Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 17(11): e0011781, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37983293

RESUMO

Leptospirosis is a global zoonosis caused by pathogenic Leptospira. The disease outcome is influenced by the interplay between innate and adaptive immune responses. Dendritic cells (DCs) play a crucial role in shaping the adaptive immune response. A recent study revealed that pathogenic Leptospira limited the activation of human monocyte-derived dendritic cells (MoDCs) compared to non-pathogenic Leptospira, but their impact on T-cell responses has not been investigated. Our study is the first to explore how viable pathogenic and non-pathogenic Leptospira affect the interaction between human MoDCs and T cells. We found that MoDCs infected with pathogenic leptospires (L. interrogans serovar Pomona and a clinical isolate, MoDCs-P) exhibited lower levels of CD80 and CD83 expression, suggesting partially impaired MoDC maturation, induced regulatory T cells (Tregs) while failing to induce CD4+ T cell proliferation, compared to MoDCs infected with non-pathogenic leptospires (L. biflexa serovar Patoc and L. meyeri serovar Ranarum, MoDCs-NP). In contrast, non-pathogenic leptospires enhanced MoDC maturation and induced higher T cell proliferation including IFN-γ-producing CD4+ T cells, indicative of a Th1-type response. Furthermore, pathogenic leptospires induced higher MoDC apoptosis through a cysteine aspartic acid-specific protease-3 (caspase-3)-dependent pathway and upregulated expression of the prostaglandin-endoperoxide synthase 2 (PTGS2) gene. Notably, prostaglandin E2 (PGE2), a product of the PTGS2 pathway, was found at higher levels in the sera of patients with acute leptospirosis and in the supernatant of MoDCs-P, possibly contributing to Treg induction, compared to those of healthy donors and MoDCs-NP, respectively. In conclusion, this study reveals a novel immunosuppressive strategy employed by pathogenic Leptospira to evade host immunity by partially impairing MoDC maturation and inducing Tregs. These findings deepen our understanding of leptospirosis pathogenesis in humans and may provide a novel strategy to modulate DCs for the prevention and treatment of the disease.


Assuntos
Leptospira , Leptospirose , Humanos , Monócitos , Linfócitos T Reguladores , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Diferenciação Celular , Células Cultivadas , Leptospirose/metabolismo , Células Dendríticas
2.
J Immunol ; 210(4): 459-474, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36602965

RESUMO

Leptospira interrogans are bacteria that can infect all vertebrates and are responsible for leptospirosis, a neglected zoonosis. Some hosts, such as humans, are susceptible to the disease, whereas mice are resistant and get chronically colonized. Although leptospires escape recognition by some immune receptors, they activate the NOD-like receptor pyrin 3-inflammasome and trigger IL-1ß secretion. Classically, IL-1ß secretion is associated with lytic inflammatory cell death called pyroptosis, resulting from cytosolic LPS binding to inflammatory caspases, such as caspase 11. Interestingly, we showed that L. interrogans and Leptospira biflexa do not trigger cell death in either murine, human, hamster, or bovine macrophages, escaping both pyroptosis and apoptosis. We showed, in murine cells, that the mild IL-1ß secretion induced by leptospires occurred through nonlytic caspase 8-dependent gasdermin D pore formation and not through activation of caspase 11/noncanonical inflammasome. Strikingly, we demonstrated a potent antagonistic effect of pathogenic L. interrogans and their atypical LPS on spontaneous and Escherichia coli LPS-induced cell death. Indeed, LPS of L. interrogans efficiently prevents caspase 11 dimerization and subsequent massive gasdermin D cleavage. Finally, we showed that pyroptosis escape by leptospires prevents massive IL-1ß release, and we consistently found no major role of IL-1R in controlling experimental leptospirosis in vivo. Overall, to our knowledge, our findings described a novel mechanism by which leptospires dampen inflammation, thus potentially contributing to their stealthiness.


Assuntos
Leptospira interrogans , Leptospirose , Animais , Bovinos , Cricetinae , Humanos , Camundongos , Caspases/metabolismo , Gasderminas , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Leptospira interrogans/metabolismo , Leptospirose/metabolismo , Leptospirose/microbiologia , Lipopolissacarídeos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Morte Celular
3.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884937

RESUMO

Approximately 1 million cases of leptospirosis, an emerging infectious zoonotic disease, are reported each year. Pathogenic Leptospira species express leucine-rich repeat (LRR) proteins that are rarely expressed in non-pathogenic Leptospira species. The LRR domain-containing protein family is vital for the virulence of pathogenic Leptospira species. In this study, the biological mechanisms of an essential LRR domain protein from pathogenic Leptospira were examined. The effects of Leptospira and recombinant LRR20 (rLRR20) on the expression levels of factors involved in signal transduction were examined using microarray, quantitative real-time polymerase chain reaction, and western blotting. The secreted biomarkers were measured using an enzyme-linked immunosorbent assay. rLRR20 colocalized with E-cadherin on the cell surface and activated the downstream transcription factor ß-catenin, which subsequently promoted the expression of MMP7, a kidney injury biomarker. Additionally, MMP7 inhibitors were used to demonstrate that the secreted MMP7 degrades surface E-cadherin. This feedback inhibition mechanism downregulated surface E-cadherin expression and inhibited the colonization of Leptospira. The degradation of surface E-cadherin activated the NF-κB signal transduction pathway. Leptospirosis-associated acute kidney injury is associated with the secretion of NGAL, a downstream upregulated biomarker of the NF-κB signal transduction pathway. A working model was proposed to illustrate the crosstalk between E-cadherin/ß-catenin and NF-κB signal transduction pathways during Leptospira infection. Thus, rLRR20 of Leptospira induces kidney injury in host cells and inhibits the adhesion and invasion of Leptospira through the upregulation of MMP7 and NGAL.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Leptospirose/metabolismo , NF-kappa B/metabolismo , beta Catenina/metabolismo , Antígenos CD/genética , Caderinas/genética , Regulação da Expressão Gênica , Humanos , Leptospira/metabolismo , Leptospira/patogenicidade , Leptospirose/microbiologia , Proteínas de Repetições Ricas em Leucina/genética , Proteínas de Repetições Ricas em Leucina/metabolismo , Lipocalina-2/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Transporte Proteico , Transdução de Sinais , beta Catenina/genética
4.
Front Immunol ; 12: 807775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975922

RESUMO

Leptospira, a zoonotic pathogen, is known to infect various hosts and can establish persistent infection. This remarkable ability of bacteria is attributed to its potential to modulate (activate or evade) the host immune response by exploiting its surface proteins. We have identified and characterized the domain of the variable region of Leptospira immunoglobulin-like protein A (LAV) involved in immune modulation. The 11th domain (A11) of the variable region of LigA (LAV) induces a strong TLR4 dependent innate response leading to subsequent induction of humoral and cellular immune responses in mice. A11 is also involved in acquiring complement regulator FH and binds to host protease Plasminogen (PLG), there by mediating functional activity to escape from complement-mediated killing. The deletion of A11 domain significantly impaired TLR4 signaling and subsequent reduction in the innate and adaptive immune response. It also inhibited the binding of FH and PLG thereby mediating killing of bacteria. Our study discovered an unprecedented role of LAV as a nuclease capable of degrading Neutrophil Extracellular Traps (NETs). This nuclease activity was primarily mediated by A11. These results highlighted the moonlighting function of LigA and demonstrated that a single domain of a surface protein is involved in modulating the host innate immune defenses, which might allow the persistence of Leptospira in different hosts for a long term without clearance.


Assuntos
Proteínas de Bactérias/imunologia , Evasão da Resposta Imune , Imunidade Inata , Leptospira/imunologia , Leptospirose/imunologia , Macrófagos/imunologia , Proteínas de Membrana/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ativação do Complemento , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/microbiologia , Células HEK293 , Humanos , Leptospira/genética , Leptospira/metabolismo , Leptospira/patogenicidade , Leptospirose/metabolismo , Leptospirose/microbiologia , Ativação de Macrófagos , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Domínios Proteicos , Células RAW 264.7 , Transdução de Sinais , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
5.
Front Immunol ; 11: 572562, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240263

RESUMO

Properdin (P) is a positive regulatory protein that stabilizes the C3 convertase and C5 convertase of the complement alternative pathway (AP). Several studies have suggested that properdin can bind directly to the surface of certain pathogens regardless of the presence of C3bBb. Saprophytic Leptospira are susceptible to complement-mediated killing, but the interaction of properdin with Leptospira spp. has not been evaluated so far. In this work, we demonstrate that properdin present in normal human serum, purified properdin, as well as properdin oligomers P2, P3, and P4, interact with Leptospira. Properdin can bind directly to the bacterial surface even in the absence of C3b. In line with our previous findings, AP activation was shown to be important for killing non-pathogenic L. biflexa, and properdin plays a key role in this process since this microorganism survives in P-depleted human serum and the addition of purified properdin to P-depleted human serum decreases the number of viable leptospires. A panel of pathogenic L.interrogans recombinant proteins was used to identify putative properdin targets. Lsa30, an outer membrane protein from L. interrogans, binds to unfractionated properdin and to a lesser extent to P2-P4 properdin oligomers. In conclusion, properdin plays an important role in limiting bacterial proliferation of non-pathogenic Leptospira species. Once bound to the leptospiral surface, this positive complement regulatory protein of the AP contributes to the formation of the C3 convertase on the leptospire surface even in the absence of prior addition of C3b.


Assuntos
Complemento C3b/metabolismo , Fator B do Complemento/metabolismo , Leptospira interrogans/fisiologia , Leptospira/fisiologia , Leptospirose/metabolismo , Properdina/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Processos de Crescimento Celular , Via Alternativa do Complemento , Citotoxicidade Imunológica , Humanos , Leptospira/patogenicidade , Leptospira interrogans/patogenicidade , Leptospirose/imunologia , Properdina/imunologia , Ligação Proteica , Virulência
6.
J Immunol Res ; 2019: 1892508, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31687410

RESUMO

Leptospirosis is considered a neglected disease with an estimated more than one million cases every year. Since rodents are at the same time the main reservoir and generally asymptomatic to Leptospira infection, understanding why some animal species are resistant and others are susceptible to this infection would shed some light in how to control this important zoonosis. The innate immune response against Leptospira is mainly dependent on phagocytosis and activation of the Complement System. In this context, cytokines may drive the early control of infection and the adaptive response. Since the Complement System is important to eliminate leptospires in vivo, we investigated if Complement C5 in A/J mice would modulate the cytokine production during infection by Leptospira interrogans serovar Kennewicki type Pomona Fromm (LPF). Thus, our aim was to investigate the systemic levels of pro- and anti-inflammatory cytokines during Leptospira infection in the blood, liver, lung, and kidney on the third and sixth days of infection in A/J C5+/+ and A/J C5-/- mice. Blood levels of TNF-α, IL-6, IFN-γ, and MCP-1 reached a peak on the third day. Although both mouse strains developed splenomegaly, similar histopathological alterations in the liver and the lung, levels of pro- and anti-inflammatory cytokines were different. A/J C5+/+ mice had higher levels of liver IL-10, IL-1ß, IL-12p40, and IL-12p70 and kidney IL-1ß, IL-12p40, and IL-12p70 on the sixth day of infection when compared to A/J C5-/- mice. Our results showed that in A/J genetic background, the Complement component C5 modulates a cytokine profile in the liver and kidney of infected mice, which may play a role in the control of disease progression.


Assuntos
Citocinas/sangue , Leptospira interrogans , Leptospirose/sangue , Leptospirose/microbiologia , Animais , Biomarcadores , Biópsia , Citocinas/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Leptospirose/metabolismo , Leptospirose/patologia , Contagem de Leucócitos , Fígado/metabolismo , Fígado/microbiologia , Fígado/patologia , Camundongos , Especificidade de Órgãos , Fatores de Tempo
7.
Emerg Microbes Infect ; 7(1): 135, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30061622

RESUMO

Leptospira interrogans is the major causative agent of leptospirosis, an emerging, globally spreading zoonotic infectious disease. The pathogen induces macrophage apoptosis, but the molecular basis and mechanism remain unknown. In the present study, we found that L. interrogans caused apoptosis of phagocytosis-inhibited macrophages, and the product of the L. interrogans LB047 gene (Lep-OMP047) was the unique protein captured by mouse and human Fas proteins. The recombinant expressed Lep-OMP047 (rLep-OMP047) strongly bound mouse and human Fas proteins with equilibrium association constant (KD) values of 5.20 × 10-6 to 2.84 × 10-9 M according to surface plasmon resonance measurement and isothermal titration calorimetry. Flow-cytometric examination showed that 5 µg rLep-OMP047 or 1 µg lipopolysaccharide of L. interrogans (Lep-LPS) caused 43.70% or 21.90% early apoptosis in mouse J774A.1 macrophages and 28.41% or 15.80% for PMA-differentiated human THP-1 macrophages, respectively, but the apoptosis was blocked by Fas-antagonizing IgGs, Fas siRNAs, and caspase-8/-3 inhibitors. Moreover, Lep-OMP047 was significantly upregulated during infection of macrophages. Lep-LPS promoted the expression and cytomembrane translocation of Fas and FasL in macrophages. The JNK and p38 MAPK but not ERK signaling pathways, as well as the transcription factors c-Jun and ATF2 but not CHOP, mediated Lep-LPS-induced Fas/FasL expression and translocation. TLR2 but not TLR4 mediated Lep-LPS-induced JNK/p38 MAPK activation. Therefore, we demonstrated that a novel Fas-binding OMP and LPS of L. interrogans induce macrophage apoptosis through the Fas/FasL-caspase-8/-3 pathway.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Leptospira interrogans/metabolismo , Leptospirose/metabolismo , Macrófagos/citologia , Transdução de Sinais , Animais , Apoptose , Proteínas da Membrana Bacteriana Externa/genética , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Leptospira interrogans/genética , Leptospirose/genética , Leptospirose/microbiologia , Leptospirose/fisiopatologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos , Receptor fas/genética , Receptor fas/metabolismo
8.
BMC Microbiol ; 18(1): 64, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973159

RESUMO

BACKGROUND: Leptospira interrogans is a pathogenic, spirochetal bacterium that is responsible for leptospirosis, an emerging worldwide zoonosis. Leptospires colonize the renal proximal tubules and chronically infect the kidney. Live bacteria are excreted into urine, contaminating the environment. While it is well known that leptospires can persist in the kidneys without signs of disease for several months, the interactions of leptospires with the proximal renal epithelial tubule cells that allow the chronic renal colonization have not been elucidated yet. In the present study, we compared the interactions between a virulent, low passage (LP) strain and a cultured-attenuated, high passage (HP) strain with renal proximal tubule epithelial cells (RPTECs) to elucidate the strategies used by Leptospira to colonize the kidney. RESULTS: Kinetics analysis of kidney colonization in a mouse model of chronic infection performed by quantitative real-time PCR and immunofluorescence, showed that the LP strain reached the kidney by 3 days post infection (pi) and attached to the basal membrane side of the renal epithelial cells. At 10 days pi, some leptospires were attached to the luminal side of the tubular epithelia and the number of colonizing leptospires gradually increased. On the other hand, the HP strain was cleared during hematogenous dissemination and did not colonize the kidney. Transmission electron microscopy analysis of LP-infected kidneys at 25 days pi showed aggregated leptospires and membrane vesicles attached to the epithelial brush border. Leptospiral kidney colonization altered the organization of the RPTEC brush border. An in vitro model of infection using TCMK-1 cells, showed that leptospiral infection induced a host stress response, which is delayed in LP-infected cells. CONCLUSIONS: After hematogenous dissemination, leptospires create protective and replicative niches in the base membrane and luminal sides of the RPTECs. During the long-term colonization, leptospires attached to the RPTEC brush borders and membrane vesicles might be involved in the formation of a biofilm-like structure in vivo. Our results also suggested that the virulent strain is able to manipulate host cell stress responses to promote renal colonization.


Assuntos
Células Epiteliais/microbiologia , Túbulos Renais Proximais/microbiologia , Leptospira interrogans/fisiologia , Leptospirose/microbiologia , Animais , Translocação Bacteriana , Linhagem Celular Transformada , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Feminino , Rim/microbiologia , Leptospira interrogans/crescimento & desenvolvimento , Leptospira interrogans/patogenicidade , Leptospirose/metabolismo , Camundongos Endogâmicos C57BL , Microvilosidades/microbiologia , Estresse Oxidativo , Virulência
9.
PLoS Negl Trop Dis ; 12(7): e0006621, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29979677

RESUMO

Leptospirosis is a bacterial zoonosis, caused by Leptospira spp., that leads to significant morbidity and mortality worldwide. Despite considerable advances, much is yet to be discovered about disease pathogenicity. The influence of epigenetic mechanisms, particularly RNA-mediated post-transcriptional regulation of host immune response has been described following a variety of bacterial infections. The current study examined the microtranscriptome of macrophages J774A.1 following an 8h infection with virulent, attenuated and saprophyte strains of Leptospira. Microarray analysis revealed that 29 miRNAs were misregulated following leptospiral infection compared to control macrophages in a strain and virulence-specific manner. Pathway analysis for targets of these differentially expressed miRNAs suggests that several processes involved in immune response could be regulated by miRNAs. Our data provides the first evidence that host miRNAs are regulated by Leptospira infection in macrophages. A number of the identified miRNA targets participate in key immune response processes. We suggest that post-transcriptional regulation by miRNAs may play a role in host response to infection in leptospirosis.


Assuntos
Leptospira/fisiologia , Leptospirose/genética , Macrófagos/microbiologia , Transcriptoma , Animais , Cricetinae , Humanos , Leptospira/classificação , Leptospira/genética , Leptospira/patogenicidade , Leptospirose/metabolismo , Leptospirose/microbiologia , Macrófagos/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Filogenia , Virulência
10.
Emerg Microbes Infect ; 6(5): e36, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28536433

RESUMO

Leptospirosis is an emerging worldwide zoonosis caused by pathogenic Leptospira spp. Our understanding of leptospirosis pathogenesis and host immune response remains limited, while mechanistic studies are hindered by a lack of proper animal models and immunological reagents. Here we established a murine model of acute and self-resolving leptospirosis by infecting 10-week-old C57BL/6 mice with Leptospira interrogans serovar Autumnalis strain 56606v, with characteristic manifestations including jaundice as well as subcutaneous and pulmonary bleeding, but no kidney lesions. We also verified that the lipopolysaccharide (LPS) of strain 56606v signaled through a TLR4-dependent pathway in murine bone marrow-derived macrophages (BMDMs), rather than the previously reported TLR2. In addition, upon infection with Leptospira strain 56606v, TLR4-/- C57BL/6 mice presented more severe jaundice and liver injury as well as higher bacterial loads than WT mice but milder pulmonary hemorrhaging. Molecular studies showed that leptospirosis-related bleeding coincides with the temporal kinetics of iNOS production, while jaundice and liver injury are probably due to insufficiently controlled bacterial loads in the liver. These results suggested that TLR4 is essential in mediating host leptospiral clearance and, to some extent, is associated with pulmonary and subcutaneous hemorrhage, probably through downstream inflammatory mediators, iNOS in particular. Overall, our murine model using immunocompetent mice might facilitate future studies into the pathogenesis of jaundice and bleeding in leptospirosis. Meanwhile, our study suggests the prospect of combining antibiotics and immunosuppressants in the treatment of severe leptospirosis presenting with pulmonary hemorrhage.


Assuntos
Modelos Animais de Doenças , Leptospirose , Lipopolissacarídeos/metabolismo , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Animais , Carga Bacteriana , Icterícia/microbiologia , Rim/microbiologia , Rim/patologia , Leptospira interrogans serovar autumnalis/fisiologia , Leptospirose/imunologia , Leptospirose/metabolismo , Leptospirose/microbiologia , Fígado/microbiologia , Fígado/patologia , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/biossíntese , Transdução de Sinais , Receptor 4 Toll-Like/genética
11.
Free Radic Biol Med ; 97: 1-13, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27178006

RESUMO

Low molecular mass thiols and antioxidant enzymes have essential functions to detoxify reactive oxygen and nitrogen species maintaining cellular redox balance. The metabolic pathways for redox homeostasis in pathogenic (Leptospira interrogans) and free-living (Leptospira biflexa) leptospires species were not functionally characterized. We performed biochemical studies on recombinantly produced proteins to in depth analyze kinetic and structural properties of thioredoxin reductase (LinTrxR) and thioredoxin (LinTrx) from L. interrogans, and two TrxRs (LbiTrxR1 and LbiTrxR2) from L. biflexa. All the TrxRs were characterized as homodimeric flavoproteins, with LinTrxR and LbiTrxR1 catalyzing the NADPH dependent reduction of LinTrx and DTNB. The thioredoxin system from L. interrogans was able to use glutathione disulfide, lipoamide disulfide, cystine and bis-γ-glutamyl cysteine and homologous peroxiredoxin as substrates. Classic TrxR activity of LinTrxR2 had not been evidenced in vitro, but recombinant Escherichia coli cells overexpressing LbiTrxR2 showed high tolerance to oxidative stress. The enzymatic systems herein characterized could play a key role for the maintenance of redox homeostasis and the function of defense mechanisms against reactive oxidant species in Leptospira spp. Our results contribute to the general knowledge about redox biochemistry in these bacteria, positioning TrxR as a critical molecular target for the development of new anti-leptospiral drugs.


Assuntos
Leptospirose/metabolismo , Estresse Oxidativo/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Antioxidantes/metabolismo , Ácido Ditionitrobenzoico/metabolismo , Escherichia coli/genética , Dissulfeto de Glutationa/metabolismo , Humanos , Cinética , Leptospira interrogans/metabolismo , Leptospira interrogans/patogenicidade , Leptospirose/microbiologia , Oxirredução , Peroxirredoxinas/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Compostos de Sulfidrila/química , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxinas/química , Tiorredoxinas/genética
12.
Rev. cuba. med. trop ; 67(3): 0-0, dic. 2015. tab
Artigo em Espanhol | LILACS, CUMED | ID: lil-777075

RESUMO

Leptospirosis es una enfermedad zoonótica endémica de potencial epidémico que afecta la salud pública y la producción pecuaria alrededor del mundo. Su agente etiológico es una espiroqueta del género Leptospira, con 20 especies reportadas hasta el momento, son las más importantes Leptospira interrogans (patógena) y Leptospirabiflexa (saprófita). Esta bacteria se transmite mediante contacto directo o indirecto en especial con orinade animales infectados, es la transmisión por medio del agua una de las más importantes. En cuanto al diagnóstico se ha evidenciado que diversas pruebas moleculares tienen una alta especificidad y sensibilidad; sin embargo, el conocimiento de la epidemiología de la leptospirosis se ha basado principalmente en estudios serológicos que han utilizado la prueba de aglutinación microscópica que presenta debilidades en sus resultados e interpretación. El objetivo del presente artículo es presentar una revisión actualizada sobre la utilidad de las herramientas moleculares para la identificación de Leptospira spp. en muestras humanas, animales y ambientales. Se llevó a cabo una búsqueda de literaturaen diferentes bases de datos como Pubmed, Science Direct, SciELO, Scopus y Redalyc.Las publicaciones encontradas fueron artículos originales y de revisión, entre otros, publicados entre 1965 y 2014. Se determinó que las herramientas moleculares permiten una identificación directa, rápida, definitivay precisa del agente etiológico, apoyan el diagnóstico, aportan al conocimiento real de laprevalencia e incidencia de la enfermedad. Las herramientas moleculares permiten la identificación de nuevas especies a partir de aislamientos obtenidos de diversas fuentes y ayudan a orientar los programas de prevención y control de esta zoonosis(AU)


Leptospirosis is an endemic and potentially epidemic zoonosis affecting public health and livestock production worldwide. Its etiological agent is a spirochaete of the genus Leptospira, with 20 species reported to date, of which Leptospira interrogans (pathogenic) and Leptospira biflexa (saprophyte) are the most important. This bacterium is transmitted by direct or indirect contact with urine from infected animals, so water is one of the major transmission ways. Regarding diagnosis, many molecular tests have been evinced to have high specificity and sensitivity; however, knowledge on the epidemiology of leptospirosis has been based mainly on serological studies using the microscopic agglutination test, which has weaknesses in its results and interpretation. The aim of this article is to present an update review on the usefulness of molecular tools in the identification of Leptospira spp. in human, animal and environmental samples. A literature search was conducted in different databases such as PubMed, ScienceDirect, SciELO, Scopus and Redalyc. The publications found were original and review articles, among others, published between 1965 and 2014. It was found that the molecular tools allow direct, quick, definitive and precise identification of the etiologic agent, support the diagnosis, and contribute to real knowledge on the disease prevalence and incidence. Molecular tools enable the identification of new species isolates obtained from various sources and help guide prevention programs and control of this zoonosis(AU)


Assuntos
Humanos , Patologia Molecular/métodos , Leptospirose/metabolismo , Biologia Molecular/métodos , Sistema de Vigilância em Saúde , Leptospirose/transmissão
13.
J Biol Chem ; 288(17): 12335-44, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23486465

RESUMO

Leptospirosis is the most widespread zoonosis caused by the pathogenic Leptospira worldwide. LipL32, a 32-kDa lipoprotein, is the most abundant protein on the outer membrane of Leptospira and has an atypical poly(Asp) motif ((161)DDDDDGDD(168)). The x-ray crystallographic structure of LipL32 revealed that the calcium-binding cluster of LipL32 includes several essential residues Asp(132), Thr(133), Asp(164), Asp(165), and Tyr(178). The goals of this study were to determine possible roles of the Ca(2+)-binding cluster for the interaction of LipL32 and Toll-like receptor 2 (TLR2) in induced inflammatory responses of human kidney cells. Site-directed mutagenesis was employed to individually mutate Ca(2+)-binding residues of LipL32 to Ala, and their effects subsequently were observed. These mutations abolished primarily the structural integrity of the calcium-binding cluster in LipL32. The binding assay and atomic force microscopy analysis further demonstrated the decreased binding capability of LipL32 mutants to TLR2. Inflammatory responses induced by LipL32 variants, as determined by TLR2 pathway intermediates hCXCL8/IL-8, hCCL2/MCP-1, hMMP7, and hTNF-α, were also lessened. In conclusion, the calcium-binding cluster of LipL32 plays essential roles in presumably sustaining LipL32 conformation for its proper association with TLR2 to elicit inflammatory responses in human renal cells.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Rim/metabolismo , Leptospira/metabolismo , Leptospirose/metabolismo , Lipoproteínas/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Linhagem Celular , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-8/biossíntese , Interleucina-8/genética , Rim/patologia , Leptospira/genética , Leptospirose/genética , Leptospirose/patologia , Lipoproteínas/genética , Metaloproteinase 7 da Matriz/biossíntese , Metaloproteinase 7 da Matriz/genética , Mutagênese Sítio-Dirigida , Receptor 2 Toll-Like/genética , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
14.
Mediators Inflamm ; 2012: 317950, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23132959

RESUMO

Leptospirosis is an important zoonosis and has a worldwide impact on public health. This paper will discuss both the role of immunogenic and pathogenic molecules during leptospirosis infection and possible new targets for immunotherapy against leptospira components. Leptospira, possess a wide variety of mechanisms that allow them to evade the host immune system and cause infection. Many molecules contribute to the ability of Leptospira to adhere, invade, and colonize. The recent sequencing of the Leptospira genome has increased our knowledge about this pathogen. Although the virulence factors, molecular targets, mechanisms of inflammation, and signaling pathways triggered by leptospiral antigens have been studied, some questions are still unanswered. Toll-like receptors (TLRs) are the primary sensors of invading pathogens. TLRs recognize conserved microbial pattern molecules and activate signaling pathways that are pivotal to innate and adaptive immune responses. Recently, a new molecular target has emerged--the Na/K-ATPase--which may contribute to inflammatory and metabolic alteration in this syndrome. Na/K-ATPase is a target for specific fatty acids of host origin and for bacterial components such as the glycolipoprotein fraction (GLP) that may lead to inflammasome activation. We propose that in addition to TLRs, Na/K-ATPase may play a role in the innate response to leptospirosis infection.


Assuntos
Inflamação/imunologia , Inflamação/metabolismo , Leptospirose/imunologia , Leptospirose/metabolismo , Animais , Humanos , Transdução de Sinais/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Receptores Toll-Like/metabolismo
15.
PLoS One ; 7(8): e42266, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22870312

RESUMO

BACKGROUND: Infection with pathogenic Leptospira species causes serious systemic inflammation in patients. Although a few leptospiral proinflammatory molecules have been identified, Leptospira likely encodes other unidentified strong inflammation stimulators. The pathogenic L. interrogans genome encodes numerous putative hemolysin genes. Since hemolysins from other bacteria can cause inflammatory reactions, we hypothesized that leptospiral hemolysins may function as proinflammatory stimulators that contribute to the strong inflammation associated with Leptospira infection. METHODOLOGY/PRINCIPAL FINDINGS: We first used cytokine protein microarrays for systematic analysis of serum cytokine profiles in leptospirosis patients and leptospire-infected mice. We found that IL-1ß, IL-6 and TNF-α were the main proinflammatory cytokines in the sera of both the patients and the mice. We then analyzed eight putative hemolysins in L. interrogans strain Lai. The results showed that five of them, Sph1, Sph2, Sph3, HlpA and TlyA were secreted and had hemolytic activity. More importantly, these five hemolysins induced the strong production of IL-1ß, IL-6 and TNF-α in human and mouse macrophages (although a bit lower in the latter). Furthermore, blockade of TLR2 or TLR4 with either antibodies or inhibitors of the NF-κB or JNK signaling pathways significantly reduced the production of hemolysin-induced IL-1ß, IL-6 and TNF-α. Macrophages isolated from TLR2-, TLR4-or double TLR2-and 4-deficient mice also confirmed that the leptospiral hemolysins that induce proinflammatory cytokines are both TLR2-and TLR4-dependent. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that L. interrogans secretes many hemolysins that function as powerful inducers of proinflammatory cytokines through both TLR2-and TLR4-dependent JNK and NF-κB pathways.


Assuntos
Citocinas/imunologia , Proteínas Hemolisinas/imunologia , Mediadores da Inflamação/imunologia , Leptospira interrogans/imunologia , Leptospirose/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Adulto , Animais , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Feminino , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leptospira interrogans/genética , Leptospira interrogans/metabolismo , Leptospirose/genética , Leptospirose/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/imunologia , NF-kappa B/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
16.
J Immunol ; 188(6): 2805-14, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22323544

RESUMO

Leptospira interrogans is responsible for a zoonotic disease known to induce severe kidney dysfunction and inflammation. In this work, we demonstrate that L. interrogans induces NLRP3 inflammasome-dependent secretion of IL-1ß through the alteration of potassium transport in bone marrow-derived macrophages. Lysosome destabilization also contributed to the IL-1ß production upon stimulation with live, but not dead, bacteria. Using bone marrow-derived macrophages from various TLRs and nucleotide-binding oligomerization domain-deficient mice, we further determined that IL-1ß production was dependent on TLR2 and TLR4, suggesting a participation of the leptospiral LPS to this process. Hypokaliemia in leptospirosis has been linked to the presence of glycolipoprotein, a cell wall component of L. interrogans that is known to inhibit the expression and functions of the Na/K-ATPase pump. We show in this study that glycolipoprotein activates the inflammasome and synergizes with leptospiral LPS to produce IL-1ß, mimicking the effect of whole bacteria. These results were confirmed in vivo, as wild-type mice expressed more IL-1ß in the kidney than TLR2/4-deficient mice 3 d postinfection with L. interrogans. Collectively, these findings provide the first characterization, to our knowledge, of bacteria-induced activation of the NLRP3 inflammasome through the downregulation of a specific host potassium transporter.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Leptospirose/metabolismo , Macrófagos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Proteínas de Bactérias/imunologia , Western Blotting , Proteínas de Transporte/imunologia , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Feminino , Inflamassomos/imunologia , Interleucina-1beta/biossíntese , Interleucina-1beta/imunologia , Leptospira/imunologia , Leptospira/metabolismo , Leptospirose/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Infect Immun ; 79(3): 1134-42, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21173310

RESUMO

Leptospirosis can activate inflammatory responses through Toll-like receptors (TLRs) and may cause renal tubulointerstitial fibrosis characterized by the accumulation of extracellular matrix (ECM). We have previously demonstrated that Leptospira santorosai serovar Shermani detergent extract stimulates ECM accumulation in vitro. The aim of this study was to examine the mechanistic basis of these previous observations and, in particular, to examine the potential involvement of TLRs. The addition of serovar Shermani detergent extract led to an increase in fibronectin gene expression and production. Inhibition of TLR2 but not TLR4 expression abrogated serovar Shermani detergent extract-mediated increases in fibronectin production. This response was also blocked by the knockdown of the gene expression of the TLR2 downstream transducers myeloid differentiation factor 88 (MyD88) and tumor necrosis factor receptor-associated factor 6 (TRAF6). Serovar Shermani detergent extract also activated nuclear factor-κB, and its inhibition by curcumin-attenuated serovar Shermani detergent extract induced increases in fibronectin production. These effects were also mimicked by the specific TLR2 agonist, Pam(3)CsK(4), a response that was also abrogated by the knockdown of MyD88 and TRAF6. Similarly, the administration of live leptospires to cells also induced fibronectin production that was blocked by inhibition of TLR2 and MyD88 expression. In conclusion, serovar Shermani detergent extract can induce fibronectin production through the TLR2-associated cascade, providing evidence of an association between TLRs and leptospirosis-mediated ECM deposition.


Assuntos
Misturas Complexas/farmacologia , Fibronectinas/biossíntese , Leptospira/metabolismo , Leptospirose/metabolismo , Receptor 2 Toll-Like/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Western Blotting , Linhagem Celular , Detergentes , Ensaio de Desvio de Mobilidade Eletroforética , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Rim/metabolismo , Rim/patologia , Leptospira/química , Fator 88 de Diferenciação Mieloide/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator 6 Associado a Receptor de TNF/efeitos dos fármacos , Fator 6 Associado a Receptor de TNF/metabolismo
18.
Virchows Arch ; 456(4): 367-75, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20217429

RESUMO

Tubulointerstitial nephritis is a common clinicopathological finding in leptospirosis. Clinically, nonoliguric acute kidney injury (AKI), hypokalemia, sodium, and magnesium wasting frequently occur in leptospirosis. The exact mechanisms of renal involvement remain largely unclear. Immunohistochemistry to detect expression of the endogenous sodium/hydrogen exchanger isoform 3 (NHE 3), aquaporin 1 and 2, alpha-Na(+)K(+)ATPase, and sodium-potassium-chloride cotransporter in its NKCC2 isoform was performed on kidneys removed during autopsy of human leptospirosis cases and kidneys removed during autopsy of human non-leptospirosis cases with and without evidence of acute tubular necrosis (ATN). A decrease in NHE 3, aquaporin 1, and alpha-Na(+)K(+)ATPase expression occurred in proximal convoluted tubule cells. Expression of aquaporin 1 was preserved along the descending thin limb of the loop of Henle in the outer medulla. alpha-Na(+)K(+)ATpase expression was essentially preserved in the distal tubules, i.e., the thick ascending limb of the loop of Henle, macula densa, and distal convoluted tubule. Aquaporin 2 expression in the collecting tubules was enhanced compared to those of non-leptospirotic kidneys. NKCC2 cotransport isoform was expressed in the thick ascending limb of the loop of Henle and was essentially preserved in leptospirotic kidneys. Primary injury of the proximal convoluted tubules is regarded as the hallmark of the kidney in leptospirosis. Sodium and water transport are particularly affected with increased distal potassium excretion, hypokalemia, and polyuria. Enhanced expression of aquaporin 2 in medullary collecting tubules is probably an attempt to retain water during the nonoliguric phase of renal failure.


Assuntos
Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Rim/microbiologia , Leptospirose/metabolismo , Leptospirose/fisiopatologia , Injúria Renal Aguda/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Aquaporina 1/metabolismo , Aquaporina 2/metabolismo , Autopsia , Feminino , Humanos , Rim/patologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Túbulos Renais/fisiopatologia , Leptospira/isolamento & purificação , Leptospirose/complicações , Masculino , Pessoa de Meia-Idade , Necrose , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto
19.
Infect Immun ; 74(7): 4172-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16790792

RESUMO

In order to quantify in vivo the mRNAs of cytokines which play important roles in leptospirosis, we have developed quantitative real-time PCR assays for interleukin-2 (IL-2), IL-4, IL-10, IL-12p40, tumor necrosis factor alpha (TNF-alpha), gamma interferon (IFN-gamma), transforming growth factor beta, and two housekeeping genes (encoding beta-actin and hypoxanthine phosphoribosyltransferase). We used a lethal hamster model reflecting severe leptospirosis in humans. The LightCycler system was used to quantify the gene expression levels with the SYBR green I detection format using external standard curves for each target. We compared the expression levels of cytokine mRNA in the peripheral blood mononuclear cells of both control (uninfected) hamsters and Leptospira interrogans-inoculated hamsters from 1 to 24 h and then 1 to 4 days postinfection. In this kinetic study, there was pronounced expression of Th1 cytokine mRNA (TNF-alpha, IFN-gamma, and IL-12), with transcripts being detected as early as 1 h postinfection. Expression of anti-inflammatory cytokines, such as IL-4 and IL-10, was prominent in delayed samples from 1 to 4 days postinfection in response to infection with Leptospira interrogans. Our data are the first to establish that pathogenic leptospires can stimulate in vivo the production of type 1 cytokines involved in cellular immunity by using this informative animal model. Measuring and assessing cytokine profiles may provide a useful method for accurate study of the mechanisms of anti-Leptospira immunity, indications of prognosis factors, and prospective evaluation of leptospirosis vaccine efficacy in humans.


Assuntos
Citocinas/biossíntese , Citocinas/genética , Fatores Imunológicos/fisiologia , Mediadores da Inflamação/metabolismo , Leptospira interrogans/imunologia , Leptospira interrogans/patogenicidade , Leptospirose/imunologia , RNA Mensageiro/biossíntese , Animais , Cricetinae , Perfilação da Expressão Gênica , Fatores Imunológicos/metabolismo , Leptospirose/metabolismo , Virulência
20.
Lik Sprava ; (2): 43-6, 2002.
Artigo em Russo | MEDLINE | ID: mdl-12073259

RESUMO

With the purpose of further perfecting the pathogenetic therapy, indices for the acid-base status were studied together with those for the electrolyte exchange in the time-related course of the disease in patients with grave leptospiral jaundice presenting with acute renal failure (ARF). Patients with leptospirosis running a grave course and ARF display changes in the acid-base status and gas composition of the blood. Patients presenting with oligoanuric ARF and fatal outcome develop uncompensated metabolic acidosis (11.8%), in case of favourable outcome--metabolic acidosis with compensation by respiratory alkalosis (29.4%). The polyuric ARF stage is characterized by a mixed metabolic and respiratory alkalosis (58.8%). Results of studies made warrant use of indices for the acid-base, gas, and electrolyte balance to assess severity and prognosis of leptospirosis, to determine the stage of ARF, and to develop rational pathogenetic therapies.


Assuntos
Injúria Renal Aguda/metabolismo , Dióxido de Carbono/sangue , Eletrólitos/sangue , Homeostase , Leptospirose/metabolismo , Oxigênio/sangue , Injúria Renal Aguda/complicações , Adulto , Feminino , Humanos , Concentração de Íons de Hidrogênio , Leptospirose/complicações , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA