Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 462
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38069378

RESUMO

Patients receiving cranial radiotherapy for primary and metastatic brain tumors may experience radiation-induced brain injury (RIBI). Thus far, there has been a lack of effective preventive and therapeutic strategies for RIBI. Due to its complicated underlying pathogenic mechanisms, it is rather difficult to develop a single approach to target them simultaneously. We have recently reported that Reprimo (RPRM), a tumor suppressor gene, is a critical player in DNA damage repair, and RPRM deletion significantly confers radioresistance to mice. Herein, by using an RPRM knockout (KO) mouse model established in our laboratory, we found that RPRM deletion alleviated RIBI in mice via targeting its multiple underlying mechanisms. Specifically, RPRM knockout significantly reduced hippocampal DNA damage and apoptosis shortly after mice were exposed to whole-brain irradiation (WBI). For the late-delayed effect of WBI, RPRM knockout obviously ameliorated a radiation-induced decline in neurocognitive function and dramatically diminished WBI-induced neurogenesis inhibition. Moreover, RPRM KO mice exhibited a significantly lower level of acute and chronic inflammation response and microglial activation than wild-type (WT) mice post-WBI. Finally, we uncovered that RPRM knockout not only protected microglia against radiation-induced damage, thus preventing microglial activation, but also protected neurons and decreased the induction of CCL2 in neurons after irradiation, in turn attenuating the activation of microglial cells nearby through paracrine CCL2. Taken together, our results indicate that RPRM plays a crucial role in the occurrence of RIBI, suggesting that RPRM may serve as a novel potential target for the prevention and treatment of RIBI.


Assuntos
Lesões Encefálicas , Lesões por Radiação , Animais , Humanos , Camundongos , Apoptose , Encéfalo/patologia , Lesões Encefálicas/genética , Lesões Encefálicas/prevenção & controle , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/metabolismo , Inflamação/patologia , Microglia , Lesões por Radiação/genética , Lesões por Radiação/prevenção & controle , Lesões por Radiação/patologia
2.
J Biochem Mol Toxicol ; 37(10): e23425, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37401655

RESUMO

Mercury is a toxic, environmentally heavy metal that can cause severe damage to all organs, including the nervous system. The functions of puerarin include antioxidant, anti-inflammatory, nerve cell repair, regulation of autophagy, and so forth. But because of the limited oral absorption of puerarin, it affects the protective effect on brain tissue. The nano-encapsulation of Pue can improve its limitation. Therefore, this study investigated the protective effect of Pue drug-loaded PLGA nanoparticles (Pue-PLGA-nps) on brain injury induced by mercuric chloride (HgCl2 ) in mice. The mice were divided into normal saline (NS) group, HgCl2 (4 mg/kg) group, Pue-PLGA-nps (50 mg/kg) group, HgCl2 + Pue (4 mg/kg + 30 mg/kg) group, and HgCl2 + Pue-PLGA-nps (4 mg/kg + 50 mg/kg) group. After 28 days of treatment, the mice were observed for behavioral changes, antioxidant capacity, autophagy and inflammatory response, and mercury levels in the brain, blood, and urine were measured. The results showed that HgCl2 toxicity caused learning and memory dysfunction in mice, increased mercury content in brain and blood, and increased serum levels of interleukin (IL-6), IL-1ß, and tumor necrosis factor-α in the mice. HgCl2 exposure decreased the activity of T-AOC, superoxide dismutase, and glutathione peroxidase, and increased the expression of malondialdehyde in the brain of mice. Moreover, the expression levels of TRIM32, toll-like receptor 4 (TLR4), and LC3 proteins were upregulated. Both Pue and Pue-PLGA-nps interventions mitigated the changes caused by HgCl2 exposure, and Pue-PLGA-nps further enhanced this effect. Our results suggest that Pue-PLGA-nps can ameliorate HgCl2 -induced brain injury and reduce Hg accumulation, which is associated with inhibition of oxidative stress, inflammatory response, and TLR4/TRIM32/LC3 signaling pathway.


Assuntos
Lesões Encefálicas , Mercúrio , Nanopartículas , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cloreto de Mercúrio/toxicidade , Receptor 4 Toll-Like/metabolismo , Encéfalo/metabolismo , Estresse Oxidativo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Mercúrio/metabolismo , Mercúrio/farmacologia , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/prevenção & controle
3.
JAMA Netw Open ; 6(4): e237473, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37052920

RESUMO

Importance: Interventions to reduce severe brain injury risk are the prime focus in neonatal clinical trials. Objective: To evaluate multiple perinatal interventions across clinical settings for reducing the risk of severe intraventricular hemorrhage (sIVH) and cystic periventricular leukomalacia (cPVL) in preterm neonates. Data Sources: MEDLINE, Embase, CENTRAL (Cochrane Central Register of Controlled Trials), and CINAHL (Cumulative Index to Nursing and Allied Health Literature) databases were searched from inception until September 8, 2022, using prespecified search terms and no language restrictions. Study Selection: Randomized clinical trials (RCTs) that evaluated perinatal interventions, chosen a priori, and reported 1 or more outcomes (sIVH, cPVL, and severe brain injury) were included. Data Extraction and Synthesis: Two co-authors independently extracted the data, assessed the quality of the trials, and evaluated the certainty of the evidence using the Cochrane GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) approach. Fixed-effects pairwise meta-analysis was used for data synthesis. Main Outcomes and Measures: The 3 prespecified outcomes were sIVH, cPVL, and severe brain injury. Results: A total of 221 RCTs that assessed 44 perinatal interventions (6 antenatal, 6 delivery room, and 32 neonatal) were included. Meta-analysis showed with moderate certainty that antenatal corticosteroids were associated with small reduction in sIVH risk (risk ratio [RR], 0.54 [95% CI, 0.35-0.82]; absolute risk difference [ARD], -1% [95% CI, -2% to 0%]; number needed to treat [NNT], 80 [95% CI, 48-232]), whereas indomethacin prophylaxis was associated with moderate reduction in sIVH risk (RR, 0.64 [95% CI, 0.52-0.79]; ARD, -5% [95% CI, -8% to -3%]; NNT, 20 [95% CI, 13-39]). Similarly, the meta-analysis showed with low certainty that volume-targeted ventilation was associated with large reduction in risk of sIVH (RR, 0.51 [95% CI, 0.36-0.72]; ARD, -9% [95% CI, -13% to -5%]; NNT, 11 [95% CI, 7-23]). Additionally, early erythropoiesis-stimulating agents (RR, 0.68 [95% CI, 0.57-0.83]; ARD, -3% [95% CI, -4% to -1%]; NNT, 34 [95% CI, 22-67]) and prophylactic ethamsylate (RR, 0.68 [95% CI, 0.48-0.97]; ARD, -4% [95% CI, -7% to 0%]; NNT, 26 [95% CI, 13-372]) were associated with moderate reduction in sIVH risk (low certainty). The meta-analysis also showed with low certainty that compared with delayed cord clamping, umbilical cord milking was associated with a moderate increase in sIVH risk (RR, 1.82 [95% CI, 1.03-3.21]; ARD, 3% [95% CI, 0%-6%]; NNT, -30 [95% CI, -368 to -16]). Conclusions and Relevance: Results of this study suggest that a few interventions, including antenatal corticosteroids and indomethacin prophylaxis, were associated with reduction in sIVH risk (moderate certainty), and volume-targeted ventilation, early erythropoiesis-stimulating agents, and prophylactic ethamsylate were associated with reduction in sIVH risk (low certainty) in preterm neonates. However, clinicians should carefully consider all of the critical factors that may affect applicability in these interventions, including certainty of the evidence, before applying them to clinical practice.


Assuntos
Lesões Encefálicas , Etamsilato , Recém-Nascido , Gravidez , Feminino , Humanos , Parto , Corticosteroides , Hemorragia Cerebral , Indometacina , Lesões Encefálicas/prevenção & controle
4.
ACS Appl Mater Interfaces ; 15(12): 15203-15219, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36917732

RESUMO

Radiation-induced brain injury (RIBI) is a severe, irreversible, or even life-threatening cerebral complication of radiotherapy in patients with head and neck tumors, and there is no satisfying prevention and effective treatment available for these patients. Amifostine (AMF) is a well-known free radical scavenger with demonstrated effectiveness in preventing radiation-induced toxicity. However, the limited permeability of AMF across the blood-brain barrier (BBB) when administered intravenously reduces the effectiveness of AMF in preventing RIBI. Herein, we construct a nanoparticle (NP) platform for BBB delivery of AMF. AMF is conjugated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-n-[poly(ethylene glycol)]-hydroxy succinamide [DSPE-PEG-NHS, PEG M 2000], and the product is DSPE-PEG-AMF. Then, the nanoparticles (DAPP NPs) were formed by self-assembly of poly(lactic-co-glycolic acid) (PLGA), DSPE-PEG-AMF, and polysorbate 80 (PS 80). PEG shields the nanoparticles from blood clearance by the reticuloendothelial system and lengthens the drug circulation time. PS 80 is used to encapsulate nanoparticles for medication delivery to the brain. The results of our study showed that DAPP NPs were able to effectively penetrate the blood-brain barrier (BBB) in healthy C57BL/6 mice. Furthermore, in a well-established mouse model of X-knife-induced brain injury, treatment with DAPP NPs (corresponding to 250 mg/kg AMF) was found to significantly reduce the volume of brain necrosis compared to mice treated with AMF (250 mg/kg). Importantly, the use of DAPP NPs was also shown to significantly mitigate the effects of radiation-induced neuronal damage and glial activation. This work presents a convenient brain-targeted AMF delivery system to achieve effective radioprotection for the brain, providing a promising strategy with tremendous clinical translation potential.


Assuntos
Amifostina , Lesões Encefálicas , Nanopartículas , Camundongos , Animais , Barreira Hematoencefálica , Amifostina/farmacologia , Camundongos Endogâmicos C57BL , Encéfalo , Polietilenoglicóis/farmacologia , Polissorbatos , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/prevenção & controle
5.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(2): 193-201, 2023 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-36854697

RESUMO

OBJECTIVES: To study the protective effect of breviscapine against brain injury induced by intrauterine inflammation in preterm rats and its mechanism. METHODS: A preterm rat model of brain injury caused by intrauterine inflammation was prepared by intraperitoneal injections of lipopolysaccharide in pregnant rats. The pregnant rats and preterm rats were respectively randomly divided into 5 groups: control, model, low-dose breviscapine (45 mg/kg), high-dose breviscapine (90 mg/kg), and high-dose breviscapine (90 mg/kg)+ML385 [a nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor, 30 mg/kg] (n=10 each). The number and body weight of the live offspring rats were measured for each group. Hematoxylin-eosin staining was used to observe the pathological morphology of the uterus and placenta of pregnant rats and the pathological morphology of the brain tissue of offspring rats. Immunofluorescent staining was used to measure the co-expression of ionized calcium binding adaptor molecule-1 (IBA-1) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex of offspring rats. ELISA was used to measure the levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1ß (IL-1ß) in the brain tissue of offspring rats. Western blotting was used to measure the expression of Nrf2 pathway-related proteins in the brain tissue of offspring rats. RESULTS: Pathological injury was found in the uterus, and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, and severe microglia pyroptosis occurred in the cerebral cortex of the offspring rats in the model group. Compared with the control group, the model group had significant reductions in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and heme oxygenase-1 (HO-1) in the brain tissue of the offspring rats (P<0.05), but significant increases in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1ß, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). Compared with the model group, the breviscapine administration groups showed alleviated pathological injury of the uterus and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, significant increases in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and HO-1 in the brain tissue of the offspring rats (P<0.05), and significant reductions in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1ß, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). The high-dose breviscapine group had a significantly better effect than the low-dose breviscapine (P<0.05). ML385 significantly inhibited the intervention effect of high-dose breviscapine (P<0.05). CONCLUSIONS: Breviscapine can inhibit inflammatory response in brain tissue of preterm rats caused by intrauterine inflammation by activating the Nrf2 pathway, and it can also inhibit microglial pyroptosis and alleviate brain injury.


Assuntos
Lesões Encefálicas , Flavonoides , Inflamação , Animais , Feminino , Gravidez , Ratos , Peso Corporal , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Lesões Encefálicas/prevenção & controle , Caspase 1 , Inflamação/complicações , Inflamação/tratamento farmacológico , Interleucina-6 , Interleucina-8 , Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Flavonoides/uso terapêutico
6.
Arch Biochem Biophys ; 729: 109390, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36067878

RESUMO

BACKGROUND: To investigate the protective effect of low-dose radiation (LDR) on brain injury in mice induced by doxorubicin (DOX). METHODS: Sixty female BALB/C mice were randomly divided into the control (CTR) group, low-dose radiation (LDR) group, doxorubicin treatment (DOX) group and low-dose radiation before doxorubicin treatment (COM) group. After 72 h of exposure to 75 mGy, the mice were intraperitoneally injected with 7.5 mg/kg of doxorubicin and sacrificed 5 days later. Neuron-specific enolase (NSE), lactate dehydrogenase (LDH), adenosine triphosphate (ATP), neurotransmitters, inflammatory mediators, apoptosis- and oxidative stress-related mediators as well as mitochondrial dysfunction were examined. RESULTS: Compared to the DOX group, the concentrations of DA, 5-HT, EPI and GABA in the COM group were significantly decreased, and the number of TUNEL-positive cells was decreased. In addition, the expression of proapoptotic proteins was downregulated in the COM group compared to the DOX group. Low-dose radiation in advance reduced reactive oxygen species and activated the SOD antioxidant defense system as indicated by significantly reduced GSH expression, increased GSSG expression, increased GPx expression and activation of the Nrf2 redox pathway. After low-dose radiation, the expression levels of ATP5f1, NDUFV1 and CYC1 were close to normal, and the mitochondrial respiratory control rate (RCR) and activity of respiratory chain complex enzymes also tended to be normal. Low-dose radiation upregulated the expression levels of IL-2 and IL-4 but downregulated the expression levels of IL-10 and TGF-ß. CONCLUSION: LDR has a protective effect on brain injury in mice treated with DOX. The mechanism is related to LDR alleviating mitochondrial dysfunction and oxidative stress, which promotes the production of antioxidant damage proteins, thus exerting an adaptive protective effect on cells.


Assuntos
Lesões Encefálicas , Fator 2 Relacionado a NF-E2 , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/prevenção & controle , Doxorrubicina/farmacologia , Feminino , Dissulfeto de Glutationa/metabolismo , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Interleucina-2/farmacologia , Interleucina-4/metabolismo , Lactato Desidrogenases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfopiruvato Hidratase/metabolismo , Fosfopiruvato Hidratase/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Serotonina/metabolismo , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ácido gama-Aminobutírico/metabolismo
7.
Comput Math Methods Med ; 2022: 6436542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872953

RESUMO

Purpose: To present our experience with retractorless surgery for resection of petroclival meningiomas (PCMs) via the subtemporal approach with routine operative instruments. Methods: Clinical data of patients with PCMs who received surgical treatments via subtemporal approach were retrospectively analyzed. Patient demographics, duration of operation, extent of resection, postoperative brain injury rate, postoperative complication, and surgical outcome were reviewed. Results: Twenty-nine consecutive patients with retractorless surgery via subtemporal approach performed between November 2018 and November 2021. The gross total resection rate was 82.8% (N = 24). The incidence of postoperative temporal lobe injury was 3.4% (N = 1). All the procedures were completed without fixed retraction or other specialized instruments. Conclusions: Retractorless surgery via subtemporal approach is a reliable treatment option for PCMs, which can be completed with routine operative instruments.


Assuntos
Lesões Encefálicas/prevenção & controle , Neoplasias Meníngeas/cirurgia , Meningioma/cirurgia , Procedimentos Neurocirúrgicos/métodos , Lesões Encefálicas/etiologia , Humanos , Estudos Retrospectivos
8.
J Perinatol ; 42(10): 1417-1423, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35778486

RESUMO

OBJECTIVE: To determine the impact of neuroprotection interventions bundle on the incidence of severe brain injury or early death (intraventricular hemorrhage grade 3/4 or death by 7 days or ventriculomegaly or cystic periventricular leukomalacia on 1-month head ultrasound, primary composite outcome) in very preterm (270/7 to ≤ 296/7 weeks gestational age) infants. STUDY DESIGN: Prospective quality improvement initiative, from April 2017-September 2019, with neuroprotection interventions bundle including cerebral NIRS, TcCO2, and HeRO monitoring-based management algorithm, indomethacin prophylaxis, protocolized bicarbonate and inotropes use, noise reduction, and neutral positioning. RESULT: There was a decrease in the incidence of the primary composite outcome in the intervention period on unadjusted (N = 11/99, pre-intervention to N = 0/127, intervention period, p < 0.001) and adjusted analysis (adjusted for birthweight and Apgar score <5 at 5 min, aOR = 0.042, 95% CI = 0.003-0.670, p = 0.024). CONCLUSIONS: Neuroprotection interventions bundle was associated with significant decrease in severe brain injury or early death in very preterm infants.


Assuntos
Lesões Encefálicas , Leucomalácia Periventricular , Bicarbonatos , Lesões Encefálicas/complicações , Lesões Encefálicas/prevenção & controle , Hemorragia Cerebral/epidemiologia , Humanos , Indometacina/uso terapêutico , Lactente , Lactente Extremamente Prematuro , Recém-Nascido , Leucomalácia Periventricular/epidemiologia , Estudos Prospectivos , Melhoria de Qualidade
9.
Comput Math Methods Med ; 2022: 7563281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529274

RESUMO

The febrile seizure (FS) is a common disease in emergency pediatrics, and about 30% of patients are children aged between 6 months and 5 years. Therefore, we aim to observe the protective impact of liraglutide (LIR) on brain injury in mice with FS and to explore its relevant mechanisms. Male SD mice were selected, and the FS model was established by heat bath method. The behavioral score was performed on mice with Racine grading, and nerve cells in apoptosis in the hippocampus were determined by TUNEL. The content of glutamate was determined by ELISA. mRNA levels and protein expression of GLP-1, GLP-1R, IL-1ß, IL-6, TNF-α, and cleaved-caspase 3 were examined in mice by q-PCR and WB. Protein expression of γ-aminobutyric acid was influenced by WB as well. LIR prolonged the seizure latency and seizure duration in mice with FS. The GLP-1 and GLP-1R in the mouse hippocampus with FS expressed highly and also inhibited the number of nerve cells in apoptosis, decreased glutamate content, and increased γ-aminobutyric acid expression in the mouse hippocampus with FS. In addition, The IL-1ß, IL-6, and TNF-α, in the mouse hippocampus with FS expressed to reduce with LIR. LIR is protective against brain injury in mice with FS and protects brain injury by inhibiting inflammatory factors in mice with FS. Our finding provides a reference for mitigating and delaying the development of FS as well as the prevention and treatment of brain injury caused by FS.


Assuntos
Lesões Encefálicas , Convulsões Febris , Animais , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/prevenção & controle , Peptídeo 1 Semelhante ao Glucagon , Glutamatos , Humanos , Interleucina-6/genética , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Convulsões Febris/tratamento farmacológico , Convulsões Febris/genética , Convulsões Febris/prevenção & controle , Fator de Necrose Tumoral alfa/genética , Ácido gama-Aminobutírico
10.
Nutr Rev ; 80(11): 2136-2153, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35568996

RESUMO

CONTEXT: Nutritional interventions for newborns with brain injury are scarce, and there are gaps in the knowledge of their mechanisms of action in preventing the occurrence of cerebral palsy (CP) or the incidence of other developmental disabilities. OBJECTIVE: The objective of this review was to assess the effect of nutritional interventions in preventing nonprogressive congenital or perinatal brain injuries, or in improving outcomes related to neurological development. DATA SOURCES: Randomized trials on any nutritional intervention for pregnant women at risk of preterm delivery, or for children with low birth weight, preterm, or with confirmed or suspected microcephaly, CP, or fetal alcohol syndrome disorders (FASDs) were retrieved from MEDLINE, Embase, Scopus, Web of Science, LILACS, and CENTRAL databases from inception to September 17, 2020. DATA EXTRACTION: Data extraction, risk of bias (Cochrane Risk of Bias tool 2), and quality of evidence (GRADE approach) were assessed by 2 authors. DATA ANALYSIS: Pooled risk ratios (RRs) with 95% confidence intervals were calculated using a random-effects meta-analysis. Seventeen studies were included on intravenous interventions (magnesium sulfate [n = 5], amino acids [n = 4], vitamin A [n = 1], and N-acetylcysteine [n = 1]); enteral interventions (vitamin D [n = 1], prebiotic [n = 1], nutrient-enriched formula [n = 1], and speed of increasing milk feeds [n = 1]); and oral interventions (choline [n = 1] and docosahexaenoic acid, choline, and uridine monophosphate [n = 1]). All studies assessed CP, except 1 on FASDs. Eight studies were judged as having high risk of bias. Five studies (7413 babies) with high-quality evidence demonstrated decreased risk of childhood CP (RR = 0.68, 95% CI: 0.52-0.88) with magnesium sulfate. Interventions with amino acids had no effect on CP prevention or other outcomes. Except for 1 study, no other intervention decreased the risk of CP or FASDs. CONCLUSION: Although different types of nutritional interventions were found, only those with antenatal magnesium sulfate were effective in decreasing CP risk in preterm infants. Well-designed, adequately powered randomized clinical trials are required.


Assuntos
Lesões Encefálicas , Paralisia Cerebral , Transtornos do Espectro Alcoólico Fetal , Acetilcisteína , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/prevenção & controle , Paralisia Cerebral/tratamento farmacológico , Paralisia Cerebral/epidemiologia , Paralisia Cerebral/prevenção & controle , Criança , Colina , Ácidos Docosa-Hexaenoicos , Feminino , Transtornos do Espectro Alcoólico Fetal/tratamento farmacológico , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Sulfato de Magnésio/uso terapêutico , Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto , Uridina Monofosfato , Vitamina A , Vitamina D
11.
Biochem Biophys Res Commun ; 605: 162-170, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35339012

RESUMO

CGA47-66 (Chromofungin, CHR), is a peptide derived from the N-terminus of chromogranin A (CgA), has been proven to inhibit the lipopolysaccharide (LPS)-induced brain injury. However, the underlying mechanism is still unknown. We found that CGA47-66 exerted a protective effect on cognitive impairment by inhibiting the destruction of the blood-brain barrier (BBB) in the LPS-induced sepsis mice model. In addition, the hCMEC/D3 cell line was used to establish an in vitro BBB model. Under LPS stimulation, CGA47-66 could significantly alleviate the hyperpermeability of the BBB, the destruction of tight junction proteins, and the rearrangement of F-actin. To investigate the underlying mechanism, we used LY294002, a PI3K inhibitor, which partially reduced the protective effect of CGA47-66 on the integrity of BBB. Indicating that the PI3K/AKT pathway plays a vital role in the brain-protective function of CGA47-66, which might be a potential therapeutic target for septic brain injury.


Assuntos
Barreira Hematoencefálica , Lesões Encefálicas , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Lesões Encefálicas/prevenção & controle , Cromogranina A/metabolismo , Cromogranina A/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Int J Radiat Biol ; 98(8): 1316-1329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35130116

RESUMO

PURPOSE: To clarify the preventive and therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) on brain injury induced by X-ray cranial irradiation, preliminarily identify the mechanism and provide a novel clinical approach for the prevention and treatment of radiation-induced brain injury (RBI). MATERIALS AND METHODS: Male C57BL/6 mice were randomly divided into the sham group, large fractionated dose (5 Gy × 4 d) group, large fractionated dose + rTMS (5 Gy × 4 d + rTMS) group, conventional fractionated dose (2 Gy × 10 d) group and conventional fractionated dose + rTMS (2 Gy × 10 d + rTMS) group. After cranial irradiation and rTMS, behavioral experiments, morphological staining and molecular biology experiments were performed. We further determined the mechanism of rTMS on the prevention and treatment of RBI, including changes in hippocampal neuronal apoptosis, neural stem cell (NSC) proliferation and differentiation, and neuronal synaptic plasticity. RESULTS: rTMS alleviated the negative effects of cranial radiation on the general health of mice and promoted their recovery. rTMS ameliorated the impairment of spatial learning and memory induced by cranial radiation, and this beneficial effect was more robust in the conventional fractionated dose group than the large fractionated dose group. Moreover, rTMS alleviated the alterations in hippocampal structure and neuronal death and had preventive and therapeutic effects against RBI. In addition, rTMS reduced hippocampal cell apoptosis, promoted NSC proliferation and differentiation in the hippocampus after cranial irradiation, and enhanced neuronal synaptic plasticity in the hippocampus. Subsequent studies showed that rTMS upregulated the expression of learning- and memory-related proteins. CONCLUSION: rTMS could alleviate learning and memory impairment caused by RBI, and the preventive and therapeutic effects of rTMS were better for the conventional fraction radiation paradigms.


Assuntos
Lesões Encefálicas , Lesões Experimentais por Radiação , Estimulação Magnética Transcraniana , Animais , Lesões Encefálicas/etiologia , Lesões Encefálicas/prevenção & controle , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Lesões Experimentais por Radiação/terapia , Resultado do Tratamento
13.
Life Sci ; 294: 120376, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123998

RESUMO

AIMS: We aimed to investigate putative neuroprotective effects of nesfatin-1 on oxidative brain injury and memory dysfunction induced by a single epileptic seizure and to compare these effects with those of antiepileptic phenytoin. MAIN METHODS: Wistar albino rats were randomly divided into a control group and pentylenetetrazole (PTZ)-seizure groups pretreated intraperitoneally (ip) with saline or nesfatin-1 (NES-1; 0.3, 1 or 3 µg/kg/day) or phenytoin (PHE; 40 mg/kg/day) or PHE + NES-1 (0.3 µg/kg/day) at 30 min before the single-dose PTZ injection (45 mg/kg; ip). All treatments were repeated at the 24th and 48th h of the provoked epileptic seizure. Passive-avoidance test was performed to assess memory function. The rats were decapitated at the 72nd hour of seizures and brain tissues were analyzed for histopathological changes and for measuring levels of malondialdehyde, glutathione, myeloperoxidase activity and reactive oxygen/nitrogen species. KEY FINDINGS: In parallel to the effects of phenytoin, NES-1 reduced seizure score, elevated antioxidant glutathione content, depressed generation of nitric oxide and protected against seizure-induced neuronal damage. Additionally, increased malondialdehyde levels and elevated glial fibrillary acidic protein immunoreactivity in the cortex and hippocampus were decreased and memory dysfunction was improved by NES-1. However, NES-1 had no impact on myeloperoxidase activity or production of reactive oxygen species in the brain. SIGNIFICANCE: The findings of the present study demonstrate that nesfatin-1 treatment provides neuroprotection against seizure-induced oxidative damage and memory dysfunction by inhibiting reactive nitrogen species and upregulating antioxidant capacity, indicating its potential in alleviating memory deficits and increasing the effectiveness of conventional anti-convulsant therapies.


Assuntos
Lesões Encefálicas/prevenção & controle , Epilepsia/complicações , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Nucleobindinas/metabolismo , Estresse Oxidativo , Convulsões/complicações , Animais , Anticonvulsivantes/farmacologia , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Epilepsia/patologia , Glutationa/metabolismo , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Óxido Nítrico/metabolismo , Nucleobindinas/genética , Fenitoína/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Convulsões/patologia
14.
Fetal Pediatr Pathol ; 41(4): 603-615, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34193008

RESUMO

BackgroundWe compared the neuroprotective effects of Fingolimod (fng), a neuroprotective and anti-inflammatory drug, with that of magnesium sulfate (MgSO4), alone and in combination, in fetal rat whose mothers were exposed to endotoxin.MethodSeven groups of pregnant rats (28 total) were evaluated at 0.8 gestation - Group1 - saline only; 2 - endotoxin only; 3 - endotoxin + MgSO4; 4 - endotoxin + fng; 5 - endotoxin + MgSO4 + fng; 6 - saline + fng; 7 - saline + MgSO4 + fng. Preterm labor was induced 4 h after intraperitoneal endotoxin administration. Fetal brain samples were examined immunohistochemically using S100ß, IL-6, and IL-10.ResultsEndotoxin caused increased expression of S100ß, IL-6, and IL-10. Compared with MgSO4 alone, combined treatment was associated with lower expression of IL-10, IL-6 and S100 ß.ConclusionFng decreases inflammatory markers after in-utero exposure to endotoxin, has a synergistic effect combined with MgSO4, and may be a candidate neuroprotective drug for inflammation-induced preterm brain injury.


Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Animais , Lesões Encefálicas/complicações , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/prevenção & controle , Endotoxinas , Feminino , Cloridrato de Fingolimode/farmacologia , Humanos , Inflamação/tratamento farmacológico , Interleucina-10 , Interleucina-6 , Sulfato de Magnésio/farmacologia , Sulfato de Magnésio/uso terapêutico , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Gravidez , Ratos
15.
Oxid Med Cell Longev ; 2021: 6966394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795842

RESUMO

Subarachnoid hemorrhage (SAH) is a cerebrovascular disease associated with high morbidity and mortality. CXCR4 provides neuroprotective effects, which can alleviate brain injury and inflammation induced by stroke. Previous studies have suggested that CXCR4 reduces the pyroptosis of LPS-stimulated BV2 cells. The purpose of this study was to evaluate the antipyroptosis effects and mechanisms of CXCR4 after SAH. SAH animal model was induced via endovascular perforation. A total of 136 male Sprague-Dawley rats were used. Recombinant human cysteine-X-cysteine chemokine ligand 12 (rh-CXCL-12) was administered intranasally at 1 h after SAH induction. To investigate the underlying mechanism, the inhibitor of CXCR4, AMD3100, was administered intraperitoneally at 1 h before SAH. The neurobehavior tests were assessed, followed by performing Western blot and immunofluorescence staining. The Western blot results suggested that the expressions of endogenous CXCL-12, CXCR4, and NLRP1 were increased and peaked at 24 h following SAH. Immunofluorescence staining showed that CXCR4 was expressed on neurons, microglia, and astrocytes. Rh-CXCL-12 treatment improved the neurological deficits and reduced the number of FJC-positive cells, IL-18-positive neurons, and cleaved caspase-1(CC-1)-positive neurons after SAH. Meanwhile, rh-CXCL-12 treatment increased the levels of CXCL-12 and CXCR4, and reduced the levels of NLRP1, IL-18, IL-1ß, and CC-1. Moreover, the administration of AMD3100 abolished antipyroptosis effects of CXCL-12 and its regulation of CXCR4 post-SAH. The CXCR4/NLRP1 signaling pathway may be involved in CXCL-12-mediated neuronal pyroptosis after SAH. Early administration of CXCL-12 may be a preventive and therapeutic strategy against brain injury after SAH.


Assuntos
Lesões Encefálicas/prevenção & controle , Quimiocina CXCL12/administração & dosagem , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Piroptose , Receptores CXCR4/metabolismo , Hemorragia Subaracnóidea/complicações , Animais , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Quimiocina CXCL12/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Masculino , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Receptores CXCR4/genética , Transdução de Sinais
16.
Nutrients ; 13(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34836132

RESUMO

Injuries to the developing brain due to hypoxia-ischemia (HI) are common causes of neurological disabilities in preterm babies. HI, with oxygen deprivation to the brain or reduced cerebral blood perfusion due to birth asphyxia, often leads to severe brain damage and sequelae. Injury mechanisms include glutamate excitotoxicity, oxidative stress, blood-brain barrier dysfunction, and exacerbated inflammation. Nutritional intervention is emerging as a therapeutic alternative to prevent and rescue brain from HI injury. Lactoferrin (Lf) is an iron-binding protein present in saliva, tears, and breast milk, which has been shown to have antioxidant, anti-inflammatory and anti-apoptotic properties when administered to mothers as a dietary supplement during pregnancy and/or lactation in preclinical studies of developmental brain injuries. However, despite Lf's promising neuroprotective effects, there is no established dose. Here, we tested three different doses of dietary maternal Lf supplementation using the postnatal day 3 HI model and evaluated the acute neurochemical damage profile using 1H Magnetic Resonance Spectroscopy (MRS) and long-term microstructure alterations using advanced diffusion imaging (DTI/NODDI) allied to protein expression and histological analysis. Pregnant Wistar rats were fed either control diet or bovine Lf supplemented chow at 0.1, 1, or 10 g/kg/body weight concentration from the last day of pregnancy (embryonic day 21-E21) to weaning. At postnatal day 3 (P3), pups from both sexes had their right common carotid artery permanently occluded and were exposed to 6% oxygen for 30 min. Sham rats had the incision but neither surgery nor hypoxia episode. At P4, MRS was performed on a 9.4 T scanner to obtain the neurochemical profile in the cortex. At P4 and P25, histological analysis and protein expression were assessed in the cortex and hippocampus. Brain volumes and ex vivo microstructural analysis using DTI/NODDI parameters were performed at P25. Acute metabolic disturbance induced in cortical tissue by HIP3 was reversed with all three doses of Lf. However, data obtained from MRS show that Lf neuroprotective effects were modulated by the dose. Through western blotting analysis, we observed that HI pups supplemented with Lf at 0.1 and 1 g/kg were able to counteract glutamatergic excitotoxicity and prevent metabolic failure. When 10 g/kg was administered, we observed reduced brain volumes, increased astrogliosis, and hypomyelination, pointing to detrimental effects of high Lf dose. In conclusion, Lf supplementation attenuates, in a dose-dependent manner, the acute and long-term cerebral injury caused by HI. Lf reached its optimal effects at a dose of 1 g/kg, which pinpoints the need to better understand effects of Lf, the pathways involved and possible harmful effects. These new data reinforce our knowledge regarding neuroprotection in developmental brain injury using Lf through lactation and provide new insights into lactoferrin's neuroprotection capacities and limitation for immature brains.


Assuntos
Lesões Encefálicas/prevenção & controle , Suplementos Nutricionais , Hipóxia-Isquemia Encefálica/terapia , Lactoferrina/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Lesões Encefálicas/etiologia , Relação Dose-Resposta a Droga , Feminino , Hipóxia-Isquemia Encefálica/complicações , Lactação , Masculino , Neuroproteção/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar
17.
Dis Markers ; 2021: 3682034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790277

RESUMO

OBJECTIVE: This study is aimed at exploring the possible neuroprotective mechanism of aspirin and the effect of bacterial endotoxin lipopolysaccharide (LPS) during cerebral ischaemia-reperfusion (CIRP) injury. METHODS: We established three animal models: the CIRP, LPS, and CIRP+LPS models. Mortality, the injured brain area, and the beam walking test were used to estimate the degree of cerebral injury among the rats. Immunohistochemistry and immunofluorescence were used to detect activated microglia, matrix metalloproteinase-3 (MMP-3), and osteopontin (OPN). RESULTS: The injured brain area and mortality were dramatically reduced (p < 0.01), and the beam walking test scores were elevated (p < 0.01) in the acetylsalicylic acid (ASA) group compared to the control group. The number of microglia-, MMP-3-, and OPN-positive cells also increased. Furthermore, the number of GSI-B4, OPN, and MMP-3 cells decreased in the ASA group compared to the control group. After LPS stimulation, the number of microglia reached a peak at 24 h; at 7 d, these cells disappeared. In the ASA group, the number of microglia was significantly smaller (p < 0.05), especially at 24 h (p < 0.01), compared to the LPS group. Moreover, the injured brain area and the mortality were dramatically increased and the beam walking test scores were reduced (p < 0.01) after LPS simulation following CIRP. The degree of injury in the ASA group resembled that in the control group. However, the number of MMP-3-immunoreactive neurons or microglia was significantly larger than that of the control group (p < 0.05). In the ASA group, the MMP-3 expression was also considerably decreased (p < 0.05). CONCLUSIONS: After CIRP, microglia were rapidly activated and the expression of MMP-3 and OPN significantly increased. For rats injected with LPS at reperfusion, the injured brain area and mortality also dramatically increased and the neurologic impairment worsened. However, ASA exhibited a neuroprotective effect during CIRP injury. Furthermore, ASA can reverse LPS-induced cerebral injury and inhibit the inflammatory reaction after CIRP injury.


Assuntos
Aspirina/farmacologia , Lesões Encefálicas/prevenção & controle , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Metaloproteinase 3 da Matriz/química , Fármacos Neuroprotetores/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/enzimologia , Lesões Encefálicas/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
18.
FASEB J ; 35(12): e22019, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34792819

RESUMO

Exogenously applied mature naïve B220+ /CD19+ /IgM+ /IgD+ B cells are strongly protective in the context of tissue injury. However, the mechanisms by which B cells detect tissue injury and aid repair remain elusive. Here, we show in distinct models of skin and brain injury that MyD88-dependent toll-like receptor (TLR) signaling through TLR2/6 and TLR4 is essential for the protective benefit of B cells in vivo, while B cell-specific deletion of MyD88 abrogated this effect. The B cell response to injury was multi-modal with simultaneous production of both regulatory cytokines, such as IL-10, IL-35, and transforming growth factor beta (TGFß), and inflammatory cytokines, such as tumor necrosis factor alpha (TNFα), IL-6, and interferon gamma. Cytometry analysis showed that this response was time and environment-dependent in vivo, with 20%-30% of applied B cells adopting an immune modulatory phenotype with high co-expression of anti- and pro-inflammatory cytokines after 18-48 h at the injury site. B cell treatment reduced the expression of TNFα and increased IL-10 and TGFß in infiltrating immune cells and fibroblasts at the injury site. Proteomic analysis further showed that B cells have a complex time-dependent homeostatic effect on the injured microenvironment, reducing the expression of inflammation-associated proteins, and increasing proteins associated with proliferation, tissue remodeling, and protection from oxidative stress. These findings chart and validate a first mechanistic understanding of the effects of B cells as an immunomodulatory cell therapy in the context of tissue injury.


Assuntos
Linfócitos B/fisiologia , Lesões Encefálicas/prevenção & controle , Citocinas/metabolismo , Fator 88 de Diferenciação Mieloide/fisiologia , Pele/imunologia , Cicatrização , Animais , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Interleucina-10/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Transdução de Sinais , Pele/lesões , Pele/metabolismo , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Eur J Pharmacol ; 912: 174620, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34752743

RESUMO

BACKGROUND: Epilepsy is a common chronic neurological disease. Recurrent seizures can cause irreversible brain damage. This study aimed to explore the regulation of Genistein on JAK2/STAT3 and Keap1/Nrf2 signaling pathway and the protective effects on brain injury after epilepsy. METHODS: Pentylenetetrazole (PTZ) was used to induce epilepsy in developing rats and Genistein was used for pretreatment of epilepsy. The seizure latency, grade scores and duration of the first generalized tonic-clonic seizure (GTCs) were recorded. Hippocampus tissue was sampled at 24 h post-epilepsy. Immunofluorescence staining was used to observe mature neurons, activated microglia and astrocytes in the hippocampal CA1 region. Western blot and qRT-PCR were used to determine the protein and mRNA levels of JAK2, STAT3, TNF-α, IL-1ß, Keap1, Nrf2, HO-1, NQO1, caspase3, Bax and Bcl2 in the hippocampus. RESULTS: Immunofluorescence showed that the number of neurons significantly decreased, and activated microglia and astrocytes significantly increased after epilepsy; Western blot and q-PCR showed that the expressions of JAK2, STAT3, TNF-α, IL-1ß, Keap1, caspase3 and Bax significantly increased, while Nrf2, HO-1, NQO1 and Bcl-2 were significantly reduced after epilepsy. These effects were reversed by Genistein treatment. Moreover, Genistein was found to prolong seizure latency and reduce seizure intensity score and duration of generalized tonic-clonic seizures(GTCs) CONCLUSIONS: Genistein can activate the Keap1/Nrf2 antioxidant stress pathway and attenuate the activation of microglia and astrocytes. Genistein also inhibits the JAK2-STAT3 inflammation pathway and expression of apoptotic proteins, and increases the number of surviving neurons, thus having a protective effect on epilepsy-induced brain damage.


Assuntos
Lesões Encefálicas/prevenção & controle , Genisteína/farmacologia , Janus Quinase 2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Fator de Transcrição STAT3/metabolismo , Animais , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Caspase 3/genética , Caspase 3/metabolismo , Modelos Animais de Doenças , Epilepsia/complicações , Epilepsia/metabolismo , Epilepsia/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Janus Quinase 2/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Masculino , Microglia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
20.
J Neuroinflammation ; 18(1): 232, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654458

RESUMO

BACKGROUND: Brain-resident microglia have a distinct origin compared to macrophages in other organs. Under physiological conditions, microglia are maintained by self-renewal from the local pool, independent of hematopoietic progenitors. Pharmacological depletion of microglia during whole-brain radiotherapy prevents synaptic loss and long-term recognition memory deficits. However, the origin or repopulated cells and the mechanisms behind these protective effects are unknown. METHODS: CD45low/int/CD11b+ cells from naïve brains, irradiated brains, PLX5622-treated brains and PLX5622 + whole-brain radiotherapy-treated brains were FACS sorted and sequenced for transcriptomic comparisons. Bone marrow chimeras were used to trace the origin and long-term morphology of repopulated cells after PLX5622 and whole-brain radiotherapy. FACS analyses of intrinsic and exotic synaptic compartments were used to measure phagocytic activities of microglia and repopulated cells. In addition, concussive brain injuries were given to PLX5622 and brain-irradiated mice to study the potential protective functions of repopulated cells after PLX5622 + whole-brain radiotherapy. RESULTS: After a combination of whole-brain radiotherapy and microglia depletion, repopulated cells are brain-engrafted macrophages that originate from circulating monocytes. Comparisons of transcriptomes reveal that brain-engrafted macrophages have an intermediate phenotype that resembles both monocytes and embryonic microglia. In addition, brain-engrafted macrophages display reduced phagocytic activity for synaptic compartments compared to microglia from normal brains in response to a secondary concussive brain injury. Importantly, replacement of microglia by brain-engrafted macrophages spare mice from whole-brain radiotherapy-induced long-term cognitive deficits, and prevent concussive injury-induced memory loss. CONCLUSIONS: Brain-engrafted macrophages prevent radiation- and concussion-induced brain injuries and cognitive deficits.


Assuntos
Lesões Encefálicas/prevenção & controle , Encéfalo/fisiologia , Encéfalo/efeitos da radiação , Fracionamento da Dose de Radiação , Macrófagos/fisiologia , Macrófagos/transplante , Animais , Lesões Encefálicas/radioterapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA