Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685770

RESUMO

Aluminium (Al) toxicity causes major plant distress, affecting root growth, nutrient uptake and, ultimately, agricultural productivity. Lentil, which is a cheap source of vegetarian protein, is recognized to be sensitive to Al toxicity. Therefore, it is important to dissect the physiological and molecular mechanisms of Al tolerance in lentil. To understand the physiological system and proteome composition underlying Al tolerance, two genotypes [L-4602 (Al-tolerant) and BM-4 (Al-sensitive)] were studied at the seedling stage. L-4602 maintained a significantly higher root tolerance index and malate secretion with reduced Al accumulation than BM-4. Also, label-free proteomic analysis using ultra-performance liquid chromatography-tandem mass spectrometer exhibited significant regulation of Al-responsive proteins associated with antioxidants, signal transduction, calcium homeostasis, and regulation of glycolysis in L-4602 as compared to BM-4. Functional annotation suggested that transporter proteins (transmembrane protein, adenosine triphosphate-binding cassette transport-related protein and multi drug resistance protein), antioxidants associated proteins (nicotinamide adenine dinucleotide dependent oxidoreductase, oxidoreductase molybdopterin binding protein & peroxidases), kinases (calmodulin-domain kinase & protein kinase), and carbohydrate metabolism associated proteins (dihydrolipoamide acetyltransferase) were found to be abundant in tolerant genotype providing protection against Al toxicity. Overall, the root proteome uncovered in this study at seedling stage, along with the physiological parameters measured, allow a greater understanding of Al tolerance mechanism in lentil, thereby assisting in future crop improvement programmes.


Assuntos
Alumínio , Lens (Planta) , Proteínas de Plantas , Raízes de Plantas , Proteômica , Lens (Planta)/efeitos dos fármacos , Lens (Planta)/fisiologia , Lens (Planta)/genética , Lens (Planta)/metabolismo , Alumínio/toxicidade , Proteômica/métodos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Genótipo , Plântula/efeitos dos fármacos , Plântula/fisiologia , Plântula/genética , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteoma/metabolismo , Antioxidantes/metabolismo
2.
Braz. j. biol ; 83: 1-7, 2023. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468883

RESUMO

The low Brazilian productive index and the high demand have aroused interest in the cultivation of lentils, however the legume is little known and needs further studies. The objective of this study was to analyze and identify the effects of treatments with insecticides and fungicides on the physiological quality of lentil seeds, CA-1512 strain. The experiments were conducted in the seed laboratory in a completely randomized design with seven treatments and four replicates. Seed treatment with Thiophanate-methyl; Fluazinam® (180 ml) + Pyraclostrobin; Thiophanate-methyl; Fipronil® (150 ml) promoted higher levels of germination under accelerated aging, lower number of abnormal seedlings and longer lengths of shoot and radicle for the emergence in paper. Treatment with Carboxin; Thiram® (250 ml) + Imidacloprid® (150 ml) allowed a higher value in the first count of germination in sand, lower number of dead seeds under accelerated aging and longer root length, in the emergence in sand. Shoot length in the emergence in sand increased after seed treatment with Metalaxyl-M; Fludioxonil® (75 ml) + Pyraclostrobin; Thiophanate-methyl; Fipronil® (150 ml). Treatments with fungicides and insecticides considerably improved the physiological properties of the seeds, thus being able to guarantee greater phytosanitary qualities in the field, generating healthier seedlings and with protection against possible pests and diseases, and consequently guaranteeing greater productivity.


O baixo índice produtivo brasileiro e a alta demanda têm despertado o interesse no cultivo da lentilha, porém a leguminosa é pouco conhecida e necessita maiores estudos. Objetivou-se neste trabalho analisar e identificar tratamentos com inseticidas e fungicidas na qualidade fisiológica das sementes de lentilha, linhagem CA-1512. Os experimentos foram conduzidos no laboratório de sementes em delineamento inteiramente casualizado com sete tratamentos e quatro repetições. O tratamento de semente com Tiofanato-metílico; Fluazinam® (180 ml) + Piraclosrobina; Tiofanato-metílico; Fipronil® (150 ml) proporcionou índices mais elevados de germinação no envelhecimento acelerado, menor número de plântulas anormais e maior comprimento de parte aérea e radícula, na emergência em papel. O tratamento com Carboxina; Tiram® (250 ml) + Imidacloprido® (150 ml) possibilitou maior índice na primeira contagem de germinação em areia, menor número de sementes mortas no envelhecimento acelerado e maior comprimento de raiz, na emergência em areia. Já o comprimento da parte aérea, na emergência em areia, aumentou com o tratamento de semente Metalaxil-M; Fludioxonil® (75 ml) + Piraclosrobina; Tiofanato-metílico; Fipronil® (150 ml). Os tratamentos com fungicidas e inseticidas melhoraram consideravelmente as propriedades fisiológicas das sementes, podendo assim, garantir maiores qualidades fitossanitárias à campo, gerando plântulas mais sadias e com proteção para possíveis pragas e doenças, e consequentemente garantindo maiores produtividades.


Assuntos
Fungicidas Industriais/administração & dosagem , Inseticidas/administração & dosagem , Lens (Planta)/efeitos dos fármacos , Lens (Planta)/fisiologia , Sementes/crescimento & desenvolvimento
3.
Molecules ; 26(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34946758

RESUMO

Biofortification of pulse crops with Zn and Fe is a viable approach to combat their widespread deficiencies in humans. Lentil (Lens culinaris Medik.) is a widely consumed edible crop possessing a high level of Zn and Fe micronutrients. Thus, the present study was conducted to examine the influence of foliar application of Zn and Fe on productivity, concentration, uptake and the economics of lentil cultivation (LL 931). For this, different treatment combinations of ZnSO4·7H2O (0.5%) and FeSO4·7H2O (0.5%), along with the recommended dose of fertilizer (RDF), were applied to the lentil. The results of study reported that the combined foliar application of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at pre-flowering (S1) and pod formation (S2) stages was most effective in enhancing grain and straw yield, Zn and Fe concentration, and uptake. However, the outcome of this treatment was statistically on par with the results obtained under the treatment ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage. A single spray of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage enhanced the grain and straw yield up to 39.6% and 51.8%, respectively. Similarly, Zn and Fe concentrations showed enhancement in grain (10.9% and 20.4%, respectively) and straw (27.5% and 27.6% respectively) of the lentil. The increase in Zn and Fe uptake by grain was 54.8% and 68.0%, respectively, whereas uptake by straw was 93.6% and 93.7%, respectively. Also the benefit:cost was the highest (1.96) with application of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage. Conclusively, the combined use of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage can contribute significantly towards yield, Zn and Fe concentration, as well as uptake and the economic returns of lentil to remediate the Zn and Fe deficiency.


Assuntos
Grão Comestível/efeitos dos fármacos , Compostos Ferrosos/farmacologia , Fertilizantes/análise , Lens (Planta)/efeitos dos fármacos , Micronutrientes/farmacologia , Sulfato de Zinco/farmacologia , Biofortificação , Grão Comestível/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Lens (Planta)/metabolismo , Micronutrientes/química , Micronutrientes/metabolismo , Sulfato de Zinco/química , Sulfato de Zinco/metabolismo
4.
Molecules ; 26(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802449

RESUMO

Seven-day-old sprouts of fenugreek (Trigonella foenum-graecum L.), lentil (Lens culinaris L.), and alfalfa (Medicagosativa L.) were studied. The legume seeds and then sprouts were soaked each day for 30 min during 6 days with water (control) or mixture of Fe-EDTA and sodium silicate (Optysil), or sodium silicate (Na-Sil) alone. Germination and sprout growing was carried out at temperature 20 ± 2 °C in 16/8 h (day/night) conditions. Phenolic compounds (free, ester, and glycosides) content were determined by HPLC-ESI-MS/MS using a multiple reaction monitoring of selected ions. Flavonoids and phenolic acids were released from their esters after acid hydrolysis and from glycosides by alkaline hydrolysis. The presence and high content of (-)-epicatechin (EC) in fenugreek sprouts was demonstrated for the first time. Applied elicitors decreased the level of free EC in fenugreek and alfalfa sprouts but enhanced the content of its esters. Besides, elicitors decreased the content of quercetin glycosides in lentil and fenugreek sprouts but increased the content of quercetin and apigenin glycosides in alfalfa sprouts. The applied elicitors decreased the glycoside levels of most phenolic acids in lentil and p-hydroxybenzoic acid in fenugreek, while they increased the content of this acid in alfalfa. The mixture of iron chelate and sodium silicate had less effect on changes in flavonoid and phenolic acid content in legume sprouts than silicate alone. In general, the used elicitors increased the content of total phenolic compounds in fenugreek and alfalfa sprouts and decreased the content in lentil sprouts. Among the evaluated elicitors, Optysil seems to be worth recommending due to the presence of iron chelate, which can be used to enrich sprouts with this element.


Assuntos
Quelantes de Ferro/farmacologia , Lens (Planta)/metabolismo , Medicago sativa/metabolismo , Fenóis/análise , Sementes/metabolismo , Silicatos/farmacologia , Trigonella/metabolismo , Flavonoides/análise , Germinação , Lens (Planta)/efeitos dos fármacos , Lens (Planta)/crescimento & desenvolvimento , Medicago sativa/efeitos dos fármacos , Medicago sativa/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Trigonella/efeitos dos fármacos , Trigonella/crescimento & desenvolvimento
5.
Chemosphere ; 249: 126193, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32086064

RESUMO

Propanil can produce methemoglobinemia, hemolytic anemia, hepatotoxicity, metabolic disorder and nephrotoxicity. It also has a genotoxic effect, although it is not listed as a carcinogen and it continues to be applied excessively throughout the world. Consequently, in this study the cytogenotoxic effect of propanil was evaluated, using apical root cells of Allium cepa and Lens culinaris. In which, L. culinaris seeds and A. cepa bulbs were subjected to 6 treatments with propanil (2, 4, 6, 8, 10 and 12 mg L-1) and to distilled water as control treatment. Subsequently, the root growth was measured every 24 h for 3 days. Next, the mitotic index and cellular anomalies were determined. Whereby, decreased root development was observed in all treatments. Likewise, greater inhibition of mitosis was evidenced in L. culinaris compared to A. cepa. In addition, chromosomal abnormalities, such as nucleus absence, sticky chromosomes in metaphase and binucleated cells, were present in most of the treatments. Thus, the presence of micronuclei and the results of L. culinaris, indicate the high cytogenotoxicity of propanil and the feasibility of this species as bioindicator.


Assuntos
Herbicidas/toxicidade , Lens (Planta)/efeitos dos fármacos , Cebolas/efeitos dos fármacos , Propanil/toxicidade , Allium , Núcleo Celular , Aberrações Cromossômicas , Dano ao DNA , Biomarcadores Ambientais , Mitose , Índice Mitótico , Raízes de Plantas/efeitos dos fármacos , Testes de Toxicidade
6.
Environ Pollut ; 258: 113544, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31859126

RESUMO

Gradual contamination of agricultural land with copper (Cu), due to the indiscriminate uses of fungicides and pesticides, and the discharge of industrial waste to the environment, poses a high threat for soil degradation and consequently food crop production. In this study, we combined morphological, physiological and biochemical assays to investigate the mechanisms underlying acetate-mediated Cu toxicity tolerance in lentil. Results demonstrated that high dose of Cu (3.0 mM CuSO4. 5H2O) reduced seedling growth and chlorophyll content, while augmenting Cu contents in both roots and shoots, and increasing oxidative damage in lentil plants through disruption of the antioxidant defense. Principle component analysis clearly indicated that Cu accumulation and increased oxidative damage were the key factors for Cu toxicity in lentil seedlings. However, acetate pretreatment reduced Cu accumulation in roots and shoots, increased proline content and improved the responses of antioxidant defense (e.g. increased catalase and glutathione-S-transferase activities, and improved action of glutathione-ascorbate metabolic pathway). As a result, excess Cu-induced oxidative damage was reduced, and seedling growth was improved under Cu stress conditions, indicating the role of acetate in alleviating Cu toxicity in lentil seedlings. Taken together, exogenous acetate application reduced Cu accumulation in lentil roots and shoots and mitigated oxidative damage by activating the antioxidant defense, which were the major determinants for alleviating Cu toxicity in lentil seedlings. Our findings provide mechanistic insights into the protective roles of acetate in mitigating Cu toxicity in lentil, and suggest that application of acetate could be a novel and economical strategy for the management of heavy metal toxicity and accumulation in crops.


Assuntos
Antioxidantes , Cobre/metabolismo , Cobre/farmacologia , Homeostase/fisiologia , Lens (Planta)/metabolismo , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Acetatos , Clorofila/metabolismo , Peróxido de Hidrogênio , Lens (Planta)/efeitos dos fármacos , Lens (Planta)/crescimento & desenvolvimento , Estresse Oxidativo , Folhas de Planta/metabolismo , Análise de Componente Principal
7.
Food Chem ; 277: 84-95, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30502215

RESUMO

The changes of flavour profiles in lentil protein isolate (LPI) in response to organic solvent treatments (acetone, ethanol, and isopropanol; 35-95% v/v), and the resulting impacts on the isolate colour and physicochemical and functional attributes were investigated. The major constituents of volatile compounds were aldehydes (∼46.59%) and (E,E)-3,5-octadien-2-one (∼31.79%) in the untreated LPI. Acetone treatment greatly raised ketones by ∼79.59%. In contrast, ethanol and isopropanol, except at 95% (v/v), significantly lowered total volatile compounds and had higher protein contents (∼84.55%) than the others (∼76.98%); surface charge, surface hydrophobicity, solubility and emulsion stability of these LPIs were examined. LPIs obtained from 75% (v/v) ethanol and isopropanol treatments showed slightly lower solubility but improved surface hydrophobicity to produce emulsions with a similar stability as compared with the untreated LPI. Overall, ethanol and isopropanol treatments (75% v/v) produced high quality off-flavour-reduced LPIs which may be used in various food systems.


Assuntos
2-Propanol/farmacologia , Acetona/farmacologia , Etanol/farmacologia , Lens (Planta)/efeitos dos fármacos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Paladar/efeitos dos fármacos , Cor , Interações Hidrofóbicas e Hidrofílicas , Lens (Planta)/química , Lens (Planta)/metabolismo , Solubilidade
8.
PLoS One ; 12(2): e0171846, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28196091

RESUMO

Lentil is a poor competitor of weeds and its sensitivity to herbicides is a major hurdle for large scale production. The present study was conducted to select herbicide resistant lentil genotypes through seed mutagenesis. Seeds of three advanced lentil genotypes (LPP 11001, LPP 11100 and LPP 11116) were treated with two different concentrations of ethyl methanesulfonate (EMS; 0.1 and 0.2%), hydrazine hydrate (HH; 0.02 and 0.03%) and sodium azide (SA; 0.01 and 0.02%) to develop M1 seed. The M2 was screened against two herbicides including Ally Max 28.6% SG (X = 34.58 g/ha and 1.5X = 51.87 g/ha) and Atlantis 3.6% WG (X = 395.2 g/ha and 1.5X = 592.8 g/ha) using the following three screening methods: post plant emergence (PPE), pre-plant incorporation (PPI) and seed priming (SP). Data were recorded on survival index and survival percentage from each experimental unit of every population. Plants in all populations were categorized following their reaction to herbicides. The newly developed populations showed greater variation for herbicide resistance when compared to their progenitors. Phenotypic traits were significantly reduced in all the screening environments. Overall, 671 herbicide resistant mutants were selected from all testing environments. The seeds from selected plants were re-mutagenized at 150 Gy of gamma radiation and evaluated against higher dose of herbicides. This allowed selection of 134 herbicide resistant mutants. The selected mutants are useful germplasm for herbicide resistance breeding of lentil.


Assuntos
Resistência a Herbicidas/genética , Lens (Planta)/genética , Plantas Daninhas/genética , Sementes/genética , Carcinógenos/toxicidade , Metanossulfonato de Etila/toxicidade , Raios gama , Genes de Plantas/genética , Genética Populacional/métodos , Genótipo , Herbicidas/farmacologia , Hidrazinas/toxicidade , Lens (Planta)/efeitos dos fármacos , Lens (Planta)/crescimento & desenvolvimento , Mutagênese/efeitos dos fármacos , Mutagênese/efeitos da radiação , Mutagênicos/toxicidade , Mutação , Fenótipo , Melhoramento Vegetal/métodos , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Azida Sódica/toxicidade
9.
Protoplasma ; 251(4): 839-55, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24276371

RESUMO

Response of sulfate transporters, thiol metabolism, and antioxidant defense system was studied in roots of two lentil (Lens culinaris Medik.) genotypes grown in arsenic (10, 25, and 40 µM As(V))-supplemented nutrient solution, and significant changes compared to control (0 µM As(V)) were observed mainly at 25 and 40 µM. In L 414, high glutathione (GSH) redox (0.8-0.9) was maintained with elevated thiol synthesis, powered by transcriptional up-regulation of LcSultr1;1 and LcSultr1;2 sulfate transporters and significant induction of LcSAT1;1 and LcSAT1;2 (serine acetyltransferase), OAS-TL (O-acetylserine(thiol)-lyase), γ-ECS (γ-glutamylcysteine synthetase), and PCS (phytochelatin synthase) genes predominantly within 12-24 h of As exposure at 25 µM and within 6-12 h at 40 µM. This thiolic potency in L 414 roots was effectively complemented by up-regulation of gene expressions and consequent enhanced activities of superoxide dismutase, ascorbate peroxidase (APX), dehydroascorbate reductase, glutathione reductase (GR), and glutathione-S-transferase (GST) isoforms at 25 and 40 µMAs, efficiently scavenging excess reactive oxygen species to prevent onset of As-induced oxidative stress and consequent inhibition of root growth in L 414. In contrast, down-regulation of vital sulfate-uptake transporters as well as entire thiol-metabolizing system and considerably low APX, GST, and GR expressions in DPL 59 not only resulted in reduced GSH redox but also led to over-accumulation of H2O2. This triggered membrane lipid peroxidations as the marks of As-induced oxidative damage. Results indicated coordinated response of thiol-metabolism and antioxidant defense in conferring As-tolerance in lentil, and GSH is the key point in this cascade.


Assuntos
Antioxidantes/metabolismo , Arsênio/toxicidade , Cisteína/metabolismo , Glutationa/metabolismo , Lens (Planta)/efeitos dos fármacos , Lens (Planta)/metabolismo , Sulfatos/metabolismo , Transporte Biológico/efeitos dos fármacos , Genótipo , Lens (Planta)/genética
10.
Int J Phytoremediation ; 15(10): 938-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23819287

RESUMO

In the framework of soil phytoremediation using local legume plants coupled with their native root-nodulating bacteria to increase forage yields and preserve contaminated soils in arid regions of Tunisia, we investigated the diversity of bacteria from root nodules of Lathyrus sativus, Lens culinaris, Medicago marina, M. truncatula, and M. minima and the symbiotic efficiency of these five legume symbiosis under Cadmium stress. Fifty bacterial strains were characterized using physiological and biochemical features such heavy metals resistant, and PCR-RFLP of 16S rDNA. Taxonomically, the isolates nodulating L. sativus, and L. culinaris are species within the genera Rhizobium and the ones associated to Medicago sp, within the genera Sinorhizobium. The results revealed also that the cadmium tolerance of the different legumes-rhizobia interaction was as follows: M. minima < M. truncatula < M. marina < L. sativus < L. culinaris indicating that the effect of Cadmium on root nodulation and biomass production is more deleterious on M. minima-S. meliloti and M. truncatula-S. meliloti than in other symbiosis. Knowledge on genetic and functional diversity of M. marina, L. sativus and L. culinaris microsymbiotes is very useful for inoculant strain selection and can be selected to develop inoculants for soil phytoremediation.


Assuntos
Cádmio/toxicidade , Fabaceae/fisiologia , Rhizobium/fisiologia , Sinorhizobium/fisiologia , Biodegradação Ambiental , DNA Bacteriano/genética , DNA Ribossômico/genética , Fabaceae/efeitos dos fármacos , Fabaceae/microbiologia , Variação Genética , Genótipo , Lathyrus/efeitos dos fármacos , Lathyrus/microbiologia , Lathyrus/fisiologia , Lens (Planta)/efeitos dos fármacos , Lens (Planta)/microbiologia , Lens (Planta)/fisiologia , Medicago/efeitos dos fármacos , Medicago/microbiologia , Medicago/fisiologia , Fenótipo , Filogenia , Nodulação/efeitos dos fármacos , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Rhizobium/classificação , Rhizobium/genética , Rhizobium/isolamento & purificação , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Sinorhizobium/classificação , Sinorhizobium/genética , Sinorhizobium/isolamento & purificação , Solo/química , Simbiose/efeitos dos fármacos , Tunísia
11.
Bull Environ Contam Toxicol ; 91(1): 117-24, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23609454

RESUMO

Pollution of the biosphere by heavy metals is a global threat that has accelerated dramatically since the beginning of industrial revolution. The aim of the study is to check the resistance of RL9 towards the metals and to observe the effect of Rhizobium species on growth, pigment content, protein and nickel uptake by lentil in the presence and absence of nickel. The multi metal tolerant and plant growth promoting Rhizobium strain RL9 was isolated from the nodules of lentil. The strain not only tolerated nickel but was also tolerant o cadmium, chromium, nickel, lead, zinc and copper. The strain tolerated nickel 500 µg/mL, cadmium 300 µg/mL, chromium 400 µg/mL, lead 1,400 µg/mL, zinc 1,000 µg/mL and copper 300 µg/mL, produced good amount of indole acetic acid and was also positive for siderophore, hydrogen cyanide and ammonia. The strain RL9 was further assessed with increasing concentrations of nickel when lentil was used as a test crop. The strain RL9 significantly increased growth, nodulation, chlorophyll, leghaemoglobin, nitrogen content, seed protein and seed yield compared to plants grown in the absence of bioinoculant but amended with nickel The strain RL9 decreased uptake of nickel in lentil compared to plants grown in the absence of bio-inoculant. Due to these intrinsic abilities strain RL9 could be utilized for growth promotion as well as for the remediation of nickel in nickel contaminated soil.


Assuntos
Recuperação e Remediação Ambiental/métodos , Lens (Planta)/efeitos dos fármacos , Metais Pesados/metabolismo , Rhizobium/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Contagem de Colônia Microbiana , Relação Dose-Resposta a Droga , Índia , Ácidos Indolacéticos/metabolismo , Lens (Planta)/crescimento & desenvolvimento , Lens (Planta)/fisiologia , Especificidade da Espécie , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA