Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 579
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arh Hig Rada Toksikol ; 75(2): 91-101, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38963141

RESUMO

Even at low levels, exposure to ionising radiation can lead to eye damage. However, the underlying molecular mechanisms are not yet fully understood. We aimed to address this gap with a comprehensive in silico approach to the issue. For this purpose we relied on the Comparative Toxicogenomics Database (CTD), ToppGene Suite, Cytoscape, GeneMANIA, and Metascape to identify six key regulator genes associated with radiation-induced eye damage (ATM, CRYAB, SIRT1, TGFB1, TREX1, and YAP1), all of which have physical interactions. Some of the identified molecular functions revolve around DNA repair mechanisms, while others are involved in protein binding, enzymatic activities, metabolic processes, and post-translational protein modifications. The biological processes are mostly centred on response to DNA damage, the p53 signalling pathway in particular. We identified a significant role of several miRNAs, such as hsa-miR-183 and hsamiR-589, in the mechanisms behind ionising radiation-induced eye injuries. Our study offers a valuable method for gaining deeper insights into the adverse effects of radiation exposure.


Assuntos
Mineração de Dados , Radiação Ionizante , Humanos , Lesões por Radiação/genética , Lesões por Radiação/etiologia , Traumatismos Oculares/etiologia , Traumatismos Oculares/genética , Genômica , Dano ao DNA/efeitos da radiação
2.
Nat Commun ; 15(1): 4825, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862542

RESUMO

Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage.


Assuntos
Astronautas , Radiação Cósmica , MicroRNAs , Voo Espacial , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Radiação Cósmica/efeitos adversos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Lesões por Radiação/genética , Lesões por Radiação/prevenção & controle , Masculino , Mitocôndrias/efeitos da radiação , Mitocôndrias/metabolismo , Mitocôndrias/genética , Feminino , Adulto
3.
Cell Commun Signal ; 22(1): 292, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802843

RESUMO

BACKGROUND: Hematopoietic stem cell (HSC) regeneration underlies hematopoietic recovery from myelosuppression, which is a life-threatening side effect of cytotoxicity. HSC niche is profoundly disrupted after myelosuppressive injury, while if and how the niche is reshaped and regulates HSC regeneration are poorly understood. METHODS: A mouse model of radiation injury-induced myelosuppression was built by exposing mice to a sublethal dose of ionizing radiation. The dynamic changes in the number, distribution and functionality of HSCs and megakaryocytes were determined by flow cytometry, immunofluorescence, colony assay and bone marrow transplantation, in combination with transcriptomic analysis. The communication between HSCs and megakaryocytes was determined using a coculture system and adoptive transfer. The signaling mechanism was investigated both in vivo and in vitro, and was consolidated using megakaryocyte-specific knockout mice and transgenic mice. RESULTS: Megakaryocytes become a predominant component of HSC niche and localize closer to HSCs after radiation injury. Meanwhile, transient insulin-like growth factor 1 (IGF1) hypersecretion is predominantly provoked in megakaryocytes after radiation injury, whereas HSCs regenerate paralleling megakaryocytic IGF1 hypersecretion. Mechanistically, HSCs are particularly susceptible to megakaryocytic IGF1 hypersecretion, and mTOR downstream of IGF1 signaling not only promotes activation including proliferation and mitochondrial oxidative metabolism of HSCs, but also inhibits ferritinophagy to restrict HSC ferroptosis. Consequently, the delicate coordination between proliferation, mitochondrial oxidative metabolism and ferroptosis ensures functional HSC expansion after radiation injury. Importantly, punctual IGF1 administration simultaneously promotes HSC regeneration and hematopoietic recovery after radiation injury, representing a superior therapeutic approach for myelosuppression. CONCLUSIONS: Our study identifies megakaryocytes as a last line of defense against myelosuppressive injury and megakaryocytic IGF1 as a novel niche signal safeguarding HSC regeneration.


Assuntos
Ferroptose , Células-Tronco Hematopoéticas , Fator de Crescimento Insulin-Like I , Megacariócitos , Regeneração , Animais , Células-Tronco Hematopoéticas/metabolismo , Megacariócitos/metabolismo , Megacariócitos/efeitos da radiação , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética , Ferroptose/genética , Camundongos , Camundongos Endogâmicos C57BL , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Lesões por Radiação/genética , Transdução de Sinais/efeitos da radiação
4.
Int Immunopharmacol ; 133: 111987, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652961

RESUMO

Radiation-induced kidney injury is a common side effect of radiotherapy, as the pelvic region is in close proximity to the kidneys, posing a risk of inducing radiation-induced kidney injury when treating any pelvic malignancies with radiotherapy. This type of injury typically manifests as chronic kidney disease a few months after radiotherapy, with the potential to progress to end-stage renal disease. Radiation-induced damage involves various components of the kidney, including glomeruli, tubules, interstitium, and extracellular matrix. Therefore, investigating its molecular mechanisms is crucial. In this study, we extensively searched literature databases, selecting recent transcriptomic studies related to acute kidney injury (AKI) published in the past decade. We downloaded the raw RNA sequencing datasets GSE30718 and GSE66494 related to AKI from the GEO database and identified that intestinal-type lectin ITLN1 plays a significant role in regulating radiation-induced kidney injury in rats. Differential gene analysis was performed using chip data from the GEO database, and further bioinformatics analysis identified 13 genes that may be involved in regulating kidney injury, with ITLN1 being the most relevant to kidney damage, thus selected as the target gene for this study. Subsequently, a rat model of radiation-induced kidney injury was established for experimental validation, assessing kidney tissue morphology and injury extent through staining observation and immunohistochemical staining. The protective effect of ITLN1 on kidney function was evaluated by measuring changes in rat body weight and blood pressure, serum kidney injury markers, and kidney structure. The experimental results indicate that overexpression of ITLN1 can improve kidney function in rats with radiation-induced kidney injury by activating the Akt/GSK-3ß/Nrf2 signaling pathway, suppressing oxidative stress, cell apoptosis, inflammation, cellular senescence, and fibrosis. This study highlights the significant role of ITLN1 in regulating kidney injury, providing a novel target for future treatments of radiation-induced kidney injury.


Assuntos
Rim , Animais , Ratos , Rim/patologia , Rim/metabolismo , Rim/efeitos da radiação , Masculino , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Humanos , Lesões por Radiação/genética , Ratos Sprague-Dawley , Transdução de Sinais , Lesões Experimentais por Radiação/metabolismo
5.
Nat Commun ; 15(1): 3018, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589357

RESUMO

Ionizing radiation induces cell death in the gastrointestinal (GI) epithelium by activating p53. However, p53 also prevents animal lethality caused by radiation-induced acute GI syndrome. Through single-cell RNA-sequencing of the irradiated mouse small intestine, we find that p53 target genes are specifically enriched in regenerating epithelial cells that undergo fetal-like reversion, including revival stem cells (revSCs) that promote animal survival after severe damage of the GI tract. Accordingly, in mice with p53 deleted specifically in the GI epithelium, ionizing radiation fails to induce fetal-like revSCs. Using intestinal organoids, we show that transient p53 expression is required for the induction of revival stem cells and is controlled by an Mdm2-mediated negative feedback loop. Together, our findings reveal that p53 suppresses severe radiation-induced GI injury by promoting fetal-like reprogramming of irradiated intestinal epithelial cells.


Assuntos
Lesões por Radiação , Proteína Supressora de Tumor p53 , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Intestinos , Trato Gastrointestinal/metabolismo , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Células-Tronco/metabolismo , Apoptose/genética
6.
J Stroke Cerebrovasc Dis ; 33(7): 107699, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552890

RESUMO

BACKGROUND: Radiation treatment for diseases of the brain can result in hemorrhagic adverse radiation effects. The underlying pathologic substrate of brain bleeding after irradiation has not been elucidated, nor potential associations with induced somatic mutations. METHODS: We retrospectively reviewed our department's pathology database over 5 years and identified 5 biopsy specimens (4 patients) for hemorrhagic lesions after brain irradiation. Tissues with active malignancy were excluded. Samples were characterized using H&E, Perl's Prussian Blue, and Masson's Trichrome; immunostaining for B-cells (anti-CD20), T-cells (anti-CD3), endothelium (anti-CD31), macrophages (anti-CD163), α-smooth muscle actin, and TUNEL. DNA analysis was done by two panels of next-generation sequencing for somatic mutations associated with known cerebrovascular anomalies. RESULTS: One lesion involved hemorrhagic expansion among multifocal microbleeds that had developed after craniospinal irradiation for distant medulloblastoma treatment. Three bleeds arose in the bed of focally irradiated arteriovenous malformations (AVM) after confirmed obliteration. A fifth specimen involved the radiation field distinct from an irradiated AVM bed. From these, 2 patterns of hemorrhagic vascular pathology were identified: encapsulated hematomas and cavernous-like malformations. All lesions included telangiectasias with dysmorphic endothelium, consistent with primordial cavernous malformations with an associated inflammatory response. DNA analysis demonstrated genetic variants in PIK3CA and/or PTEN genes but excluded mutations in CCM genes. CONCLUSIONS: Despite pathologic heterogeneity, brain bleeding after irradiation is uniformly associated with primordial cavernous-like telangiectasias and disruption of genes implicated in dysangiogenesis but not genes implicated as causative of cerebral cavernous malformations. This may implicate a novel signaling axis as an area for future study.


Assuntos
Mutação , Lesões por Radiação , Humanos , Estudos Retrospectivos , Lesões por Radiação/genética , Lesões por Radiação/patologia , Lesões por Radiação/etiologia , Masculino , Feminino , Análise Mutacional de DNA , Adulto , Irradiação Craniana/efeitos adversos , Predisposição Genética para Doença , Classe I de Fosfatidilinositol 3-Quinases/genética , PTEN Fosfo-Hidrolase/genética , Pessoa de Meia-Idade , Biópsia , Adulto Jovem , Malformações Arteriovenosas Intracranianas/genética , Malformações Arteriovenosas Intracranianas/radioterapia , Malformações Arteriovenosas Intracranianas/patologia , Fatores de Risco , Fenótipo , Hemorragia Cerebral/genética , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Hemorragias Intracranianas/genética , Hemorragias Intracranianas/etiologia , Hemorragias Intracranianas/patologia , Bases de Dados Factuais
7.
Front Immunol ; 15: 1338922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426100

RESUMO

This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-ß) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.


Assuntos
Inteligência Artificial , Lesões por Radiação , Humanos , Epigênese Genética , Qualidade de Vida , Fibrose , Fator de Crescimento Transformador beta/metabolismo , Lesões por Radiação/genética
8.
Sci Rep ; 14(1): 2681, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302506

RESUMO

A radiological accident, whether from industrial, medical, or malicious origin, may result in localized exposure to high doses of ionizing radiations, leading to the development of local radiation injury (LRI), that may evolve toward deep ulceration and necrosis of the skin and underlying tissues. Early diagnosis is therefore crucial to facilitate identification and management of LRI victims. Circulating microRNAs (miRNA) have been studied as potential diagnostic biomarkers of several diseases including hematological defects following whole-body irradiation (WBI). This study aims to identify a blood miRNA signature associated with LRI in a preclinical C57BL/6J mouse model of hindlimb irradiation using different 10-MV X-ray doses that lead to injuries of different severities. To this end, we first performed broad-spectrum plasma miRNA profiling, followed by a targeted validation step, on two independent animal cohorts. Using a multivariate sparse partial least square discriminant analysis, we identified a panel of eight circulating miRNAs able to segregate mice according to LRI severity. Interestingly, these miRNAs were previously associated with WBI (miR-150-5p, miR-342-3p, miR-146a-5p), inflammation (miR-18a-5p, miR-148b-3p, miR-532-5p) and skin diseases (miR-139-5p, miR-195-5p). Our results suggest the use of circulating miRNAs as suitable molecular biomarkers for LRI prognosis and diagnosis.


Assuntos
MicroRNA Circulante , MicroRNAs , Lesões por Radiação , Humanos , Animais , Camundongos , MicroRNAs/genética , Camundongos Endogâmicos C57BL , Biomarcadores , MicroRNA Circulante/genética , Lesões por Radiação/diagnóstico , Lesões por Radiação/genética , Perfilação da Expressão Gênica
9.
Pract Radiat Oncol ; 14(1): e29-e39, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37742832

RESUMO

PURPOSE: There are mixed and limited data regarding radiation therapy (RT) tolerance in carriers of a germline pathogenic or likely pathogenic (P/LP) ATM variant. We investigated RT-related toxic effects in carriers of an ATM variant who received treatment for breast cancer. METHODS AND MATERIALS: We identified 71 patients treated with adjuvant RT for breast cancer who were carriers of a variant in ATM: 15 were classified as P/LP and 56 classified as variants of unknown significance (VUS). We additionally identified 205 consecutively treated patients during a similar timeframe who were either confirmed ATM wild type or had no prior genetic testing. RT plans were reviewed. Acute and chronic toxic effects were evaluated using Common Terminology Criteria for Adverse Events version 4.0 criteria. Fisher's exact tests for count data were performed to compare toxic effects between the cohorts (P/LP vs VUS vs control). Wilcoxon rank-sum testing was performed to assess for differences in patient characteristics. RESULTS: The median toxicity follow-up was 19.4 months; median follow-up for the subcohorts was 13.3 months (P/LP), 12.6 months (VUS), and 23.3 months (control). There were no significant differences in radiation plan heterogeneity, receipt of a boost, or size of breast/chest wall planning target volume. There was greater use of hypofractionated RT in the control cohort (P = .023). After accounting for patient- and treatment-related factors that may affect toxic effects, we found no significant differences with respect to acute dermatitis, hyperpigmentation, moist desquamation, breast/chest wall pain, or breast edema. Additionally, we found no significant differences with respect to chronic breast/chest wall pain, induration, telangiectasia, or cosmetic outcome. CONCLUSIONS: RT as part of the management of breast cancer was well tolerated in carriers of a P/LP ATM variant, with toxic effect profiles that were similar to those seen in patients without known ATM mutations. High rates of excellent or good cosmesis were observed in carriers of a P/LP ATM variant who underwent breast conservation.


Assuntos
Neoplasias da Mama , Lesões por Radiação , Humanos , Feminino , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Neoplasias da Mama/patologia , Lesões por Radiação/genética , Lesões por Radiação/patologia , Dor , Proteínas Mutadas de Ataxia Telangiectasia/genética
10.
Oncology ; 102(7): 585-592, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160665

RESUMO

INTRODUCTION: Bladder cancer (BC) is sensitive to radiation treatment and a subset of patients experience radiation-induced injuries including shrinkage of bladder due to bladder fibrosis. METHODS: This study is a retrospective cohort study. Three Japanese BC patients were randomly selected. Using a microRNA (miRNA) array, comparing their samples with or without radiation-induced injuries, we have checked the clustering of miRNA expression. RESULTS: Hsa-miR-130a, hsa-miR-200c, hsa-miR-141, and hsa-miR-96 were found to be highly expressed (>50 times) in patients with fibrotic bladder shrinkage (FBS) compared to those with intact bladder (IB) function. In patients with FBS, hsa-miR-6835, hsa-miR-4675, hsa-miR-371a, and hsa-miR-6885 were detected to have lesser than half expression to IB patients. We have analyzed the significance of these genes in relation to overall survival of 409 BC patients retrieved from the Cancer Genome Atlas data set. All available cutoff values between the lower and upper quartiles of expression are used for the selected genes, and false discovery rate using the Benjamini-Hochberg method is computed to correct for multiple hypothesis testing. We have run combined survival analysis of the mean expression of these four miRNAs highly expressed in FBS patients. 175 patients with high expression had a longer median survival of 98.47 months than 23.73 months in 233 patients with low expression (hazard ratio [HR]: 0.53; 0.39-0.72, log-rank p value: 7.3e-0.5). Combination analysis of all 8 genes including hsa-miR-6835, hsa-miR-4675, hsa-miR-371a, and hsa-miR-6885 showed the same HR for OS. Target scanning for these miRNAs matched specific cytokines known as an early biomarker to develop radiation-induced fibrosis. CONCLUSIONS: BC patients with fibrotic radiation injury have specific miRNA expression profile targeting profibrotic cytokines and these miRNAs possibly render to favorable survival.


Assuntos
MicroRNAs , Lesões por Radiação , Neoplasias da Bexiga Urinária , Bexiga Urinária , Humanos , MicroRNAs/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/radioterapia , Neoplasias da Bexiga Urinária/patologia , Masculino , Estudos Retrospectivos , Feminino , Lesões por Radiação/genética , Lesões por Radiação/patologia , Idoso , Bexiga Urinária/patologia , Bexiga Urinária/efeitos da radiação , Bexiga Urinária/metabolismo , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Fibrose/genética
11.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38069378

RESUMO

Patients receiving cranial radiotherapy for primary and metastatic brain tumors may experience radiation-induced brain injury (RIBI). Thus far, there has been a lack of effective preventive and therapeutic strategies for RIBI. Due to its complicated underlying pathogenic mechanisms, it is rather difficult to develop a single approach to target them simultaneously. We have recently reported that Reprimo (RPRM), a tumor suppressor gene, is a critical player in DNA damage repair, and RPRM deletion significantly confers radioresistance to mice. Herein, by using an RPRM knockout (KO) mouse model established in our laboratory, we found that RPRM deletion alleviated RIBI in mice via targeting its multiple underlying mechanisms. Specifically, RPRM knockout significantly reduced hippocampal DNA damage and apoptosis shortly after mice were exposed to whole-brain irradiation (WBI). For the late-delayed effect of WBI, RPRM knockout obviously ameliorated a radiation-induced decline in neurocognitive function and dramatically diminished WBI-induced neurogenesis inhibition. Moreover, RPRM KO mice exhibited a significantly lower level of acute and chronic inflammation response and microglial activation than wild-type (WT) mice post-WBI. Finally, we uncovered that RPRM knockout not only protected microglia against radiation-induced damage, thus preventing microglial activation, but also protected neurons and decreased the induction of CCL2 in neurons after irradiation, in turn attenuating the activation of microglial cells nearby through paracrine CCL2. Taken together, our results indicate that RPRM plays a crucial role in the occurrence of RIBI, suggesting that RPRM may serve as a novel potential target for the prevention and treatment of RIBI.


Assuntos
Lesões Encefálicas , Lesões por Radiação , Animais , Humanos , Camundongos , Apoptose , Encéfalo/patologia , Lesões Encefálicas/genética , Lesões Encefálicas/prevenção & controle , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/metabolismo , Inflamação/patologia , Microglia , Lesões por Radiação/genética , Lesões por Radiação/prevenção & controle , Lesões por Radiação/patologia
12.
Radiat Res ; 200(6): 556-568, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37874034

RESUMO

Ionizing radiation in space, radiation devices or nuclear disasters are major threats to human health and public security. Expanding countermeasures for dealing with accidental or occupational radiation exposure is crucial for the protection of radiation injuries. Circulating microRNAs (miRNAs) have emerged as promising radiation biomarkers in recent years. However, the origin, distribution and functions of radiosensitive circulating miRNAs remain unclear, which obstructs their clinical applications in the future. In this study, we found that mmu-miR-342-3p (miR-342) in mouse serum presents a stable and significant decrease after X-ray total-body irradiation (TBI). Focusing on this miRNA, we investigated the influences of circulating miR-342 on the radiation-induced injury. Through tail vein injection of Cy5-labeled synthetic miR-342, we found the exogenous miR-342-Cy5 was mainly enriched in metabolic and immune organs. Besides, the bioinformatic analysis predicted that miR-342 might involve in immune-related processes or pathways. Further, mice were tail vein injected with synthetic miR-342 mimetics (Ago-miR-342) after irradiation to upregulate the level of miR-342 in circulating blood. The results showed that the upregulation of circulating miR-342 alleviated the radiation-induced depletion of CD3+CD4+ T lymphocytes and influenced the levels of IL-2 and IL-6 in irradiated mice. Moreover, the injection of Ago-miR-342 improved the survival rates of mice with acute radiation injury. Our findings demonstrate that upregulation of circulating miR-342 alleviates the radiation-induced immune system injury, which provides us new insights into the functions of circulating miRNAs and the prospect as the targets for mitigation of radiation injuries.


Assuntos
MicroRNA Circulante , MicroRNAs , Lesões por Radiação , Animais , Camundongos , Biomarcadores , MicroRNA Circulante/genética , MicroRNA Circulante/metabolismo , Sistema Imunitário/efeitos da radiação , MicroRNAs/genética , Lesões por Radiação/genética
13.
Cell Biochem Funct ; 41(8): 1115-1132, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37653677

RESUMO

The biogenic synthesis of nanoparticles has drawn significant attention. The spleen is the largest lymphatic organ that is adversely impacted during irradiation. The current study was designated to evaluate the possible anti-inflammatory effect of matcha-silver nanoparticles (M-AgNPs) to reduce inflammation associated with γ-radiation induced-oxidative stress and inflammation in rats' spleen. Silver nanoparticles (AgNPs) were synthesized by biogenic synthesis using a green sonochemical method from matcha (M) green tea. The obtained M-AgNPs were extensively characterized by dynamic light scattering, transmission electron microscopy, thermogravimetric analysis, and Fourier-transform infrared spectroscopy. Using zetasizer analysis, the surface charge, particle size, and radical scavenging DPPH assay of M-AgNPs were also examined. Biocompatibility and cytotoxicity were analyzed by MTT assay, and the IC50 was calculated. Four groups of 24 Wistar rats each had an equal number of animals. The next step involved measuring the levels of oxidative stress markers in the rat splenic tissue. Additionally, the amounts of inflammatory protein expression were evaluated using the ELISA analysis. The results indicated the formation of spherical nanoparticles of pure Ag° coated with matcha polyphenols at the nanoscale, as well as uniform monodisperse particles suited for cellular absorption. Results revealed that M-AgNPs improved all biochemical parameters. Furthermore, M-AgNPs relieve inflammation by reducing the expression of NOD-like receptor family pyrin domain-containing 3 (NLRP3), interleukin-1ß (IL-1ß), and enhancing the levels of ileSnt information regulator 1 (SIRT1). Histopathological examinations demonstrated the ability of M-AgNPs to overcome the damage consequent to irradiation and recover the spleen's cellular structure. These results confirmed that matcha is a potential biomaterial for synthesizing AgNPs, which can be exploited for their anti-inflammatory activity.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Ratos , Anti-Inflamatórios , Raios gama , Inflamação/tratamento farmacológico , Inflamação/patologia , Nanopartículas Metálicas/química , Estresse Oxidativo , Ratos Wistar , Transdução de Sinais , Prata/farmacologia , Prata/química , Prata/uso terapêutico , Sirtuína 1 , Baço , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Lesões por Radiação/prevenção & controle , Chá
14.
Asian Pac J Cancer Prev ; 24(9): 3049-3057, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774056

RESUMO

BACKGROUND: The genetic polymorphisms in DNA repair genes and their correlation with normal tissue toxicity in response to radiation therapy has not been consistently proven in many of the studies done in head and neck cancers (HNC). This study was intended to investigate the association of most common single nucleotide polymorphisms of DNA repair genes with acute radiation induced toxicities such as skin reactions and oral mucositis in normal tissue from HNC patients receiving radiotherapy from South-Western Maharashtra. METHODS: Two hundred HNC patients receiving radiotherapy were enrolled in this study and the radiation injuries in the form of skin reactions and oral mucositis were recorded. Three single nucleotide polymorphisms (SNPs) rs1799782, rs25489) rs25487 of XRCC1 gene, rs3218536in XRCC2 gene and rs861539 SNP of XRCC3 gene were studied by PCR-RFLP and direct DNA sequencing.  Results: The univariate analysis of SNPs of XRCC1, XRCC2 and XRCC3, the obtained results verified that XRCC1 polymorphism at 194Trp of exon 6 (OR=0.69, 95% CI: 0.28-1.71; p=0.433), codon 280 at exon 9 ((OR=1.05, 95% CI: 0.42-2.63; p=0.911) and codon 399 of at exon 10(OR=1.06, 95% CI: 0.52-2.15; p=0.867) and XRCC2 polymorphism at codon 188 at exon 3 (OR=1.07, 95% CI: 0.46-2.47; p=0.866) and 241Met variant genotype of XRCC3 (OR=2.63 95% CI: 0.42-16.30; p=0.298) showed no association with degree of radiotherapy associated dermatitis or mucositis in HNC patients. CONCLUSION: The findings from this study postulated that none of rs1799782, rs25489, rs25487 SNPs of XRCC1, rs3218536 SNP of XRCC2 nor rs861539 SNP of XRCC3 were associated with increased toxicity of radiotherapy in HNC patients of south-western Maharashtra. 
.


Assuntos
Neoplasias de Cabeça e Pescoço , Lesões por Radiação , Estomatite , Humanos , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença , Reparo do DNA/genética , Índia , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Genótipo , Lesões por Radiação/etiologia , Lesões por Radiação/genética , Estudos de Casos e Controles , Proteínas de Ligação a DNA/genética
15.
Redox Biol ; 66: 102857, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37611494

RESUMO

Radiation-induced intestinal injury (RIII), a common gastrointestinal complication caused by radiotherapy on pelvic, abdominal and retroperitoneal tumors, seriously affects the life quality of patients and may result in termination of radiotherapy. At present, the pathogenesis of RIII has not been fully understood. Herein, we demonstrated that ferroptosis played a critical role in RIII occurrence. The RNA sequencing analysis strongly hinted ferroptosis was involved in RIII mice. In line with this, the levels of 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), markers of lipid peroxidation, remarkably increased in RIII mice. And the ferroptosis inhibitor, Ferrostatin-1 (Fer-1), improved the mice survival and alleviated intestinal fibrosis in vivo. Moreover, our results revealed that arachidonic acid (AA) enhanced ferroptosis in cultured intestinal epithelial cells (IECs) and organoids in vitro after irradiation, and AA gavage aggravated RIII in mice. Mechanistic studies revealed the level of ACSL4 protein significantly increased in mouse jejunums and IECs after irradiation. Radiation-induced ferroptosis in IECs was also prevented following ACSL4 knockdown or with the function inhibitor of ACSL4. Furthermore, we found that transcription of ACSL4 induced by irradiation was regulated by STAT1/IRF1 axis, and AMPK activation triggered by AA negatively regulated radiation-induced ferroptosis. Taken together, our results suggest that ferroptosis mediates RIII and reducing dietary AA intake as well as targeting the STAT1-IRF1-ACSL4 axis or AMPK may be the potential approaches to alleviate RIII.


Assuntos
Ferroptose , Lesões por Radiação , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Lesões por Radiação/genética , Peroxidação de Lipídeos , Células Epiteliais
16.
Biomed Pharmacother ; 165: 115157, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454593

RESUMO

INTRODUCTION: Cancer patients commonly experience high levels of psychological stress, which poses significant risks to their well-being. Radiotherapy is a primary treatment modality for cancer; however, it often leads to intestinal injuries in these patients. Nevertheless, the impact of mental stress on radiotherapy-intertwined complications remains unclear. METHODS: To induce intestinal injury, we employed total abdominal irradiation in our experimental model. We conducted high-throughput sequencing to analyze the expression profile of miRNAs in the hippocampus. RESULTS: We observed that mice with depression exhibited more severe intestinal injuries following total abdominal irradiation. Remarkably, oral administration of Marasmius androsaceus not only alleviated the depressive phenotype but also mitigated radiation-induced intestinal toxicity. Notably, this radioprotective effect was not observed in mice without depression. Depression disrupted the hippocampal miRNA expression profile in mice subjected to local irradiation of the abdomen, leading to the accumulation of miR-139-5p and miR-184-3p in the hippocampus, serum, and small intestine tissues. However, treatment with Marasmius androsaceus reprogrammed the miRNA expression signature in mice with depression. Furthermore, intravenous injection of antagomirs targeting miR-139-5p and miR-184-3p ameliorated depression, up-regulated Spn expression, reduced radiation enteritis, and improved the integrity of the small intestine in irradiated mice. CONCLUSION: Our findings demonstrate the efficacy of Marasmius androsaceus, a small mushroom, in alleviating depression-aggravated intestinal toxicity following radiotherapy by reprogramming hippocampal miRNA expression.


Assuntos
Agaricales , Enteropatias , MicroRNAs , Lesões por Radiação , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Depressão/genética , Lesões por Radiação/genética , Hipocampo/metabolismo
17.
Cytogenet Genome Res ; 163(3-4): 103-109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37285811

RESUMO

Radiation-related normal tissue injury sustained during cancer radiotherapy or in a radiological or mass casualty nuclear incident is a major health concern. Reducing the risk and mitigating consequences of radiation injury could have a broad impact on cancer patients and citizens. Efforts to discover biomarkers that can determine radiation dose, predict tissue damage, and aid medical triage are underway. Exposure to ionizing radiation causes changes in gene, protein, and metabolite expression that needs to be understood to provide a holistic picture for treating acute and chronic radiation-induced toxicities. We present evidence that both RNA (mRNA, microRNA, long noncoding RNA) and metabolomic assays may provide useful biomarkers of radiation injury. RNA markers may provide information on early pathway alterations after radiation injury that can predict damage and implicate downstream targets for mitigation. In contrast, metabolomics is impacted by changes in epigenetics, genetics, and proteomics and can be considered a downstream marker that incorporates all these changes to provide an assessment of what is currently happening within an organ. We highlight research from the past 10 years to understand how biomarkers may be used to improve personalized medicine in cancer therapy and medical decision-making in mass casualty scenarios.


Assuntos
MicroRNAs , Neoplasias , Lesões por Radiação , Humanos , Lesões por Radiação/etiologia , Lesões por Radiação/genética , MicroRNAs/genética , Biomarcadores , Epigênese Genética , Neoplasias/genética , Neoplasias/radioterapia , Radiometria
18.
Genes (Basel) ; 14(5)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37239362

RESUMO

The heart is one of the organs that is sensitive to developing delayed adverse effects of ionizing radiation (IR) exposure. Radiation-induced heart disease (RIHD) occurs in cancer patients and cancer survivors, as a side effect of radiation therapy of the chest, with manifestation several years post-radiotherapy. Moreover, the continued threat of nuclear bombs or terrorist attacks puts deployed military service members at risk of exposure to total or partial body irradiation. Individuals who survive acute injury from IR will experience delayed adverse effects that include fibrosis and chronic dysfunction of organ systems such as the heart within months to years after radiation exposure. Toll-like receptor 4 (TLR4) is an innate immune receptor that is implicated in several cardiovascular diseases. Studies in preclinical models have established the role of TLR4 as a driver of inflammation and associated cardiac fibrosis and dysfunction using transgenic models. This review explores the relevance of the TLR4 signaling pathway in radiation-induced inflammation and oxidative stress in acute as well as late effects on the heart tissue and the potential for the development of TLR4 inhibitors as a therapeutic target to treat or alleviate RIHD.


Assuntos
Cardiopatias , Lesões por Radiação , Humanos , Receptor 4 Toll-Like/genética , Coração , Cardiopatias/genética , Lesões por Radiação/genética , Inflamação
19.
Front Immunol ; 14: 1151250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168858

RESUMO

Introduction: Exposure to high-dose ionizing radiation causes tissue injury, infections and even death due to immune dysfunction. The triggering receptor expressed on myeloid cells-1 (TREM-1) has been demonstrated to critically amplify and dysregulate immune responses. However, the role of TREM-1 in radiation injury remains unknown. Extracellular cold-inducible RNA-binding protein (eCIRP), a new damage-associated molecular pattern, is released from activated or stressed cells during inflammation. We hypothesized that ionizing radiation upregulates TREM-1 expression via eCIRP release to worsen survival. Methods: RAW264.7 cells and peritoneal macrophages collected from C57BL/6 wild-type (WT) mice were exposed to 5- and 10-Gray (Gy) radiation. C57BL/6 WT and CIRP-/- mice underwent 10-Gy total body irradiation (TBI). TREM-1 expression on RAW264.7 cells and peritoneal macrophages in vitro and in vivo were evaluated by flow cytometry. eCIRP levels in cell culture supernatants and in peritoneal lavage isolated from irradiated mice were evaluated by Western blotting. We also evaluated 30-day survival in C57BL/6 WT, CIRP-/- and TREM-1-/- mice after 6.5-Gy TBI. Results: The surface protein and mRNA levels of TREM-1 in RAW264.7 cells were significantly increased at 24 h after 5- and 10-Gy radiation exposure. TREM-1 expression on peritoneal macrophages was significantly increased after radiation exposure in vitro and in vivo. eCIRP levels were significantly increased after radiation exposure in cell culture supernatants of peritoneal macrophages in vitro and in peritoneal lavage in vivo. Moreover, CIRP-/- mice exhibited increased survival after 6.5-Gy TBI compared to WT mice. Interestingly, TREM-1 expression on peritoneal macrophages in CIRP-/- mice was significantly decreased compared to that in WT mice at 24 h after 10-Gy TBI. Furthermore, 30-day survival in TREM-1-/- mice was significantly increased to 64% compared to 20% in WT mice after 6.5-Gy TBI. Conclusion: Our data indicate that ionizing radiation increases TREM-1 expression in macrophages via the release of eCIRP, and TREM-1 contributes to worse survival after total body irradiation. Thus, targeting TREM-1 could have the potential to be developed as a novel medical countermeasure for radiation injury.


Assuntos
Macrófagos , Lesões por Radiação , Animais , Camundongos , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
20.
Lung Cancer ; 176: 56-74, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621035

RESUMO

Huge technological and biomedical advances have improved the survival and quality of life of lung cancer patients treated with radiotherapy. However, during treatment planning, a probability that the patient will experience adverse effects is assumed. Radiotoxicity is a complex entity that is largely dose-dependent but also has important intrinsic factors. One of the most studied is the genetic variants that may be associated with susceptibility to the development of adverse effects of radiotherapy. This review aims to present the current status of radiogenomics in lung cancer, integrating results obtained in association studies of SNPs (single nucleotide polymorphisms) related to radiotherapy toxicities. We conclude that despite numerous publications in this field, methodologies and endpoints vary greatly, making comparisons between studies difficult. Analyzing SNPs from the candidate gene approach, together with the study in cohorts limited by the sample size, has complicated the possibility of having validated results. All this delays the incorporation of genetic biomarkers in predictive models for clinical application. Thus, from all analysed SNPs, only 12 have great potential as esophagitis genetic risk factors and deserve further exploration. This review highlights the efforts that have been made to date in the radiogenomic study of radiotoxicity in lung cancer.


Assuntos
Neoplasias Pulmonares , Lesões por Radiação , Radioterapia (Especialidade) , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Polimorfismo de Nucleotídeo Único , Qualidade de Vida , Genômica por Radiação , Lesões por Radiação/genética , Tolerância a Radiação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA