Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 62(22): 3188-3205, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37924287

RESUMO

Intracellular leucine aminopeptidases (PepA) are metalloproteases from the family M17. These enzymes catalyze peptide bond cleavage, removing N-terminal residues from peptide and protein substrates, with consequences for protein homeostasis and quality control. While general mechanistic studies using model substrates have been conducted on PepA enzymes from various organisms, specific information about their substrate preferences and promiscuity, choice of metal, activation mechanisms, and the steps that limit steady-state turnover remain unexplored. Here, we dissected the catalytic and chemical mechanisms of PaPepA: a leucine aminopeptidase from Pseudomonas aeruginosa. Cleavage assays using peptides and small-molecule substrate mimics allowed us to propose a mechanism for catalysis. Steady-state and pre-steady-state kinetics, pH rate profiles, solvent kinetic isotope effects, and biophysical techniques were used to evaluate metal binding and activation. This revealed that metal binding to a tight affinity site is insufficient for enzyme activity; binding to a weaker affinity site is essential for catalysis. Progress curves for peptide hydrolysis and crystal structures of free and inhibitor-bound PaPepA revealed that PaPepA cleaves peptide substrates in a processive manner. We propose three distinct modes for activity regulation: tight packing of PaPepA in a hexameric assembly controls substrate length and reaction processivity; the product leucine acts as an inhibitor, and the high concentration of metal ions required for activation limits catalytic turnover. Our work uncovers catalysis by a metalloaminopeptidase, revealing the intricacies of metal activation and substrate selection. This will pave the way for a deeper understanding of metalloenzymes and processive peptidases/proteases.


Assuntos
Leucil Aminopeptidase , Peptídeos , Leucina/metabolismo , Leucil Aminopeptidase/química , Leucil Aminopeptidase/metabolismo , Peptídeos/metabolismo , Hidrólise , Metais/metabolismo , Catálise , Cinética , Especificidade por Substrato
2.
J Biol Chem ; 299(12): 105386, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898401

RESUMO

Aggregation behavior provides bacteria protection from harsh environments and threats to survival. Two uncharacterized proteases, LapX and Lap, are important for Vibrio cholerae liquid-based aggregation. Here, we determined that LapX is a serine protease with a preference for cleavage after glutamate and glutamine residues in the P1 position, which processes a physiologically based peptide substrate with a catalytic efficiency of 180 ± 80 M-1s-1. The activity with a LapX substrate identified by a multiplex substrate profiling by mass spectrometry screen was 590 ± 20 M-1s-1. Lap shares high sequence identity with an aminopeptidase (termed VpAP) from Vibrio proteolyticus and contains an inhibitory bacterial prepeptidase C-terminal domain that, when eliminated, increases catalytic efficiency on leucine p-nitroanilide nearly four-fold from 5.4 ± 4.1 × 104 M-1s-1 to 20.3 ± 4.3 × 104 M-1s-1. We demonstrate that LapX processes Lap to its mature form and thus amplifies Lap activity. The increase is approximately eighteen-fold for full-length Lap (95.7 ± 5.6 × 104 M-1s-1) and six-fold for Lap lacking the prepeptidase C-terminal domain (11.3 ± 1.9 × 105 M-1s-1). In addition, substrate profiling reveals preferences for these two proteases that could inform in vivo function. Furthermore, purified LapX and Lap restore the timing of the V. cholerae aggregation program to a mutant lacking the lapX and lap genes. Both proteases must be present to restore WT timing, and thus they appear to act sequentially: LapX acts on Lap, and Lap acts on the substrate involved in aggregation.


Assuntos
Proteínas de Bactérias , Leucil Aminopeptidase , Serina Proteases , Vibrio cholerae , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Leucil Aminopeptidase/química , Leucil Aminopeptidase/genética , Leucil Aminopeptidase/fisiologia , Peptídeos , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/fisiologia , Especificidade por Substrato , Vibrio cholerae/enzimologia , Vibrio cholerae/genética , Vibrio cholerae/fisiologia , Catálise
3.
Biosensors (Basel) ; 13(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504150

RESUMO

Leucine aminopeptidase (LAP) is an important protease that can specifically hydrolyze Leucine residues. LAP occurs in microorganisms, plants, animals, and humans and is involved in a variety of physiological processes in the human body. In the physiological system, abnormal levels of LAP are associated with a variety of diseases and pathological processes, such as cancer and drug-induced liver injury; thus, LAP was chosen as the early biochemical marker for many physiological processes, including cancer. Considering the importance of LAP in physiological and pathological processes, it is critical that high-efficiency and dependable technology be developed to monitor LAP levels. Herein, we summarize the organic small molecule fluorescence/chemiluminescence probes used for LAP detection in recent years, which can image LAP in cancer, drug-induced liver injury (DILI), and bacteria. It can also reveal the role of LAP in tumors and differentiate the serum of cirrhotic, drug-induced liver injury and normal models.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Neoplasias , Animais , Humanos , Corantes Fluorescentes/química , Leucil Aminopeptidase/química , Imagem Óptica
4.
Mar Drugs ; 21(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37233473

RESUMO

Proteolytic enzymes, also known as peptidases, are critical in all living organisms. Peptidases control the cleavage, activation, turnover, and synthesis of proteins and regulate many biochemical and physiological processes. They are also involved in several pathophysiological processes. Among peptidases, aminopeptidases catalyze the cleavage of the N-terminal amino acids of proteins or peptide substrates. They are distributed in many phyla and play critical roles in physiology and pathophysiology. Many of them are metallopeptidases belonging to the M1 and M17 families, among others. Some, such as M1 aminopeptidases N and A, thyrotropin-releasing hormone-degrading ectoenzyme, and M17 leucyl aminopeptidase, are targets for the development of therapeutic agents for human diseases, including cancer, hypertension, central nervous system disorders, inflammation, immune system disorders, skin pathologies, and infectious diseases, such as malaria. The relevance of aminopeptidases has driven the search and identification of potent and selective inhibitors as major tools to control proteolysis with an impact in biochemistry, biotechnology, and biomedicine. The present contribution focuses on marine invertebrate biodiversity as an important and promising source of inhibitors of metalloaminopeptidases from M1 and M17 families, with foreseen biomedical applications in human diseases. The results reviewed in the present contribution support and encourage further studies with inhibitors isolated from marine invertebrates in different biomedical models associated with the activity of these families of exopeptidases.


Assuntos
Aminopeptidases , Leucil Aminopeptidase , Humanos , Aminopeptidases/química , Aminopeptidases/metabolismo , Leucil Aminopeptidase/química , Peptídeos/química , Antígenos CD13
5.
Molecules ; 25(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290229

RESUMO

Cancers are the leading cause of deaths worldwide. In 2018, an estimated 18.1 million new cancer cases and 9.6 million cancer-related deaths occurred globally. Several previous studies have shown that the enzyme, leucine aminopeptidase is involved in pathological conditions such as cancer. On the basis of the knowledge that isoquinoline alkaloids have antiproliferative activity and inhibitory activity towards leucine aminopeptidase, the present study was conducted a study which involved database search, virtual screening, and design of new potential leucine aminopeptidase inhibitors with a scaffold based on 3,4-dihydroisoquinoline. These compounds were then filtered through Lipinski's "rule of five," and 25 081 of them were then subjected to molecular docking. Next, three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed for the selected group of compounds with the best binding score results. The developed model, calculated by leave-one-out method, showed acceptable predictive and descriptive capability as represented by standard statistical parameters r2 (0.997) and q2 (0.717). Further, 35 compounds were identified to have an excellent predictive reliability. Finally, nine selected compounds were evaluated for drug-likeness and different pharmacokinetics parameters such as absorption, distribution, metabolism, excretion, and toxicity. Our methodology suggested that compounds with 3,4-dihydroisoquinoline moiety were potentially active in inhibiting leucine aminopeptidase and could be used for further in-depth in vitro and in vivo studies.


Assuntos
Isoquinolinas/química , Leucil Aminopeptidase/química , Modelos Moleculares , Inibidores de Proteases/química , Relação Quantitativa Estrutura-Atividade , Desenho de Fármacos , Humanos , Leucil Aminopeptidase/antagonistas & inibidores , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Inibidores de Proteases/farmacologia , Reprodutibilidade dos Testes
6.
Acta Trop ; 204: 105355, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31991114

RESUMO

Opisthorchiasis is a serious public health problem in East Asia and Europe. The pathology involves hepatobiliary abnormalities such as cholangitis, choledocholithiasis and tissue fibrosis that can develop into cholangiocarcinoma. Prevention of infection is difficult as multiple social and behavioral factors are involved, thus, progress on a prophylactic vaccine against opisthorchiasis is urgently needed. Opisthorchis viverrini tetraspanin-2 (Ov-TSP-2) was previously described as a potential vaccine candidate conferring partial protection against O. viverrini infections in hamsters. In this study, we generated a recombinant chimeric form of the large extracellular loop of Ov-TSP-2 and O. viverrini leucine aminopeptidase, designated rOv-TSP-2-LAP. Hamsters were vaccinated with 100 and 200 µg of rOv-TSP-2-LAP formulated with alum-CpG adjuvant via intraperitoneal injection and evaluated the level of protection against O. viverrini infection. Our results demonstrated that the number of worms recovered from hamsters vaccinated with either 100 or 200 µg of rOv-TSP-2-LAP were significantly reduced by 27% compared to the adjuvant control group. Furthermore, the average length of worms recovered from animals vaccinated with 200 µg of rOv-TSP-2-LAP was significantly shorter than those from the control adjuvant group. Immunized hamsters showed significantly increased serum levels of anti-rOv-TSP-2 IgG and IgG1 compared to adjuvant control group, suggesting that rOv-TSP-2-LAP vaccination induces a mixed Th1/Th2 immune response in hamsters. Therefore, the development of a suitable vaccine against opisthorchiasis requires further work involving new vaccine technologies to improve immunogenicity and protective efficacy.


Assuntos
Opistorquíase/prevenção & controle , Opisthorchis/imunologia , Vacinas de Subunidades Antigênicas , Animais , Cricetinae , Modelos Animais de Doenças , Leucil Aminopeptidase/química , Leucil Aminopeptidase/imunologia , Masculino , Mesocricetus , Tetraspaninas/química , Tetraspaninas/imunologia , Vacinação
7.
Anticancer Drugs ; 31(1): 60-66, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31609768

RESUMO

Leucine aminopeptidase 3 is involved in the progression and metastasis of several cancers. This study aimed to screen anti-tumor lead compounds targeting leucine aminopeptidase 3. The compounds' suppression effect on enzyme activity and anti-tumor activity were evaluated through a series of assays. Leucine aminopeptidase 3 overexpression K562 cells were used as an enzyme source to screen 43 natural marine compounds. Compounds 5 and 6 exhibited high suppression effect on leucine aminopeptidase 3 activity. Cell activity tests indicated that both compounds have an anti-proliferative effect on triple-negative breast cancer cells. Wound healing assay and transwell invasion assay showed that both compounds could inhibit the migration and invasion of breast cancer cells. Immunoblot analysis exhibited that both compounds could downregulate the expression of metastasis-related proteins fascin and matrix metalloproteinase-2/9. A molecular dynamic simulation process was applied to discover the key features of compounds 5 and 6 in binding to leucine aminopeptidase 3 active site. This study described the anti-tumor effects of two leucine aminopeptidase 3 small molecule inhibitors. Taken together, compounds 5 and 6 could be used as anti-tumor lead compounds targeting leucine aminopeptidase 3.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Leucil Aminopeptidase/antagonistas & inibidores , Produtos Biológicos/química , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/química , Feminino , Humanos , Células K562 , Leucina/análogos & derivados , Leucina/farmacologia , Leucil Aminopeptidase/química , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Simulação de Acoplamento Molecular , Invasividade Neoplásica , Metástase Neoplásica
8.
Protein Expr Purif ; 167: 105544, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31759085

RESUMO

Leucine aminopeptidase (LAP), an exopeptidase that releases amino acid residues, especially leucine, from the N-terminus of polypeptides, is often applied to debitter protein hydrolysate in the food industry. However, there are no thermostable and high activity enzymes that can be used in the food industry. In this study, we obtained the highly active and thermostable leucine aminopeptidases screened from the thermophilic fungi Thermomyces lanuginosus, Talaromyces thermophilus, and Malbranchea cinnamomea. The activity of the recombinant leucine aminopeptidase Thelap was significantly increased to 2771.5 U/mL, as mediated by the CRISPR/Cas9 tool. The recombinant Thelap was easily purified from fermentation broth by Ni-affinity chromatography, and the specific activity of the purified Thelap was increased to 7449.6 U/mg. The recombinant Thelap showed optimal activity at pH 8.5 and 75 °C and remained above 70% of the maximum activity over a wide temperature range (30-80 °C). With regard to temperature stability, Thelap retained more than 90% activity when it was incubated at 65-75 °C for 2 h. K+ and Co2+ increased the enzyme activity of the recombinant Thelap, while Ba2+, Mn2+, Ni2+, Ca2+, Mg2+ and SDS inhibited its enzyme activity, and the inhibition capacity of Mg2+ was the weakest. Upon application in soy protein hydrolysis, Thelap could significantly increase the degree of hydrolysis and remove more hydrophobic amino acids from the N-terminal region of the polypeptide to decrease the bitterness.


Assuntos
Eurotiales/metabolismo , Leucil Aminopeptidase/biossíntese , Aspergillus niger/genética , Fermentação , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Expressão Gênica , Leucil Aminopeptidase/química , Leucil Aminopeptidase/metabolismo , Proteínas Recombinantes , Proteínas de Soja/metabolismo
9.
Biochimie ; 166: 38-51, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30654132

RESUMO

The family of M17 aminopeptidases (alias 'leucine aminopeptidases', M17-LAPs) utilize a highly conserved hexameric structure and a binuclear metal center to selectively remove N-terminal amino acids from short peptides. However, M17-LAPs are responsible for a wide variety of functions that are seemingly unrelated to proteolysis. Herein, we aimed to investigate the myriad of functions attributed to M17. Further, we attempted to differentiate between the different molecular mechanisms that allow the conserved hexameric structure of an M17-LAP to mediate such diverse functions. We have provided an overview of research that identifies precise physiological roles of M17-LAPs, and the distinct mechanisms by which the enzymes moderate those roles. The review shows that the conserved hexameric structure of the M17-LAPs has an extraordinary capability to moderate different molecular mechanisms. We have broadly categorized these mechanisms as 'aminopeptidase-based', which include the characteristic proteolysis reactions, and 'association-driven', which involves moderation of the molecule's macromolecular assembly and higher order complexation events. The different molecular mechanisms are capable of eliciting very different cellular outcomes, and must be regarded as distinct when the physiological roles of this large and important family are considered.


Assuntos
Bactérias/enzimologia , Eucariotos/enzimologia , Leucil Aminopeptidase/química , Leucil Aminopeptidase/fisiologia , Animais , Domínio Catalítico , Humanos , Metais/metabolismo , Modelos Moleculares , Especificidade por Substrato
10.
Anal Chim Acta ; 1031: 169-177, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30119736

RESUMO

Abnormally-expressed leucine aminopeptidase (LAP) is associated with diverse physiological and pathological disorders; hence developing a highly selective and sensitive detection system for LAP is of great significance. Herein, a fluorescent light-up system with aggregation-induced emission (AIE) characteristic, (DPA-TPE-Leu) has been developed for detecting LAP, in which the recognition unit l-leucine amide group also acts as the hydrophilic moiety. Upon LAP-triggered enzymatic reaction, l-leucine amide moiety is cleaved from the probe molecule, resulting in the formation and aggregation of the hydrophobic reaction product (DPE-TPE-OH) with AIE effect and thus giving out the turn-on green fluorescence. The system features excellent photostability, large Stokes shift (194 nm), good water solubility, high sensitivity with the detection limit of 0.16 U L-1, favorable specificity and low cytotoxicity. It has been effectively utilized in fluorescent imaging of endogenous LAP in living cells, and also successfully applied for fluorescent imaging of HepG2 xenograft tumor. Such a fluorescent assay could provide a convenient and sensitive method for detecting LAP activity and might aid in the auxiliary diagnosis of hepatocellular carcinoma and related pathological analysis in biopsy.


Assuntos
Corantes Fluorescentes/química , Leucil Aminopeptidase/análise , Neoplasias/diagnóstico , Imagem Óptica , Animais , Difenilamina/química , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Leucil Aminopeptidase/química , Limite de Detecção , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Nanoestruturas/química , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Espectrometria de Fluorescência , Estilbenos/química , Transplante Heterólogo
11.
Exp Parasitol ; 186: 1-9, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29329981

RESUMO

Leucine aminopeptidase (LAP, EC: 3.4.11.1) is an important metalloexopeptidase that catalyze the hydrolysis of amino-terminal leucine residues from polypeptides and proteins. In this study, a full length of cDNA encoding leucine aminopeptidase of Taenia pisiformis (TpLAP) was cloned by rapid amplification of cDNA-ends using the polymerase chain reaction (RACE-PCR) method. The full-length cDNA of the TpLAP gene is 1823 bp and contains a 1569 bp ORF encoding 533 amino acids with a putative mass of 56.4 kDa. TpLAP contains two characteristic motifs of the M17LAP family in the C-terminal sequence: the metal binding site 265-[VGKG]-271 and the catalytic domain motif 351-[NTDAEGRL]-357. The soluble GST-TpLAP protein was expressed in Escherichia coli Transetta (DE3) and four specific anti-TpLAP monoclonal antibodies (mAbs) were prepared. In enzymatic assays, the optimal activity was observed at pH 9.5 at 45 °C. GST-TpLAP displayed a hydrolyzing activity for the Leu-pNA substrate with a maximum activity of 46 U/ml. The enzymatic activity was significantly enhanced by Mn2+ and completely inhibited by 20 nM bestatin and 0.15 mM EDTA. The native TpLAP was detected specifically in ES components of adult T. pisiformis by western blotting using anti-TpLAP mAb as a probe. Quantitative real-time PCR revealed that the TpLAP gene was expressed at a high level in adult worm tissues, especially in the gravid proglottids (50.71-fold). Immunolocalization analysis showed that TpLAP was located primarily in the subtegumental parenchyma zone and the uterine wall of adult worms. Our results indicate that TpLAP is a new member of the M17LAP family and can be considered as a stage-differentially expressed protein. These findings might provide new insights into the study of the mechanisms of growth, development and survival of T. pisiformis in the final host and have potential value as an attractive target for drug therapy or vaccine intervention.


Assuntos
Leucil Aminopeptidase/genética , Taenia/enzimologia , Taenia/genética , Sequência de Aminoácidos , Compostos de Anilina/metabolismo , Animais , Anticorpos Monoclonais/biossíntese , Western Blotting , Clonagem Molecular , DNA Complementar/isolamento & purificação , DNA Complementar/metabolismo , DNA de Helmintos/isolamento & purificação , DNA de Helmintos/metabolismo , Hibridomas , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Leucil Aminopeptidase/química , Leucil Aminopeptidase/imunologia , Leucil Aminopeptidase/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Análise de Sequência , Taenia/imunologia , Temperatura
12.
Anal Chem ; 89(21): 11576-11582, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28992691

RESUMO

Leucine aminopeptidase (LAP) is an important cancer-related biomarker, which shows significant overexpression in malignant tumor cells like liver cancer. Developing an effective method to monitor LAP in tumor cells holds great potential for cancer diagnosis, treatment, and management. In this work, we report a novel BODIPY-based fluorescent probe (BODIPY-C-Leu) capable of monitoring LAP in vitro and in vivo in both ratiometric and turn-on model. BODIPY-C-Leu contains an asymmetrical BODIPY dye for fluorescent signaling and a dipeptide (Cys-Leu) as the triggered moiety. Activation occurs by cleavage of the amide bond in dipeptides and subsequently an intramolecular S → N conversion to convert sulfur-substituted BODIPY to amino-substituted BODIPY, resulting in a dramatic fluorescence variation to realize the detection of LAP. Furthermore, we have successfully employed BODIPY-C-Leu to monitor LAP activity in different cancer cells, indicating that HeLa cells have a higher level of LAP activity than A549 cells. Importantly, we demonstrated the capability of the probe for real-time monitoring the drug-induced LAP level changes in zebrafish.


Assuntos
Compostos de Boro/química , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/química , Leucil Aminopeptidase/metabolismo , Peixe-Zebra , Células A549 , Animais , Sobrevivência Celular , Células HeLa , Humanos , Cinética , Leucina/química , Leucil Aminopeptidase/química , Imagem Óptica , Razão Sinal-Ruído
13.
Phys Chem Chem Phys ; 18(36): 24790-24801, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711373

RESUMO

Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications. In this perspective, the mechanisms of three distinct peptide bond cleaving enzymes, beta secretase (BACE1), insulin degrading enzyme (IDE), and bovine lens leucine aminopeptidase (BILAP), have been discussed. BACE1 is a catalytic Asp dyad [Asp, Asp-] containing aspartyl protease, while IDE and BILAP are mononuclear [Zn(His, His, Glu)] and binuclear [Zn1(Asp, Glu, Asp)-Zn2(Lys, Glu, Asp, Asp)] core possessing metallopeptidases, respectively. Specifically, enzyme-substrate interactions and the roles of metal ion(s), the ligand environment, second coordination shell residues, and the protein environment in the functioning of these enzymes have been elucidated. This information will be useful to design small inhibitors, activators, and synthetic analogues of these enzymes for biomedical, biotechnological, and industrial applications.


Assuntos
Peptídeos/química , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Biocatálise , Domínio Catalítico , Bovinos , Hidrólise , Insulisina/química , Insulisina/metabolismo , Leucil Aminopeptidase/química , Leucil Aminopeptidase/metabolismo , Ligantes , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Termodinâmica , Zinco/química
14.
FEBS J ; 281(13): 2945-55, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24809618

RESUMO

A cyclic product that forms spontaneously from peptides that contain a penultimate Asp, Asn or isoAsp residue at the N-terminus has been characterized. This 2,5-diketopiperazine derivative forms under physiological conditions and is stable, showing little degradation even following heating at 60 °C. A mechanism for its formation from Asn and Asp peptides is proposed that involves a succinimide or isoaspartate intermediate. A diketopiperazine-modified peptide was also detected in human lens extracts. Since peptides that contain the diketopiperazine moiety are not readily hydrolysed by leucine aminopeptidase, it is hypothesized that proteins and peptides modified in this way in the body may not readily be digested by the normal proteolytic machinery of cells.


Assuntos
Asparagina/química , Ácido Isoaspártico/química , Leucil Aminopeptidase/química , Peptídeos Cíclicos/química , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Ácido Aspártico/química , Ciclização , Dicetopiperazinas/química , Humanos , Cristalino/química , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteólise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Cadeia B de alfa-Cristalina/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-23989151

RESUMO

Helicobacter pylori is an important human pathogenic bacterium associated with numerous severe gastroduodenal diseases, including ulcers and gastric cancer. Cytosolic leucyl aminopeptidase (LAP) is an important housekeeping protein that is involved in peptide and protein turnover, catabolism of proteins and modulation of gene expression. LAP is upregulated in metronidazole-resistant H. pylori, which suggests that, in addition to having an important housekeeping role, LAP contributes to the mechanism of drug resistance. Crystals of H. pylori LAP have been grown by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitating agent. The crystals belonged to the primitive triclinic space group P1, with unit-cell parameters a = 97.5, b = 100.2, c = 100.4 Å, α = 75.4, ß = 60.9, γ = 81.8°. An X-ray diffraction data set was collected to 2.8 Šresolution from a single crystal. Molecular-replacement results using these data indicate that H. pylori LAP is a hexamer with 32 symmetry.


Assuntos
Proteínas de Bactérias/química , Helicobacter pylori/química , Leucina/análogos & derivados , Leucil Aminopeptidase/química , Proteínas de Bactérias/genética , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Farmacorresistência Bacteriana , Escherichia coli/genética , Expressão Gênica , Helicobacter pylori/enzimologia , Helicobacter pylori/genética , Leucina/química , Leucil Aminopeptidase/genética , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
16.
Biomed Chromatogr ; 27(7): 946-52, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23494587

RESUMO

A new method to estimate the leucine aminopeptidase (LAP, EC 3.4.11.1) activity using capillary electrophoresis coupled with electrochemiluminescence (ECL) is described. The liberated proline produced by LAP catalyzing the hydrolysis reaction of leucin-proline was used as an ECL coreagent to enhance Ru(bpy)3 (2+) ECL signals efficiently. The detection limit for proline was 2.88 × 10(-6) m (signal-to-noise ratio 3), which was equal to 9.60 × 10(-8) units of LAP being used to catalyze leucin-proline for 1 min. The Michaelis constant Km (2.07 × 10(-2) mol/L) and the maximum reaction velocity Vmax (1.06 × 10(-5) mol/L/min) of LAP for leucin-proline are reported. The reaction conditions including the concentration of metal ions, incubation temperature and pH were optimized. This method was successfully applied to detect LAP activity in plasma and the results were in good agreement with that obtained by the clinical method.


Assuntos
Eletroforese Capilar/métodos , Leucil Aminopeptidase/análise , Leucil Aminopeptidase/metabolismo , Medições Luminescentes/métodos , Estudos de Casos e Controles , Colestase/sangue , Colestase/enzimologia , Estabilidade Enzimática , Feminino , Hepatite/sangue , Hepatite/enzimologia , Humanos , Concentração de Íons de Hidrogênio , Leucina/análise , Leucina/metabolismo , Leucil Aminopeptidase/sangue , Leucil Aminopeptidase/química , Limite de Detecção , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/enzimologia , Masculino , Prolina/análise , Prolina/metabolismo , Reprodutibilidade dos Testes , Razão Sinal-Ruído
17.
Bioorg Khim ; 39(3): 320-5, 2013.
Artigo em Russo | MEDLINE | ID: mdl-24397030

RESUMO

Proteolysis of Pro-Gly-Pro-Leu, Pro-Gly-Pro-Gly and Pro-Gly-Pro were studied comparatively to Met-Glu-His-Phe-Pro-Gly-Pro (semax). It is shown that all three peptides are considerably more stable to proteolysis by N-leucine-aminopeptidase (EC 3.4.11.1, Sigma, type VI, 9.2 units/mg), and by enzymes of nasal slime, brain microsomal fractions, and rat blood. Metabolites of the proteolysis showed that semax derives His-Phe-Pro-Gly-Pro only, Pro-Gly-Pro-Leu forms Gly-Pro-Leu, Pro-Gly-Pro and Gly-Pro, Pro-Gly-Pro-Gly gives Pro-Gly-Pro and Gly-Pro, and Pro-Gly-Pro forms Gly-Pro.


Assuntos
Glicina/química , Peptídeos/química , Prolina/química , Proteólise , Animais , Encéfalo/enzimologia , Enzimas/sangue , Leucil Aminopeptidase/química , Ratos
18.
J Biol Inorg Chem ; 17(2): 209-22, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21918843

RESUMO

In this density functional theory study, reaction mechanisms of a co-catalytic binuclear metal center (Zn1-Zn2) containing enzyme leucine aminopeptidase for two different metal bridging nucleophiles (H(2)O and -OH) have been investigated. In addition, the effects of the substrate (L-leucine-p-nitroanilide → L-leucyl-p-anisidine) and metal (Zn1 → Mg and Zn2 → Co, i.e., Mg1-Zn2 and Mg1-Co2 variants) substitutions on the energetics of the mechanism have been investigated. The general acid/base mechanism utilizing a bicarbonate ion followed by this enzyme is divided into two steps: (1) the formation of the gem-diolate intermediate, and (2) the cleavage of the peptide bond. With the computed barrier of 17.8 kcal/mol, the mechanism utilizing a hydroxyl nucleophile was found to be in excellent agreement with the experimentally measured barrier of 18.7 kcal/mol. The rate-limiting step for reaction with L-leucine-p-nitroanilide is the cleavage of the peptide bond with a barrier of 17.8 kcal/mol. However, for L-leucyl-p-anisidine all steps of the mechanism were found to occur with similar barriers (18.0-19.0 kcal/mol). For the metallovariants, cleavage of the peptide bond occurs in the rate-limiting step with barriers of 17.8, 18.0, and 24.2 kcal/mol for the Zn1-Zn2, Mg1-Zn2, and Mg1-Co2 enzymes, respectively. The nature of the metal ion was found to affect only the creation of the gem-diolate intermediate, and after that all three enzymes follow essentially the same energetics. The results reported in this study have elucidated specific roles of both metal centers, the nucleophile, indirect ligands, and substrates in the catalytic functioning of this important class of binuclear metallopeptidases.


Assuntos
Leucil Aminopeptidase/metabolismo , Peptídeos/metabolismo , Zinco/metabolismo , Compostos de Anilina/química , Compostos de Anilina/metabolismo , Animais , Domínio Catalítico , Bovinos , Cristalografia por Raios X , Hidrólise , Leucina/química , Leucina/metabolismo , Leucil Aminopeptidase/química , Modelos Moleculares , Peptídeos/química , Teoria Quântica , Especificidade por Substrato , Zinco/química
19.
Parasitology ; 138(6): 682-90, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21414242

RESUMO

Leucine aminopeptidases (LAPs) are a group of metalloexopeptidases that catalyse the sequential removal of amino acids from the N-termini of polypeptides or proteins. They play an important role in regulating the balance between catabolism and anabolism in living cells. LAPs of apicomplexa parasitic protozoa have been intensively investigated due to their crucial roles in parasite biology as well as their potentials as drug targets. In this study, we identified an M17 leucine aminopeptidase of Cryptosporidium parvum (CpLAP) and characterized the biochemical properties of the recombinant protein. Multiple sequence alignment of the deduced amino acid sequence of CpLAP with those of other organisms revealed that typical amino acid residues essential for metal binding and active-site formation in M17 LAPs were well conserved in CpLAP. Recombinant CpLAP shared similar biochemical properties such as optimal pH, stability at neutral pHs, and metal-binding characteristics with other characterized LAPs. The enzyme showed a marked preference for Leu and its activity was effectively inhibited by bestatin. These results collectively suggest that CpLAP is a typical member of the M17 LAP family and may play an important role in free amino acid regulation in the parasite.


Assuntos
Cryptosporidium parvum/enzimologia , Cryptosporidium parvum/genética , Leucil Aminopeptidase/genética , Leucil Aminopeptidase/metabolismo , Sequência de Aminoácidos , Quelantes/farmacologia , Clonagem Molecular , Cryptosporidium parvum/classificação , Ácido Edético/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Leucil Aminopeptidase/química , Metais/farmacologia , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
20.
Fish Physiol Biochem ; 36(4): 953-62, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20020199

RESUMO

Aminopeptidases play important roles in turnover of proteins, metabolism of hormones and neurotransmission, cell maturation and immunological regulations. In the present study, an aminopeptidase was purified to homogeneity from the skeletal muscle of grass carp by ammonium sulfate fractionation and sequential chromatographic steps, including DEAE-Sephacel, Sephacryl S-200, hydroxyapatite and Phenyl-Sepharose. The purified enzyme revealed a molecular mass of approximately 105 kDa both on SDS-PAGE and on gel filtration of Superdex 200. The enzymatic activity toward synthetic substrates was optimal at 40°C and pH 7.0-7.5. Metal-chelating agents such as EDTA and EGTA effectively inhibited the enzyme activity while inhibitors to serine, asparatic and cysteine proteinases did not show much effect, suggesting its belonging to metalloproteinase family. A specific aminopeptidase inhibitor bestatin was most effective in suppressing the enzymatic activity and performed in a competitive fashion. The enzymatic activity was slightly enhanced by metal ions of Mg2+ and Mn2+ while inhibited to different extents by Co2+, Cu2+, Zn2+ and Ca2+. Sulfhydryl reagent was necessary to maintain its activity. Purified enzyme demonstrated amidolytic activity most effectively against synthetic aminopeptidase substrate Leu-methylcoumarylamide (MCA) while N-terminal-blocked substrates and myofibrillar proteins were not hydrolyzed. The enzyme purified in the present study was quite possibly a leucine aminopeptidase (LAP) and functions during muscular protein metabolism.


Assuntos
Carpas/metabolismo , Leucil Aminopeptidase/isolamento & purificação , Músculo Esquelético/enzimologia , Sulfato de Amônio , Animais , Fracionamento Químico , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Cinética , Leucil Aminopeptidase/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA