondria, or flagellum, as well as many metabolic enzymes and many putative RNA binding proteins and molecular chaperones. Moreover, we listed some proteins presenting post-translational modifications, such as phosphorylations, acetylations, and methylations. On the other hand, the identification of peptides mapping to genomic regions previously annotated as non-coding allowed for the correction of annotations, leading to the N-terminal extension of protein sequences and the uncovering of eight novel protein-coding genes. The alliance of proteomics, genomics, and transcriptomics has resulted in a powerful combination for improving the annotation of the L. infantum reference genome.


Assuntos
Leishmania infantum/genética , Leishmania infantum/metabolismo , Proteoma/genética , Proteoma/metabolismo , Sequência de Aminoácidos , Biologia Computacional/métodos , Genômica/métodos , Leishmaniose Visceral/genética , Leishmaniose Visceral/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Anotação de Sequência Molecular/métodos , Peptídeos/genética , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional/genética , Proteômica/métodos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA