Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 13(8)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32540990

RESUMO

Pramipexole (PPX), a D2-like receptor agonist, is generally used in the treatment of Parkinson's disease and restless leg syndrome. Its neuroprotective effects have been shown against various neurological disorders. Recent research work has demonstrated that PPX exerts neuroprotection through mitochondria. However, the neuromodulator-related effects of PPX against traumatic brain injury (TBI) remain unexplored. The present study, therefore, investigated the mechanism of neuroprotection by PPX against oxidative stress, mitochondrial dysfunction and neuronal damage following TBI in rats. We hypothesized that the neuroprotection by PPX in TBI-subjected rats might involve activation of the Nrf2/HO-1 (also known as Nfe2l2/Hmox1) signaling pathway. PPX was injected intraperitoneally (0.25 mg/kg body weight and 1.0 mg/kg body weight) at different time intervals post-TBI. Several neurobehavioral parameters were assessed at 48 h post-TBI, and the brain was isolated for molecular and biochemical analysis. The results demonstrated that PPX treatment significantly improved the behavioral deficits, decreased the lipid peroxidation rate, increased glutathione levels and decreased 4-hydroxynonenal levels in TBI-subjected rats. PPX also increased the activities of glutathione peroxidase and superoxide dismutase enzymes. In addition, PPX treatment inhibited mitochondrial reactive oxygen species production, restored mitochondrial membrane potential and increased ATP levels after a TBI. Further, PPX treatment reduced the Bax/Bcl2 ratio and translocation of Bax to mitochondria and cytochrome-c to the cytosol. Finally, PPX treatment greatly accelerated the translocation of Nrf2 to the nucleus and upregulated HO-1 protein expression. We conclude that the neuroprotective effects of PPX are mediated by activation of the Nrf2/HO-1 signaling pathway following TBI.This article has an associated First Person interview with the first author of the paper.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/metabolismo , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pramipexol/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/enzimologia , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
2.
Biochim Biophys Acta Proteins Proteom ; 1868(8): 140428, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32305689

RESUMO

Investigations of Alzheimer's disease (AD), traumatic brain injury (TBI), and related brain disorders have provided extensive evidence for involvement of cathepsin B, a lysosomal cysteine protease, in mediating the behavioral deficits and neuropathology of these neurodegenerative diseases. This review integrates findings of cathepsin B regulation in clinical biomarker studies, animal model genetic and inhibitor evaluations, structural studies, and lysosomal cell biological mechanisms in AD, TBI, and related brain disorders. The results together indicate the role of cathepsin B in the behavioral deficits and neuropathology of these disorders. Lysosomal leakage occurs in AD and TBI, and related neurodegeneration, which leads to the hypothesis that cathepsin B is redistributed from the lysosome to the cytosol where it initiates cell death and inflammation processes associated with neurodegeneration. These results together implicate cathepsin B as a major contributor to these neuropathological changes and behavioral deficits. These findings support the investigation of cathepsin B as a potential drug target for therapeutic discovery and treatment of AD, TBI, and TBI-related brain disorders.


Assuntos
Doença de Alzheimer/enzimologia , Lesões Encefálicas Traumáticas/enzimologia , Encéfalo/enzimologia , Catepsina B/genética , Transtornos Neurocognitivos/enzimologia , Neurônios/enzimologia , Adulto , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Catepsina B/antagonistas & inibidores , Catepsina B/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Criança , Citosol/efeitos dos fármacos , Citosol/enzimologia , Modelos Animais de Doenças , Feto , Regulação da Expressão Gênica , Humanos , Lactente , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Terapia de Alvo Molecular , Transtornos Neurocognitivos/tratamento farmacológico , Transtornos Neurocognitivos/genética , Transtornos Neurocognitivos/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Transdução de Sinais
3.
Med Sci Monit ; 26: e922009, 2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32036381

RESUMO

BACKGROUND Intra-abdominal hypertension (IAH) is associated with high morbidity and mortality. IAH leads to intra-abdominal tissue damage and causes dysfunction in distal organs such as the brain. The effect of a combined injury due to IAH and traumatic brain injury (TBI) on the integrity of the blood-brain barrier (BBB) has not been investigated. MATERIAL AND METHODS Intracranial pressure (ICP) monitoring, brain water content, EB permeability detection, immunofluorescence staining, real-time PCR, and Western blot analysis were used to examine the effects of IAH and TBI on the BBB in rats, and to characterize the protective effects of basic fibroblast growth factor (bFGF) on combined injury-induced BBB damage. RESULTS Combined injury from IAH and TBI to the BBB resulted in brain edema and increased intracranial pressure. The effects of bFGF on alleviating the rat BBB injuries were determined, indicating that bFGF regulated the expression levels of the tight junction (TJ), adhesion junction (AJ), matrix metalloproteinase (MMP), and IL-1ß, as well as reduced BBB permeability, brain edema, and intracranial pressure. Moreover, the FGFR1 antagonist PD 173074 and the ERK antagonist PD 98059 decreased the protective effects of bFGF. CONCLUSIONS bFGF effectively protected the BBB from damage caused by combined injury from IAH and TBI, and binding of FGFR1 and activation of the ERK signaling pathway was involved in these effects.


Assuntos
Barreira Hematoencefálica/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Hipertensão Intra-Abdominal/tratamento farmacológico , Sistema de Sinalização das MAP Quinases , Substâncias Protetoras/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/enzimologia , Edema Encefálico/complicações , Edema Encefálico/patologia , Edema Encefálico/fisiopatologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/enzimologia , Lesões Encefálicas Traumáticas/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Interleucina-1beta/metabolismo , Hipertensão Intra-Abdominal/complicações , Hipertensão Intra-Abdominal/enzimologia , Hipertensão Intra-Abdominal/fisiopatologia , Pressão Intracraniana/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Metaloproteinases da Matriz/metabolismo , Microvasos/patologia , Permeabilidade , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos Sprague-Dawley , Proteínas de Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Neurochem Res ; 45(5): 1097-1106, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32072445

RESUMO

Traumatic brain injury (TBI) has become a leading cause of death and disability all over the world. Pharmacological suppression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) can inhibit oxidative stress which is implicated in the pathology of TBI. GSK2795039 was reported to target NOX2 to inhibit [Formula: see text] and ROS production. The present study aimed to investigate the effect of GSK2795039 on NOX2 activity and neurological deficits in a TBI mouse model. TBI mouse model was established by a weight-drop to mouse skull. GSK2795039 at a dose of 100 mg/kg was administrated to mice 30 min before TBI. NOX2 expression and activity were detected by Western blot and biochemical method. Neurological damage and apoptosis were detected by behavioral test and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. GSK2795039 significantly inhibited NOX2 expression and activity in the TBI mouse model. It also attenuated TBI-induced neurological deficits, apoptosis, and neurological recovery. The results indicate that GSK2795039 can be used as a potential drug for TBI treatment.


Assuntos
Aminopiridinas/uso terapêutico , Lesões Encefálicas Traumáticas/enzimologia , Lesões Encefálicas Traumáticas/prevenção & controle , NADPH Oxidase 2/antagonistas & inibidores , Neuroproteção/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Sulfonamidas/uso terapêutico , Aminopiridinas/farmacologia , Animais , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NADPH Oxidase 2/metabolismo , Neuroproteção/fisiologia , Recuperação de Função Fisiológica/fisiologia , Sulfonamidas/farmacologia , Resultado do Tratamento
5.
PLoS One ; 14(3): e0213673, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30856215

RESUMO

Primary and secondary traumatic brain injury (TBI) can cause tissue damage by inducing cell death pathways including apoptosis, necroptosis, and autophagy. However, similar pathways can also lead to senescence. Senescent cells secrete senescence-associated secretory phenotype proteins following persistent DNA damage response signaling, leading to cell disorders. TBI initially activates the cell cycle followed by the subsequent triggering of senescence. This study aims to clarify how the mRNA and protein expression of different markers of cell cycle and senescence are modulated and switched over time after TBI. We performed senescence-associated-ß-galactosidase (SA-ß-gal) staining, immunohistochemical analysis, and real-time PCR to examine the time-dependent changes in expression levels of proteins and mRNA, related to cell cycle and cellular senescence markers, in the cerebrum during the initial 14 days after TBI using a mouse model of controlled cortical impact (CCI). Within the area adjacent to the cerebral contusion after TBI, the protein and/or mRNA expression levels of cell cycle markers were increased significantly until 4 days after injury and senescence markers were significantly increased at 4, 7, and 14 days after injury. Our findings suggested that TBI initially activated the cell cycle in neurons, astrocytes, and microglia within the area adjacent to the hemicerebrum contusion in TBI, whereas after 4 days, such cells could undergo senescence in a cell-type-dependent manner.


Assuntos
Lesões Encefálicas Traumáticas/enzimologia , Lesões Encefálicas Traumáticas/fisiopatologia , Senescência Celular , Cérebro/enzimologia , beta-Galactosidase/metabolismo , Animais , Apoptose , Autofagia , Cérebro/fisiopatologia , Ciclina D1/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Transdução de Sinais
6.
Drug Des Devel Ther ; 12: 2497-2508, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127597

RESUMO

BACKGROUND: The neuroprotective effects of Baicalin have been confirmed in several central nervous system (CNS) diseases. However, its possible effect on traumatic brain injury (TBI) model is still not clear. The present study is aimed to investigate the role and the underling mechanisms of 7-D-glucuronic acid-5,6-dihydroxyflavone (Baicalin) on TBI model. METHODS: The weight-drop model of TBI in Institute of Cancer Research mice was treated with Baicalin intraperitoneally at 30 minutes after TBI. LY294002 (LY) (a commonly used PI3K/Akt pathway inhibitor) was injected into the left ventricle at 30 minutes before TBI. All mice were euthanized at 24 hours after TBI to collect the brain tissue for a series of tests except for neurological function, which was measured at 2 hours and 1 and 3 days post-TBI. RESULTS: Baicalin administration significantly improved neurobehavioral function, alleviated brain edema, and reduced apoptosis-positive cells by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay accompanied with the upregulation of B-cell lymphoma 2 (Bcl-2) and downregulation of Bcl-2-associated X protein (Bax) and cleaved-caspase 3 by Western blot. Besides, TBI-induced oxidant stress status was also restored in the Baicalin group by measuring malondialdehyde (MDA) content, glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels in the injured brain cortex. Furthermore, translocation of Nrf2 to the nucleus was dramatically enhanced by Baicalin verified by immunofluorescence and Western blot analyses. Accordingly, its downstream antioxidative enzymes nicotinamide adenine dinucleotide phosphate:quinine oxidoreductase 1 (NQO-1) and heme oxygenase 1 (HO-1) were also activated by Baicalin confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. However, cotreatment with Baicalin and LY could partly abolish Baicalin-induced activation of Nrf2 and its neuroprotective effects in TBI. CONCLUSION: This study demonstrates that Baicalin provides a neuroprotective effect in TBI mice model via activating the Akt/Nrf2 pathway.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Flavonoides/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Edema Encefálico/enzimologia , Edema Encefálico/patologia , Edema Encefálico/prevenção & controle , Lesões Encefálicas Traumáticas/enzimologia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/psicologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos ICR , Neurônios/enzimologia , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Free Radic Biol Med ; 123: 62-71, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29782989

RESUMO

The NADPH oxidase (NOX) enzyme family is a major source of reactive oxygen species (ROS) and contributor to the secondary pathology underlying traumatic brain injury (TBI). However, little is known about how NOX-derived ROS influences the proliferation and cell-fate determination of neural stem/progenitor cells (NSCs/NPCs) following TBI. In the current study, we found that deletion of NOX2 (NOX2-KO) significantly decreases the population of radial glia-like NSCs and neuroblasts but maintains the population of non-radial Sox2 expressing stem cells under physiological (non-injury) conditions. Surprisingly, the brains of NOX2-KO mice demonstrated a robust increase in the number of neuroblasts during the first week after TBI, as compared to the wild-type group. This increase may result from an enhanced proliferation of NPCs in a lower ROS environment after brain injury, as further examination revealed a significant increase of dividing neuroblasts in both NOX2-KO and NOX inhibitor-treated mouse brain during the first week following TBI. Finally, 5-Bromo-2'-deoxyuridine (BrdU) lineage tracing demonstrated a significantly increased number of newborn neurons were present in the perilesional cortex of NOX2-KO mice at 5 weeks post TBI, indicating that deletion of NOX2 promotes long-term neurogenesis in the injured brain following TBI. Altogether, these findings suggest that targeting NOX through genetic deletion or inhibition enhances post-injury neurogenesis, which may be beneficial for recovery following TBI.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Córtex Cerebral/citologia , NADPH Oxidase 2/fisiologia , Células-Tronco Neurais/citologia , Neurogênese , Neurônios/citologia , Animais , Lesões Encefálicas Traumáticas/enzimologia , Córtex Cerebral/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/enzimologia , Neurônios/enzimologia , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
8.
Redox Biol ; 16: 285-293, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29571125

RESUMO

Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Despite intense investigation, no neuroprotective agents for TBI have yet translated to the clinic. Recent efforts have focused on identifying potential therapeutic targets that underlie the secondary TBI pathology that evolves minutes to years following the initial injury. Oxidative stress is a key player in this complex cascade of secondary injury mechanisms and prominently contributes to neurodegeneration and neuroinflammation. NADPH oxidase (NOX) is a family of enzymes whose unique function is to produce reactive oxygen species (ROS). Human post-mortem and animal studies have identified elevated NOX2 and NOX4 levels in the injured brain, suggesting that these two NOXs are involved in the pathogenesis of TBI. In support of this, NOX2 and NOX4 deletion studies have collectively revealed that targeting NOX enzymes can reduce oxidative stress, attenuate neuroinflammation, promote neuronal survival, and improve functional outcomes following TBI. In addition, NOX inhibitor studies have confirmed these findings and demonstrated an extended critical window of efficacious TBI treatment. Finally, the translational potential, caveats, and future directions of the field are highlighted and discussed throughout the review.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , NADPH Oxidase 2/genética , NADPH Oxidase 4/genética , Estresse Oxidativo/genética , Encéfalo/enzimologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/enzimologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/fisiopatologia , Humanos , NADPH Oxidase 2/antagonistas & inibidores , NADPH Oxidase 4/antagonistas & inibidores , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Neurônios/enzimologia , Neurônios/patologia , Oxirredução , Espécies Reativas de Oxigênio
9.
Biochim Biophys Acta Mol Cell Res ; 1864(11 Pt A): 2001-2014, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28435009

RESUMO

The focus of this article is to highlight novel inhibitors and current examples where the use of selective small-molecule inhibitors has been critical in defining the roles of matrix metalloproteinases (MMPs) in disease. Selective small-molecule inhibitors are surgical chemical tools that can inhibit the targeted enzyme; they are the method of choice to ascertain the roles of MMPs and complement studies with knockout animals. This strategy can identify targets for therapeutic development as exemplified by the use of selective small-molecule MMP inhibitors in diabetic wound healing, spinal cord injury, stroke, traumatic brain injury, cancer metastasis, and viral infection. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.


Assuntos
Animais Geneticamente Modificados , Lesões Encefálicas Traumáticas/tratamento farmacológico , Metaloproteinases da Matriz/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Traumatismos da Medula Espinal/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Viroses/tratamento farmacológico , Animais , Lesões Encefálicas Traumáticas/enzimologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Humanos , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Metaloproteinases da Matriz/genética , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Viroses/enzimologia , Viroses/genética , Viroses/patologia
10.
Neurochem Int ; 96: 46-55, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26939762

RESUMO

BACKGROUND: Significant protease activations have been reported after traumatic brain injury (TBI). These proteases are responsible for cleavage of transmembrane proteins in neurons, glial, and endothelial cells and this results in the release of their extracellular domains (ectodomains). METHODS: Two TBI models were employed here, representing both closed head injury (CHI) and open head injury (OHI). In situ zymography, immunohistochemistry, bright field and confocal microscopy, quantification of immunopositive cells and statistical analysis were applied. RESULTS: We found, using in situ zymography, that gelatinase activity of matrix metalloproteinases (MMP)-2 and MMP-9 was upregulated in cortex of both injury models. Using immunohistochemistry for several MPPs (Matrix metalloproteinases) and ADAMs (disintegrin and metalloproteinases), including MMP-2, -9, ADAM-10, -17, distinct patterns of induction were observed in the two TBI models. In closed head injury, an early increase in protein expression of MMP-2, -9 and ADAM-17 was found as early as 10 min post injury in cortex and peaked at 1 h for all 4 proteases examined. In contrast, after OHI the maximal expression was observed locally neighboring the impact site, at a later time-point, as long as 24 h after the injury for MMP-2 and MMP-9. Confocal microscopy revealed colocalization of the 4 proteases with the neuronal marker NeuN in CHI, but only MMP2 colocalized with NeuN in OHI. CONCLUSIONS: The findings may lead to a trauma-induced therapeutic strategy triggered soon after a primary insult to improve survival and to reduce brain damage following TBI.


Assuntos
Traumatismos Craniocerebrais/enzimologia , Traumatismos Cranianos Fechados/enzimologia , Metaloproteinase 2 da Matriz/fisiologia , Metaloproteinase 9 da Matriz/fisiologia , Proteína ADAM17/fisiologia , Animais , Lesões Encefálicas Traumáticas/enzimologia , Lesões Encefálicas Traumáticas/patologia , Traumatismos Craniocerebrais/patologia , Traumatismos Cranianos Fechados/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA