Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 491
Filtrar
1.
Biochem Pharmacol ; 224: 116244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685280

RESUMO

Traumatic brain injury (TBI) triggers a bevy of changes including mitochondrial dysfunction, apoptosis, oxidative stress, neurobehavioural impairment, and neuroinflammation, among others. Dantrolene (DNT), a muscle relaxant which inhibits intracellular Ca2+ signaling from the ER, has been repurposed as a potential neuroprotective agent in various neurological diseases. However, there have been limited studies on whether it can mitigate TBI-induced deficits and restore impaired mitochondrial dynamics. This study sought to evaluate whether Dantrolene can potentially provide neuroprotection in an in vivo model of TBI. Male wistar rats subjected to TBI were treated with DNT (10 mg/kg) 1 h and 12 h post surgery. Animals were assessed 24 h post-TBI to evaluate neurobehavioural deficits and cerebral edema. We evaluated the protein expressions of apoptotic, autophagic, and neuroinflammatory markers by immunoblotting, as well as Mitochondrial Membrane Potential (MMP) and Reactive Oxygen Species (ROS) via Flow Cytometry to ascertain the effects of DNT on TBI. We further analysed immunofluorescence staining with Glial Fibrillary Acidic Protein (GFAP) and immunohistochemistry with NF-κß to investigate neuroinflammation. H&E staining was also performed post-TBI. Our findings revealed DNT administration inhibits mitochondria-mediated apoptotis and reduces heightened oxidative stress. DNT treatment was also found to reverse neurobehavioural impairments and offer neuroprotection by preserving neuronal architechture. We also demonstrated that DNT inhibits neuronal autophagy and alleviates neuroinflammation following TBI by modulating the NF-κß/Akt signaling pathway. Thus, our results suggest a novel application of DNT in ameliorating the multitude of deficits induced by TBI, thereby conferring neuroprotection.


Assuntos
Lesões Encefálicas Traumáticas , Dantroleno , Mitocôndrias , NF-kappa B , Doenças Neuroinflamatórias , Proteínas Proto-Oncogênicas c-akt , Ratos Wistar , Animais , Dantroleno/farmacologia , Dantroleno/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Masculino , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , NF-kappa B/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Relaxantes Musculares Centrais/farmacologia , Relaxantes Musculares Centrais/uso terapêutico
2.
Sci Transl Med ; 16(743): eadk9129, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630849

RESUMO

Traumatic brain injury (TBI) leads to skeletal changes, including bone loss in the unfractured skeleton, and paradoxically accelerates healing of bone fractures; however, the mechanisms remain unclear. TBI is associated with a hyperadrenergic state characterized by increased norepinephrine release. Here, we identified the ß2-adrenergic receptor (ADRB2) as a mediator of skeletal changes in response to increased norepinephrine. In a murine model of femoral osteotomy combined with cortical impact brain injury, TBI was associated with ADRB2-dependent enhanced fracture healing compared with osteotomy alone. In the unfractured 12-week-old mouse skeleton, ADRB2 was required for TBI-induced decrease in bone formation and increased bone resorption. Adult 30-week-old mice had higher bone concentrations of norepinephrine, and ADRB2 expression was associated with decreased bone volume in the unfractured skeleton and better fracture healing in the injured skeleton. Norepinephrine stimulated expression of vascular endothelial growth factor A and calcitonin gene-related peptide-α (αCGRP) in periosteal cells through ADRB2, promoting formation of osteogenic type-H vessels in the fracture callus. Both ADRB2 and αCGRP were required for the beneficial effect of TBI on bone repair. Adult mice deficient in ADRB2 without TBI developed fracture nonunion despite high bone formation in uninjured bone. Blocking ADRB2 with propranolol impaired fracture healing in mice, whereas the ADRB2 agonist formoterol promoted fracture healing by regulating callus neovascularization. A retrospective cohort analysis of 72 patients with long bone fractures indicated improved callus formation in 36 patients treated with intravenous norepinephrine. These findings suggest that ADRB2 is a potential therapeutic target for promoting bone healing.


Assuntos
Lesões Encefálicas Traumáticas , Fraturas Ósseas , Humanos , Animais , Camundongos , Consolidação da Fratura/fisiologia , Fator A de Crescimento do Endotélio Vascular , Adrenérgicos , Estudos Retrospectivos , Lesões Encefálicas Traumáticas/metabolismo , Neovascularização Patológica , Norepinefrina
3.
Drug Des Devel Ther ; 18: 1175-1188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645986

RESUMO

Purpose: Many herbs can promote neurological recovery following traumatic brain injury (TBI). There must lie a shared mechanism behind the common effectiveness. We aimed to explore the key therapeutic targets for TBI based on the common effectiveness of the medicinal plants. Material and methods: The TBI-effective herbs were retrieved from the literature as imputes of network pharmacology. Then, the active ingredients in at least two herbs were screened out as common components. The hub targets of all active compounds were identified through Cytohubba. Next, AutoDock vina was used to rank the common compound-hub target interactions by molecular docking. A highly scored compound-target pair was selected for in vivo validation. Results: We enrolled sixteen TBI-effective medicinal herbs and screened out twenty-one common compounds, such as luteolin. Ten hub targets were recognized according to the topology of the protein-protein interaction network of targets, including epidermal growth factor receptor (EGFR). Molecular docking analysis suggested that luteolin could bind strongly to the active pocket of EGFR. Administration of luteolin or the selective EGFR inhibitor AZD3759 to TBI mice promoted the recovery of body weight and neurological function, reduced astrocyte activation and EGFR expression, decreased chondroitin sulfate proteoglycans deposition, and upregulated GAP43 levels in the cortex. The effects were similar to those when treated with the selective EGFR inhibitor. Conclusion: The common effectiveness-based, common target screening strategy suggests that inhibition of EGFR can be an effective therapy for TBI. This strategy can be applied to discover core targets and therapeutic compounds in other diseases.


Assuntos
Lesões Encefálicas Traumáticas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Animais , Camundongos , Plantas Medicinais/química , Masculino , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Luteolina/farmacologia , Luteolina/química , Camundongos Endogâmicos C57BL , Humanos
4.
Aging (Albany NY) ; 16(7): 6566-6587, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604164

RESUMO

Traumatic brain injury (TBI) and its resulting complications pose a major challenge to global public health, resulting in increased rates of disability and mortality. Cerebrovascular dysfunction is nearly universal in TBI cases and is closely associated with secondary injury after TBI. Transcranial direct current stimulation (tDCS) shows great potential in the treatment of TBI; however, the exact mechanism remains elusive. In this study, we performed in vivo and in vitro experiments to explore the effects and mechanisms of tDCS in a controlled cortical impact (CCI) rat model simulating TBI. In vivo experiments show that tDCS can effectively reduce brain tissue damage, cerebral edema and neurological deficits. The potential mechanism may be that tDCS improves the neurological function of rats by increasing orexin A (OXA) secretion, upregulating the TF-AKT/ERK signaling pathway, and promoting angiogenesis at the injury site. Cellular experiments showed that OXA promoted HUVEC migration and angiogenesis, and these effects were counteracted by the ERK1/2 inhibitor LY3214996. The results of Matrigel experiment in vivo showed that TNF-a significantly reduced the ability of HUVEC to form blood vessels, but OXA could rescue the effect of TNF-a on the ability of HUVEC to form blood vessels. However, LY3214996 could inhibit the therapeutic effect of OXA. In summary, our preliminary study demonstrates that tDCS can induce angiogenesis through the OXA-TF-AKT/ERK signaling pathway, thereby improving neurological function in rats with TBI.


Assuntos
Lesões Encefálicas Traumáticas , Sistema de Sinalização das MAP Quinases , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-akt , Estimulação Transcraniana por Corrente Contínua , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/terapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Ratos Sprague-Dawley , Humanos , Células Endoteliais da Veia Umbilical Humana , Modelos Animais de Doenças , Transdução de Sinais , Angiogênese
5.
Front Immunol ; 15: 1343364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558799

RESUMO

Macrophage/microglia function as immune defense and homeostatic cells that originate from bone marrow progenitor cells. Macrophage/microglia activation is historically divided into proinflammatory M1 or anti-inflammatory M2 states based on intracellular dynamics and protein production. The polarization of macrophages/microglia involves a pivotal impact in modulating the development of inflammatory disorders, namely lung and traumatic brain injuries. Recent evidence indicates shared signaling pathways in lung and traumatic brain injuries, regulated through non-coding RNAs (ncRNAs) loaded into extracellular vesicles (EVs). This packaging protects ncRNAs from degradation. These vesicles are subcellular components released through a paracellular mechanism, constituting a group of nanoparticles that involve exosomes, microvesicles, and apoptotic bodies. EVs are characterized by a double-layered membrane and are abound with proteins, nucleic acids, and other bioactive compounds. ncRNAs are RNA molecules with functional roles, despite their absence of coding capacity. They actively participate in the regulation of mRNA expression and function through various mechanisms. Recent studies pointed out that selective packaging of ncRNAs into EVs plays a role in modulating distinct facets of macrophage/microglia polarization, under conditions of lung and traumatic brain injuries. This study will explore the latest findings regarding the role of EVs in the progression of lung and traumatic brain injuries, with a specific focus on the involvement of ncRNAs within these vesicles. The conclusion of this review will emphasize the clinical opportunities presented by EV-ncRNAs, underscoring their potential functions as both biomarkers and targets for therapeutic interventions.


Assuntos
Lesões Encefálicas Traumáticas , Vesículas Extracelulares , Humanos , Microglia/metabolismo , Macrófagos/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Pulmão/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
6.
Neurochem Int ; 176: 105741, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621511

RESUMO

Navigating menopause involves traversing a complex terrain of hormonal changes that extend far beyond reproductive consequences. Menopausal transition is characterized by a decrease in estradiol-17ß (E2), and the impact of menopause resonates not only in the reproductive system but also through the central nervous system, musculoskeletal, and gastrointestinal domains. As women undergo menopausal transition, they become more susceptible to frailty, amplifying the risk and severity of injuries, including traumatic brain injury (TBI). Menopause triggers a cascade of changes leading to a decline in muscle mass, accompanied by diminished tone and excitability, thereby restricting the availability of irisin, a crucial hormone derived from muscles. Concurrently, bone mass undergoes reduction, culminating in the onset of osteoporosis and altering the dynamics of osteocalcin, a hormone originating from bones. The diminishing levels of E2 during menopause extend their influence on the gut microbiota, resulting in a reduction in the availability of tyrosine, tryptophan, and serotonin metabolites, affecting neurotransmitter synthesis and function. Understanding the interplay between menopause, frailty, E2 decline, and the intricate metabolisms of bone, gut, and muscle is imperative when unraveling the nuances of TBI after menopause. The current review underscores the significance of accounting for menopause-associated frailty in the incidence and consequences of TBI. The review also explores potential mechanisms to enhance gut, bone, and muscle health in menopausal women, aiming to mitigate frailty and improve TBI outcomes.


Assuntos
Lesões Encefálicas Traumáticas , Fragilidade , Menopausa , Humanos , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Feminino , Menopausa/metabolismo , Menopausa/fisiologia , Fragilidade/metabolismo , Estradiol/metabolismo
7.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639190

RESUMO

Traumatic Brain Injury (TBI) represents a significant public health challenge. Recovery from brain injury necessitates the collaborative efforts of various resident neural cells, predominantly microglia. The present study analyzed rat and mouse RNA expression micro­arrays, high­throughput RNA sequencing and single­cell sequencing data sourced from public databases. To construct an inflammation regulation network around TYRO protein tyrosine kinase­binding protein (TYROBP), to evaluate the role of TYROBP in cell death after TBI. These findings indicate that following TBI, neurons predominantly communicate with one another through the CXC chemokine ligand (CXCL) and CC chemokine ligand (CCL) signaling pathways, employing a paracrine mechanism to activate microglia. These activated microglia intensify the pathological progression of brain injury by releasing factors such as tumor necrosis factor α (TNF­α), vascular endothelial growth factor and transforming growth factor ß via the NF­κB pathway. Cells co­culture experiments demonstrated that neurons, impaired by mechanical injury, interact with microglia through non­contact mechanisms. Activated microglia secrete cytokines, including TNF­α, CXCL­8 and CCL2, which trigger an inflammatory response and facilitate neuronal apoptosis. TYROBP gene knockout in microglia was demonstrated to reduce this interaction and reduce neuronal cell apoptosis rates.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Lesões Encefálicas Traumáticas , Microglia , Animais , Camundongos , Ratos , Apoptose , Lesões Encefálicas Traumáticas/metabolismo , Inflamação/metabolismo , Ligantes , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
8.
J Neuroinflammation ; 21(1): 113, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685031

RESUMO

Obesity increases the morbidity and mortality of traumatic brain injury (TBI). Detailed analyses of transcriptomic changes in the brain and adipose tissue were performed to elucidate the interactive effects between high-fat diet-induced obesity (DIO) and TBI. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. High-throughput transcriptomic analysis using Nanostring panels of the total visceral adipose tissue (VAT) and cellular components in the brain, followed by unsupervised clustering, principal component analysis, and IPA pathway analysis were used to determine shifts in gene expression patterns and molecular pathway activity. Cellular populations in the cortex and hippocampus, as well as in VAT, during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in selected gene expression signatures and pathways. Furthermore, combined TBI and HFD caused additive dysfunction in Y-Maze, Novel Object Recognition (NOR), and Morris water maze (MWM) cognitive function tests. These novel data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and VAT, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Thus, targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue immune cell populations, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.


Assuntos
Lesões Encefálicas Traumáticas , Encéfalo , Disfunção Cognitiva , Dieta Hiperlipídica , Macrófagos , Camundongos Endogâmicos C57BL , Microglia , Animais , Dieta Hiperlipídica/efeitos adversos , Microglia/metabolismo , Microglia/patologia , Masculino , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Reconhecimento Psicológico/fisiologia , Obesidade/patologia , Obesidade/complicações , Aprendizagem em Labirinto/fisiologia
9.
Neuroscience ; 545: 31-46, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38460903

RESUMO

Traumatic brain injury (TBI) is a prevalent form of cranial trauma that results in neural conduction disruptions and damage to synaptic structures and functions. Cannabidiol (CBD), a primary derivative from plant-based cannabinoids, exhibits a range of beneficial effects, including analgesic, sedative, anti-inflammatory, anticonvulsant, anti-anxiety, anti-apoptotic, and neuroprotective properties. Nevertheless, the effects of synaptic reconstruction and the mechanisms underlying these effects remain poorly understood. TBI is characterized by increased levels of tumor necrosis factor-alpha (TNF-α), a cytokine integral for the modulation of glutamate release by astrocytes. In the present study, the potential of CBD in regulating aberrant glutamate signal transmission in astrocytes following brain injury, as well as the underlying mechanisms involved, were investigated using immunofluorescence double staining, enzyme-linked immunosorbent assay (ELISA), western blot analysis, hematoxylin and eosin (H&E) staining, Nissl staining, transmission electron microscopy, and RT-qPCR. In this study, we examined the impact of CBD on neuronal synapses, focusing on the TNF-α-driven purinergic signaling pathway. Specifically, our research revealed that CBD pretreatment effectively reduced the secretion of TNF-α induced by astrocyte activation following TBI. This reduction inhibited the interaction between TNF-α and P2Y1 receptors, leading to a decrease in the release of neurotransmitters, including Ca2+ and glutamate, thereby initiating synaptic remodeling. Our study showed that CBD exhibits significant therapeutic potential for TBI-related synaptic dysfunction, offering valuable insights for future research and more effective TBI treatments. Further exploration of the potential applications of CBD in neuroprotection is required to develop innovative clinical strategies.


Assuntos
Astrócitos , Lesões Encefálicas Traumáticas , Canabidiol , Transdução de Sinais , Sinapses , Fator de Necrose Tumoral alfa , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Animais , Canabidiol/farmacologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Masculino , Ratos Sprague-Dawley , Ácido Glutâmico/metabolismo , Fármacos Neuroprotetores/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ratos , Camundongos
10.
Neuroreport ; 35(6): 352-360, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526937

RESUMO

An imbalance of immune/inflammatory reactions aggravates secondary brain injury after traumatic brain injury (TBI) and can deteriorate clinical prognosis. So far, not enough therapeutic avenues have been found to prevent such an imbalance in the clinical setting. Progesterone has been shown to regulate immune/inflammatory reactions in many diseases and conveys a potential protective role in TBI. This study was designed to investigate the neuroprotective effects of progesterone associated with immune/inflammatory modulation in experimental TBI. A TBI model in adult male C57BL/6J mice was created using a controlled contusion instrument. After injury, the mice received consecutive progesterone therapy (8 mg/kg per day, i.p.) until euthanized. Neurological deficits were assessed via Morris water maze test. Brain edema was measured via the dry-wet weight method. Immunohistochemical staining and flow cytometry were used to examine the numbers of immune/inflammatory cells, including IBA-1 + microglia, myeloperoxidase + neutrophils, and regulatory T cells (Tregs). ELISA was used to detect the concentrations of IL-1ß, TNF-α, IL-10, and TGF-ß. Our data showed that progesterone therapy significantly improved neurological deficits and brain edema in experimental TBI, remarkably increased regulatory T cell numbers in the spleen, and dramatically reduced the activation and infiltration of inflammatory cells (microglia and neutrophils) in injured brain tissue. In addition, progesterone therapy decreased the expression of the pro-inflammatory cytokines IL-1ß and TNF-α but increased the expression of the anti-inflammatory cytokine IL-10 after TBI. These findings suggest that progesterone administration could be used to regulate immune/inflammatory reactions and improve outcomes in TBI.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Camundongos , Masculino , Animais , Interleucina-10 , Progesterona/farmacologia , Neuroproteção , Fator de Necrose Tumoral alfa/metabolismo , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Edema Encefálico/prevenção & controle , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Modelos Animais de Doenças , Microglia/metabolismo
11.
Neuroscience ; 545: 111-124, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38492796

RESUMO

Armcx1 is a member of the ARMadillo repeat-Containing protein on the X chromosome (ARMCX) family, which is recognized to have evolutionary conserved roles in regulating mitochondrial transport and dynamics. Previous research has shown that Armcx1 is expressed at higher levels in mice after axotomy and in adult retinal ganglion cells after crush injury, and this protein increases neuronal survival and axonal regeneration. However, its role in traumatic brain injury (TBI) is unclear. Therefore, the aim of this study was to assess the expression of Armcx1 after TBI and to explore possible related mechanisms by which Armcx1 is involved in TBI. We used C57BL/6 male mice to model TBI and evaluated the role of Armcx1 in TBI by transfecting mice with Armcx1 small interfering RNA (siRNA) to inhibit Armcx1 expression 24 h before TBI modeling. Western blotting, immunofluorescence, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, Nissl staining, transmission electron microscopy, adenosine triphosphate (ATP) level measurement, neuronal apoptosis analysis, neurological function scoring and the Morris water maze were performed. The results demonstrated that Armcx1 protein expression was elevated after TBI and that the Armcx1 protein was localized in neurons and astroglial cells in cortical tissue surrounding the injury site. In addition, inhibition of Armcx1 expression further led to impaired mitochondrial transport, abnormal morphology, reduced ATP levels, aggravation of neuronal apoptosis and neurological dysfunction, and decrease Miro1 expression. In conclusion, our findings indicate that Armcx1 may exert neuroprotective effects by ameliorating neurological injury after TBI through a mitochondrial transport pathway involving Miro1.


Assuntos
Proteínas do Domínio Armadillo , Lesões Encefálicas Traumáticas , Camundongos Endogâmicos C57BL , Mitocôndrias , Proteínas rho de Ligação ao GTP , Animais , Masculino , Camundongos , Trifosfato de Adenosina/metabolismo , Apoptose/fisiologia , Proteínas do Domínio Armadillo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Aprendizagem em Labirinto/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Proteínas rho de Ligação ao GTP/metabolismo
12.
Exp Gerontol ; 189: 112404, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492656

RESUMO

PURPOSE: To explore the mechanism by which Remazolam affects the phenotype and function of astrocytes to improve traumatic brain injury (TBI). METHODS: The oxygen -glucose deprivation/recovery (OGD/R) cell model was constructed to simulate the pathological state of astrocytes in a TBI environment. The viability of astrocytes was measured by CCK-8, and the cytoskeleton changes were observed by Phalloidin- TRITC staining. The expressions of differentiation markers, Cx43 and phosphorylated Cx43 (P-Cx43) of A1/A2 astrocytes were detected by Western blot, and the complement C3 and S100A10 of A1/A2 astrocytes were detected by ELISA. The TBI rat model was established. The water content of brain tissue was measured by dry-wet specific gravity method, the pathological morphology of brain tissue in cortical injury area was observed by HE staining method, ROS was detected by fluorescence quantitative method, Cx43 expression was detected by immunohistochemistry method, and the differentiation markers of A1/A2 astrocytes were detected by immunofluorescence. RESULTS: In the TBI environment, astrocytes showed decreased cell viability, blurred skeleton, and increased expression of Cx43. In TBI rats, the water content of brain tissue increased, the brain tissue in the cortex injury area was seriously damaged, ROS and Cx43 expression were significantly increased, and mainly distributed in A2 astrocytes. Remazolam can reverse the above results after the intervention. CONCLUSION: Remazolam affects the phenotype and function of astrocytes to improve TBI via regulating Cx43, and plays a role in protecting the neurological function of TBI rats.


Assuntos
Lesões Encefálicas Traumáticas , Conexina 43 , Ratos , Animais , Ratos Sprague-Dawley , Conexina 43/metabolismo , Astrócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Fenótipo , Antígenos de Diferenciação/metabolismo , Água/metabolismo
13.
Horm Mol Biol Clin Investig ; 45(1): 1-15, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507353

RESUMO

OBJECTIVES: Studies suggest that both genomic and nongenomic pathways are involved in mediating the salutary effects of steroids following traumatic brain injury (TBI). This study investigated the nongenomic effects of 17ß-estradiol (E2) mediated by the PI3K/p-Akt pathway after TBI. METHODS: Ovariectomized rats were apportioned to E2, E2-BSA (E2 conjugated to bovine serum albumin), G1 [G-protein-coupled estrogen receptor agonist (GPER)] or their vehicle was injected following TBI, whereas ICI (classical estrogen receptor antagonist), G15 (GPER antagonist), ICI + G15, and their vehicles were injected before the induction of TBI and injection of drugs. Diffuse TBI was induced by the Marmarou model. Evans blue (EBC, 5 h), brain water contents (BWC), histopathological changes, and brain PI3K and p-Akt protein expressions were measured 24 h after TBI. The veterinary comma scale (VCS) was assessed before and at different times after TBI. RESULTS: The results showed a reduction in BWC and EBC and increased VCS in the E2, E2-BSA, and G1 groups. Also, E2, E2-BSA, and G1 reduced brain edema, inflammation, and apoptosis. The ICI and G15 inhibited the beneficial effects of E2, E2-BSA, and G1 on these parameters. All drugs, following TBI, prevented the reduction of brain PI3K/p-Akt expression. The individual or combined use of ICI and G15 eliminated the beneficial effects of E2, E2-BSA, and G1 on PI3K/p-Akt expressions. CONCLUSIONS: These findings indicated that PI3K/p-Akt pathway plays a critical role in mediating the salutary effects of estradiol on histopathological changes and neurological outcomes following TBI, suggesting that GPER and classic ERs are involved in regulating the expression of PI3K/p-Akt.


Assuntos
Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Soroalbumina Bovina , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estrogênios/farmacologia , Estradiol/farmacologia , Estradiol/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Receptores Acoplados a Proteínas G
14.
Cell Transplant ; 33: 9636897241237049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483119

RESUMO

Neuronal damage resulting from traumatic brain injury (TBI) causes disruption of neuronal projections and neurotransmission that contribute to behavioral deficits. Cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an early event following TBI. ROS often damage DNA, lipids, proteins, and carbohydrates while RNS attack proteins. The products of lipid peroxidation 4-hydroxynonenal (4-HNE) and protein nitration 3-nitrotyrosine (3-NT) are often used as indicators of oxidative and nitrosative damages, respectively. Increasing evidence has shown that striatum is vulnerable to damage from TBI with a disturbed dopamine neurotransmission. TBI results in neurodegeneration, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy in the striatum and contribute to motor or behavioral deficits. Pomalidomide (Pom) is a Food and Drug Administration (FDA)-approved immunomodulatory drug clinically used in treating multiple myeloma. We previously showed that Pom reduces neuroinflammation and neuronal death induced by TBI in rat cerebral cortex. Here, we further compared the effects of Pom in cortex and striatum focusing on neurodegeneration, oxidative and nitrosative damages, as well as neuroinflammation following TBI. Sprague-Dawley rats subjected to a controlled cortical impact were used as the animal model of TBI. Systemic administration of Pom (0.5 mg/kg, intravenous [i.v.]) at 5 h post-injury alleviated motor behavioral deficits, contusion volume at 24 h after TBI. Pom alleviated TBI-induced neurodegeneration stained by Fluoro-Jade C in both cortex and striatum. Notably, Pom treatment reduces oxidative and nitrosative damages in cortex and striatum and is more efficacious in striatum (93% reduction in 4-HNE-positive and 84% reduction in 3-NT-positive neurons) than in cerebral cortex (42% reduction in 4-HNE-positive and 55% reduction in 3-NT-positive neurons). In addition, Pom attenuated microgliosis, astrogliosis, and elevations of proinflammatory cytokines in cortical and striatal tissue. We conclude that Pom may contribute to improved motor behavioral outcomes after TBI through targeting oxidative/nitrosative damages and neuroinflammation.


Assuntos
Lesões Encefálicas Traumáticas , Doenças Neuroinflamatórias , Talidomida/análogos & derivados , Ratos , Animais , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Estresse Oxidativo , Citocinas/metabolismo , Córtex Cerebral/metabolismo , Modelos Animais de Doenças
15.
J Nanobiotechnology ; 22(1): 111, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486273

RESUMO

Brain damage is a common tissue damage caused by trauma or diseases, which can be life-threatening. Stem cell implantation is an emerging strategy treating brain damage. The stem cell is commonly embedded in a matrix material for implantation, which protects stem cell and induces cell differentiation. Cell differentiation induction by this material is decisive in the effectiveness of this treatment strategy. In this work, we present an injectable fibroin/MXene conductive hydrogel as stem cell carrier, which further enables in-vivo electrical stimulation upon stem cells implanted into damaged brain tissue. Cell differentiation characterization of stem cell showed high effectiveness of electrical stimulation in this system, which is comparable to pure conductive membrane. Axon growth density of the newly differentiated neurons increased by 290% and axon length by 320%. In addition, unfavored astrocyte differentiation is minimized. The therapeutic effect of this system is proved through traumatic brain injury model on rats. Combined with in vivo electrical stimulation, cavities formation is reduced after traumatic brain injury, and rat motor function recovery is significantly promoted.


Assuntos
Bombyx , Lesões Encefálicas Traumáticas , Fibroínas , Células-Tronco Mesenquimais , Células-Tronco Neurais , Nitritos , Elementos de Transição , Ratos , Animais , Fibroínas/metabolismo , Fibroínas/farmacologia , Bombyx/metabolismo , Hidrogéis/farmacologia , Neurônios/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo
16.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338922

RESUMO

Cortical traumatic brain injury (TBI) is a major cause of cognitive impairment accompanied by motor and behavioral deficits, and there is no effective treatment strategy in the clinic. Cell transplantation is a promising therapeutic strategy, and it is necessary to verify the survival and differentiation of cells after transplantation in large animal models like rhesus monkeys. In this study, we transplanted neural stem cells (NSCs) and simultaneously injected basic fibroblast growth factor/epidermal growth factor (bFGF/EGF) into the cortex (visual and sensory cortices) of rhesus monkeys with superficial TBI. The results showed that the transplanted NSCs did not enter the cerebrospinal fluid (CSF) and were confined to the transplantation site for at least one year. The transplanted NSCs differentiated into mature neurons that formed synaptic connections with host neurons, but glial scar formation between the graft and the host tissue did not occur. This study is the first to explore the repairing effect of transplanting NSCs into the superficial cerebral cortex of rhesus monkeys after TBI, and the results show the ability of NSCs to survive long-term and differentiate into neurons, demonstrating the potential of NSC transplantation for cortical TBI.


Assuntos
Lesões Encefálicas Traumáticas , Células-Tronco Neurais , Animais , Macaca mulatta , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/metabolismo , Diferenciação Celular , Córtex Cerebral , Transplante de Células-Tronco/métodos , Células Cultivadas
17.
Brain Behav ; 14(1): e3356, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376046

RESUMO

BACKGROUND AND PURPOSE: Cognitive impairment is a prevalent adverse consequence of traumatic brain injury (TBI). The neuroprotective effects of nicorandil (N-(2-hydroxyethyl)-nicotinamide nitrate) has been previously documented, yet its protective effects against cognitive dysfunction post-TBI remain unclear. Hence, the present study was aimed to evaluate whether nicorandil attenuates cognitive dysfunction in TBI rats and the underlying mechanism behind this process. METHODS: The TBI model was established with a controlled cortical impact (CCI). The effects of nicorandil on cognitive dysfunction of rats with TBI were examined through Novel object recognition (NOR) test, Y-maze test, and Morris water maze (MWM) task. After behavioral tests, hippocampal tissue was collected for Quantitative real-time PCR, Western blot analysis, and Enzyme-linked immunosorbent assay (ELISA) assay. RESULTS: We observed that nicorandil administration effectively ameliorates learning and memory impairment in TBI rats. Alongside, nicorandil treatment attenuated oxidative stress in the hippocampus of TBI rats, characterized by the decreased reactive oxygen species generation, malondialdehyde, and protein carbonyls levels, and concurrent promotion of antioxidant-related factors (including superoxide dismutase, glutathione peroxidase, and catalase) activities. Additionally, nicorandil treatment attenuated the inflammatory response in the hippocampus of TBI rat, as evidenced by the upregulated levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α), as well as the downregulated level of IL-10. Mechanistically, nicorandil treatment significantly enhanced the mRNA and protein levels of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the hippocampus of TBI rats. CONCLUSION: These findings suggest that nicorandil mitigates cognitive impairment after TBI by suppressing oxidative stress and inflammation, potentially through enhancing BDNF and NGF levels.


Assuntos
Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Nicorandil , Animais , Ratos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Aprendizagem em Labirinto , Fator de Crescimento Neural/metabolismo , Nicorandil/farmacologia , Estresse Oxidativo
18.
ACS Chem Neurosci ; 15(2): 222-229, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38164894

RESUMO

Development of multifunctional theranostics is challenging and crucial for deciphering complex biological phenomena and subsequently treating critical disease. In particular, development of theranostics for traumatic brain injury (TBI) and understanding its repair mechanism are challenging and highly complex areas of research. Recently, there have been interesting pieces of research work demonstrated that a small molecule-based neuroregenerative approach using stem cells has potential for future therapeutic lead development for TBI. However, these works demonstrated the application of a mixture of multiple molecules as a "chemical cocktail", which may have serious toxic effects in the differentiated cells. Therefore, development of a single-molecule-based potential differentiating agent for human mesenchymal stem cells (hMSCs) into functional neurons is vital for the upcoming neuro-regenerative therapeutics. This lead could be further extraploted for the design of theranostics for TBI. In this study, we have developed a multifunctional single-molecule-based fluorescent probe, which can image the transdifferentiated neurons as well as promote the differentiation process. We demonstrated a promising class of fluorescent probes (CP-4) that can be employed to convert hMSCs into neurons in the presence of fibroblast growth factor (FGF). This fluorescent probe was used in cellular imaging as its fluorescence intensity remained unaltered for up to 7 days of trans-differentiation. We envision that this imaging probe can have an important application in the study of neuropathological and neurodegenerative studies.


Assuntos
Lesões Encefálicas Traumáticas , Células-Tronco Mesenquimais , Humanos , Corantes Fluorescentes/metabolismo , Neurônios/metabolismo , Diferenciação Celular , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/metabolismo , Transdiferenciação Celular
19.
Exp Neurol ; 372: 114647, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38070724

RESUMO

Traumatic brain injury (TBI) results in several pathological changes within the hippocampus that result in adverse effects on learning and memory. Therapeutic strategies to enhance learning and memory after TBI are still in the early stages of clinical development. One strategy is to target the α7 nicotinic acetylcholine receptor (nAChR), which is highly expressed in the hippocampus and contributes to the formation of long-term memory. In our previous study, we found that AVL-3288, a positive allosteric modulator of the α7 nAChR, improved cognitive recovery in rats after moderate fluid-percussion injury (FPI). However, whether AVL-3288 improved cognitive recovery specifically through the α7 nAChR was not definitively determined. In this study we utilized Chrna7 knockout mice and compared their recovery to wild-type mice treated with AVL-3288 after TBI. We hypothesized that AVL-3288 treatment would improve learning and memory in wild-type mice, but not Chrna7-/- mice after TBI. Adult male C57BL/6 wild-type and Chrna7-/- mice received sham surgery or moderate controlled cortical impact (CCI) and recovered for 3 months. Mice were then treated with vehicle or AVL-3288 at 30 min prior to contextual fear conditioning. At 3 months after CCI, expression of α7 nAChR, choline acetyltransferase (ChAT), high-affinity choline transporter (ChT), and vesicular acetylcholine transporter (VAChT) were found to be significantly decreased in the hippocampus. Treatment of wild-type mice at 3 months after CCI with AVL-3288 significantly improved cue and contextual fear conditioning, whereas no beneficial effects were observed in Chrna7-/- mice. Parietal cortex and hippocampal atrophy were not improved with AVL-3288 treatment in either wild-type or Chrna7-/- mice. Our results indicate that AVL-3288 improves cognition during the chronic recovery phase of TBI through modulation of the α7 nAChR.


Assuntos
Lesões Encefálicas Traumáticas , Receptor Nicotínico de Acetilcolina alfa7 , Ratos , Masculino , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7/genética , Camundongos Endogâmicos C57BL , Cognição , Hipocampo/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Camundongos Knockout
20.
CNS Neurosci Ther ; 30(2): e14364, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37464589

RESUMO

AIMS: The aim of this study was to evaluate the effect of epicatechin, on neurological recovery and neuroinflammation after traumatic brain injury (TBI) to investigate its potential value in clinical practice. METHODS: TBI model was established in adult rats by CCI method. The effect of epicatechin was evaluated after intraperitoneal injection. Neurological recovery after TBI was assessed by Morris Water Maze, mNSS score, Rotarod test and Adhesive removal test. Protein and gene expression was assessed by Western blot, ELISA, PCR and immunofluorescence. Furthermore, the use of AKT pathway inhibitors blocked the therapeutic effects of epicatechin clarifying AKT-P53/CREB as a potential pathway for the effects of epicatechin. RESULTS: Administering epicatechin after TBI prevented neuronal death, reduced neuroinflammation, and promoted neurological function restoration in TBI rats. Network pharmacology study suggested that epicatechin may exert its therapeutic benefits through the AKT-P53/CREB pathway CONCLUSION: These results indicate that epicatechin, a monomeric compound derived from tea polyphenols, possesses potent antioxidant and anti-inflammatory properties after TBI. The mechanism may be related to the regulation of the AKT-P53/CREB signal pathway.


Assuntos
Lesões Encefálicas Traumáticas , Catequina , Animais , Ratos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Catequina/farmacologia , Catequina/uso terapêutico , Modelos Animais de Doenças , Doenças Neuroinflamatórias , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA