Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Life Sci Alliance ; 5(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34996842

RESUMO

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The positive-sense single-stranded RNA virus contains a single linear RNA segment that serves as a template for transcription and replication, leading to the synthesis of positive and negative-stranded viral RNA (vRNA) in infected cells. Tools to visualize vRNA directly in infected cells are critical to analyze the viral replication cycle, screen for therapeutic molecules, or study infections in human tissue. Here, we report the design, validation, and initial application of FISH probes to visualize positive or negative RNA of SARS-CoV-2 (CoronaFISH). We demonstrate sensitive visualization of vRNA in African green monkey and several human cell lines, in patient samples and human tissue. We further demonstrate the adaptation of CoronaFISH probes to electron microscopy. We provide all required oligonucleotide sequences, source code to design the probes, and a detailed protocol. We hope that CoronaFISH will complement existing techniques for research on SARS-CoV-2 biology and COVID-19 pathophysiology, drug screening, and diagnostics.


Assuntos
COVID-19/diagnóstico , Hibridização in Situ Fluorescente/métodos , RNA Viral/genética , SARS-CoV-2/genética , Replicação Viral/genética , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Antivirais/farmacologia , COVID-19/virologia , Células CACO-2 , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Hibridização In Situ/métodos , Microscopia Eletrônica/métodos , RNA Viral/ultraestrutura , Reprodutibilidade dos Testes , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade , Células Vero , Liberação de Vírus/efeitos dos fármacos , Liberação de Vírus/genética , Liberação de Vírus/fisiologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia , Tratamento Farmacológico da COVID-19
2.
Mol Immunol ; 142: 11-21, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34959069

RESUMO

Senecavirus A (SVA) is an oncolytic virus, which can propagate in human tumor cells and has been used as an oncolytic virotherapy candidate in humans. Besides, SVA circulates in pigs and causes vesicles and coalescing erosions on the snouts and coronary bands in infected pigs and results in neonatal morbidity. SVA has evolved the ability to suppress host innate immune response to benefit viral replication. SVA 3Cpro and 2C protein inhibit the production of host type I interferon (IFN) by degradation of several components of innate immune pathway. In this study, for the first time, we determined that SVA 2B antagonized host innate immune response in both human and porcine cells. SVA 2B protein degraded mitochondrial antiviral-signaling protein (MAVS), a key host molecule in the innate immune pathway, and a colocalization and interaction between 2B and MAVS was observed in the context of viral infection. Further study showed that the 1-48 and 100-128 regions of 2B were essential for inhibition of type I IFN expression. In addition, we determined that 2B degraded MAVS depending on caspase-9 and caspase-3. In conclusion, our results revealed a novel strategy for SVA 2B protein to antagonize host innate immune response, which will help for clarification of the pathogenesis of SVA and provide an insight for oncolytic virotherapy of SVA.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Imunidade Inata/imunologia , Interferon Tipo I/biossíntese , Picornaviridae/metabolismo , Proteínas não Estruturais Virais/imunologia , Animais , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferon Tipo I/imunologia , Terapia Viral Oncolítica/métodos , Infecções por Picornaviridae/patologia , Infecções por Picornaviridae/virologia , Suínos , Proteínas não Estruturais Virais/genética , Proteínas Viroporinas/genética , Proteínas Viroporinas/imunologia , Liberação de Vírus/fisiologia , Replicação Viral/fisiologia
3.
J Virol ; 95(23): e0132321, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34523971

RESUMO

Recently, a genome-wide association study using plasma HIV RNA from antiretroviral therapy-naive patients reported that 14 naturally occurring nonsynonymous single-nucleotide polymorphisms (SNPs) in HIV derived from antiretrovirus drug-naive patients were associated with virus load (VL). Those SNPs were detected in reverse transcriptase, RNase H, integrase, envelope, and Nef. However, the impact of each mutation on viral fitness was not investigated. Here, we constructed a series of HIV variants encoding each SNP and examined their replicative abilities. An HIV variant containing a Met-to-Ile change at codon 50 in integrase [HIV(IN:M50I)] was found as an impaired virus. Despite the mutation being in integrase, the virus release was significantly suppressed (P < 0.001). Transmission electron microscopy analysis revealed that abnormal bud accumulation on the plasma membrane and the released virus particles retained immature forms. Western blot analysis demonstrated a defect in autoprocessing of GagPol and Gag polyproteins' autoprocessing in the HIV(IN:M50I) particles, although Förster resonance energy transfer (FRET) assay displayed that GagPol containing IN:M50I forms a homodimer with a similar efficiency with GagPol (wild type). The impaired maturation and replication were rescued by two other VL-associated SNPs, Ser-to-Asn change at codon 17 of integrase and Asn-to-Ser change at codon 79 of RNase H. These data demonstrate that Gag and GagPol assembly, virus release, and autoprocessing are regulated by not only integrase but also RNase H. IMPORTANCE Nascent HIV-1 is a noninfectious viral particle. Cleaving Gag and GagPol polyproteins in the particle by mature HIV protease (PR), the nascent virus becomes an infectious virus. PR is initially translated as an inactive embedded enzyme in a GagPol polyprotein. The embedded PR in homodimerized GagPol polyproteins catalyzes a proteolytic reaction to release the mature PR. This excision step by self-cleavage is called autoprocessing. Here, during the evaluation of the roles of naturally emerging nonsynonymous SNPs in HIV RNA, we found that autoprocessing is inhibited by Met-to-Ile change at codon 50 in integrase GagPol. Other coexisting SNPs, Ser-to-Asn change at codon 17 in integrase or Asn-to-Ser mutation at codon 79 in RNase H, recovered this defect, suggesting that autoprocessing is regulated by not only integrase but also RNase H in GagPol polyprotein.


Assuntos
Integrase de HIV/metabolismo , HIV-1/fisiologia , Ribonuclease H/metabolismo , Liberação de Vírus/fisiologia , Antirretrovirais/farmacologia , Produtos do Gene gag/genética , Células HEK293 , Infecções por HIV , Integrase de HIV/genética , HIV-1/genética , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Proteólise , Ribonuclease H/genética , Vírion/metabolismo , Replicação Viral
4.
Virology ; 562: 9-18, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34242748

RESUMO

Monocytes/macrophages are important target cells for HIV-1. Here, we investigated whether HIV-1 induces changes in the macrophage gene expression profile to support viral replication. We observed that the macrophage gene expression profiles dramatically changed upon HIV-1 infection. The majority of the HIV-1 regulated genes were also differentially expressed in M2a macrophages. The biological functions associated with the HIV-1 induced gene expression profile in macrophages were mainly related to inflammatory responses. CD9 and ITGA3 were among the top genes upregulated upon HIV-1 infection. We showed that these genes support viral replication and that downregulation of these genes decreased HIV-1 replication in macrophages. Here we showed that HIV-1 infection of macrophages induces a gene expression profile that may dampen inflammatory responses. CD9 and ITGA3 were among the top genes regulated by HIV-1 and were shown to support viral production most likely at the level of viral budding and release.


Assuntos
HIV-1/fisiologia , Integrina alfa3/metabolismo , Macrófagos/virologia , Tetraspanina 29/metabolismo , Replicação Viral/fisiologia , Perfilação da Expressão Gênica , Humanos , Integrina alfa3/genética , Macrófagos/metabolismo , Tetraspanina 29/genética , Liberação de Vírus/fisiologia
5.
J Virol ; 95(20): e0116521, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319156

RESUMO

Ebola virus (EBOV) attaches to target cells using two categories of cell surface receptors: C-type lectins and phosphatidylserine (PS) receptors. PS receptors typically bind to apoptotic cell membrane PS and orchestrate the uptake and clearance of apoptotic debris. Many enveloped viruses also contain exposed PS and can therefore exploit these receptors for cell entry. Viral infection can induce PS externalization in host cells, resulting in increased outer PS levels on budding virions. Scramblase enzymes carry out cellular PS externalization; thus, we targeted these proteins in order to manipulate viral envelope PS levels. We investigated two scramblases previously identified to be involved in EBOV PS levels, transmembrane protein 16F and Xk-related protein 8 (XKR8), as possible mediators of cellular and viral envelope surface PS levels during the replication of recombinant vesicular stomatitis virus containing its native glycoprotein (rVSV/G) or the EBOV glycoprotein (rVSV/EBOV-GP). We found that rVSV/G and rVSV/EBOV-GP virions produced in XKR8 knockout cells contain decreased levels of PS on their surfaces, and the PS-deficient rVSV/EBOV-GP virions are 70% less efficient at infecting cells through PS receptors. We also observed reduced rVSV and EBOV virus-like particle (VLP) budding in ΔXKR8 cells. Deletion of XKR8 in HAP1 cells reduced rVSV/G and rVSV/EBOV-GP budding by 60 and 65%, respectively, and reduced Ebola VLP budding more than 60%. We further demonstrated that caspase cleavage of XKR8 is required to promote budding. This suggests that XKR8, in addition to mediating virion PS levels, may also be critical for enveloped virus budding at the plasma membrane. IMPORTANCE Within the last decade, countries in western and central Africa have experienced the most widespread and deadly Ebola outbreaks since Ebola virus was identified in 1976. While outbreaks are primarily attributed to zoonotic transfer events, new evidence is emerging outbreaks may be caused by a combination of spillover events and viral latency or persistence in survivors. The possibility that Ebola virus can remain dormant and then reemerge in survivors highlights the critical need to prevent the virus from entering and establishing infection in human cells. Thus far, host cell scramblases TMEM16F and XKR8 have been implicated in Ebola envelope surface phosphatidylserine (PS) and cell entry using PS receptors. We assessed the contributions of these proteins using CRISPR knockout cells and two EBOV models: rVSV/EBOV-GP and EBOV VLPs. We observed that XKR8 is required for optimal EBOV envelope PS levels and infectivity and particle budding across all viral models.


Assuntos
Ebolavirus/metabolismo , Fosfatidilserinas/metabolismo , Liberação de Vírus/fisiologia , Linhagem Celular , Ebolavirus/patogenicidade , Glicoproteínas/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Fosfatidilserinas/fisiologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/fisiologia , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Liberação de Vírus/genética
6.
PLoS Pathog ; 17(7): e1009746, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34297778

RESUMO

HCV cell-culture system uses hepatoma-derived cell lines for efficient virus propagation. Tumor cells cultured in glucose undergo active aerobic glycolysis, but switch to oxidative phosphorylation for energy production when cultured in galactose. Here, we investigated whether modulation of glycolysis in hepatocytes affects HCV infection. We showed HCV release, but not entry, genome replication or virion assembly, is significantly blocked when cells are cultured in galactose, leading to accumulation of intracellular infectious virions within multivesicular body (MVB). Blockade of the MVB-lysosome fusion or treatment with pro-inflammatory cytokines promotes HCV release in galactose. Furthermore, we found this glycometabolic regulation of HCV release is mediated by MAPK-p38 phosphorylation. Finally, we showed HCV cell-to-cell transmission is not affected by glycometabolism, suggesting that HCV cell-to-supernatant release and cell-to-cell transmission are two mechanistically distinct pathways. In summary, we demonstrated glycometabolism regulates the efficiency and route of HCV release. We proposed HCV may exploit the metabolic state in hepatocytes to favor its spread through the cell-to-cell transmission in vivo to evade immune response.


Assuntos
Hepacivirus/fisiologia , Hepatite C/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Liberação de Vírus/fisiologia , Linhagem Celular Tumoral , Humanos
7.
J Biol Chem ; 296: 100111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33229438

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a ß-coronavirus, is the causative agent of the COVID-19 pandemic. Like for other coronaviruses, its particles are composed of four structural proteins: spike (S), envelope (E), membrane (M), and nucleoprotein (N) proteins. The involvement of each of these proteins and their interactions are critical for assembly and production of ß-coronavirus particles. Here, we sought to characterize the interplay of SARS-CoV-2 structural proteins during the viral assembly process. By combining biochemical and imaging assays in infected versus transfected cells, we show that E and M regulate intracellular trafficking of S as well as its intracellular processing. Indeed, the imaging data reveal that S is relocalized at endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) or Golgi compartments upon coexpression of E or M, as observed in SARS-CoV-2-infected cells, which prevents syncytia formation. We show that a C-terminal retrieval motif in the cytoplasmic tail of S is required for its M-mediated retention in the ERGIC, whereas E induces S retention by modulating the cell secretory pathway. We also highlight that E and M induce a specific maturation of N-glycosylation of S, independently of the regulation of its localization, with a profile that is observed both in infected cells and in purified viral particles. Finally, we show that E, M, and N are required for optimal production of virus-like-particles. Altogether, these results highlight how E and M proteins may influence the properties of S proteins and promote the assembly of SARS-CoV-2 viral particles.


Assuntos
Proteínas do Envelope de Coronavírus/genética , Proteínas do Nucleocapsídeo/genética , SARS-CoV-2/crescimento & desenvolvimento , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/genética , Vírion/crescimento & desenvolvimento , Montagem de Vírus/fisiologia , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Expressão Gênica , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Complexo de Golgi/virologia , Células HEK293 , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas do Nucleocapsídeo/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Proteínas da Matriz Viral/metabolismo , Vírion/genética , Vírion/metabolismo , Internalização do Vírus , Liberação de Vírus/fisiologia
8.
PLoS Pathog ; 16(12): e1009099, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315947

RESUMO

Open reading frame (ORF) 45 is an outer tegument protein of Kaposi's sarcoma-associated herpesvirus (KSHV). Genetic analysis of an ORF45-null mutant revealed that ORF45 plays a key role in the events leading to the release of KSHV particles. ORF45 associates with lipid rafts (LRs), which is responsible for the colocalization of viral particles with the trans-Golgi network and facilitates their release. In this study, we identified a host protein, RAB11 family interacting protein 5 (RAB11FIP5), that interacts with ORF45 in vitro and in vivo. RAB11FIP5 encodes a RAB11 effector protein that regulates endosomal trafficking. Overexpression of RAB11FIP5 in KSHV-infected cells decreased the expression level of ORF45 and inhibited the release of KSHV particles, as reflected by the significant reduction in the number of extracellular virions. In contrast, silencing endogenous RAB11FIP5 increased ORF45 expression and promoted the release of KSHV particles. We further showed that RAB11FIP5 mediates lysosomal degradation of ORF45, which impairs its ability to target LRs in the Golgi apparatus and inhibits ORF45-mediated colocalization of viral particles with the trans-Golgi network. Collectively, our results suggest that RAB11FIP5 enhances lysosome-dependent degradation of ORF45, which inhibits the release of KSHV particles, and have potential implications for virology and antiviral design.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Liberação de Vírus/fisiologia , Linhagem Celular , Humanos , Lisossomos/metabolismo
9.
Viruses ; 12(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33028008

RESUMO

Polyomaviruses are a family of small, non-enveloped DNA viruses that can cause severe disease in immunosuppressed individuals. Studies with SV40, a well-studied model polyomavirus, have revealed the role of host proteins in polyomavirus entry and trafficking to the nucleus, in viral transcription and DNA replication, and in cell transformation. In contrast, little is known about host factors or cellular signaling pathways involved in the late steps of productive infection leading to release of progeny polyomaviruses. We previously showed that cytoplasmic vacuolization, a characteristic late cytopathic effect of SV40 infection, depends on the specific interaction between the major viral capsid protein VP1 and its cell surface ganglioside receptor GM1. Here, we show that, late during infection, SV40 activates a signaling cascade in permissive monkey CV-1 cells involving Ras, Rac1, MKK4, and JNK to stimulate SV40-specific cytoplasmic vacuolization and subsequent cell lysis and virus release. Inhibition of individual components of this signaling pathway inhibits vacuolization, lysis, and virus release, even though high-level intracellular virus replication occurs. Identification of this pathway for SV40-induced vacuolization and virus release provides new insights into the late steps of non-enveloped virus infection.


Assuntos
Morte Celular/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Vírus 40 dos Símios/metabolismo , Liberação de Vírus/fisiologia , Proteínas do Capsídeo , Linhagem Celular , Humanos , MAP Quinase Quinase 4/metabolismo , Infecções por Polyomavirus/metabolismo , Vírus 40 dos Símios/genética , Infecções Tumorais por Vírus/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
10.
Viruses ; 12(10)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092109

RESUMO

One of the most important steps in any viral lifecycle is the production of progeny virions. For retroviruses as well as other viruses, this step is a highly organized process that occurs with exquisite spatial and temporal specificity on the cellular plasma membrane. To facilitate this process, retroviruses encode short peptide motifs, or L domains, that hijack host factors to ensure completion of this critical step. One such cellular machinery targeted by viruses is known as the Endosomal Sorting Complex Required for Transport (ESCRTs). Typically responsible for vesicular trafficking within the cell, ESCRTs are co-opted by the retroviral Gag polyprotein to assist in viral particle assembly and release of infectious virions. This review in the Viruses Special Issue "The 11th International Retroviral Nucleocapsid and Assembly Symposium", details recent findings that shed light on the molecular details of how ESCRTs and the ESCRT adaptor protein ALIX, facilitate retroviral dissemination at sites of viral assembly.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Retroviridae , Montagem de Vírus/fisiologia , Liberação de Vírus/fisiologia , HIV-1/metabolismo , Nucleocapsídeo/metabolismo , Retroviridae/crescimento & desenvolvimento , Retroviridae/metabolismo , Ribonucleoproteínas/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
11.
Viruses ; 12(6)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599939

RESUMO

Herpesviruses uniquely express two essential nuclear egress-regulating proteins forming a heterodimeric nuclear egress complex (core NEC). These core NECs serve as hexameric lattice-structured platforms for capsid docking and recruit viral and cellular NEC-associated factors that jointly exert nuclear lamina as well as membrane-rearranging functions (multicomponent NEC). The regulation of nuclear egress has been profoundly analyzed for murine and human cytomegaloviruses (CMVs) on a mechanistic basis, followed by the description of core NEC crystal structures, first for HCMV, then HSV-1, PRV and EBV. Interestingly, the highly conserved structural domains of these proteins stand in contrast to a very limited sequence conservation of the key amino acids within core NEC-binding interfaces. Even more surprising, although a high functional consistency was found when regarding the basic role of NECs in nuclear egress, a clear specification was identified regarding the limited, subfamily-spanning binding properties of core NEC pairs and NEC multicomponent proteins. This review summarizes the evolving picture of the relationship between sequence coevolution, structural conservation and properties of NEC interaction, comparing HCMV to α-, ß- and γ-herpesviruses. Since NECs represent substantially important elements of herpesviral replication that are considered as drug-accessible targets, their putative translational use for antiviral strategies is discussed.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Alphaherpesvirinae/genética , Citomegalovirus/genética , Gammaherpesvirinae/genética , Liberação de Vírus/genética , Transporte Ativo do Núcleo Celular/fisiologia , Alphaherpesvirinae/metabolismo , Sequência de Aminoácidos/genética , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Citomegalovirus/metabolismo , Gammaherpesvirinae/metabolismo , Humanos , Membrana Nuclear/metabolismo , Lâmina Nuclear/fisiologia , Liberação de Vírus/fisiologia
12.
Cell ; 182(2): 515-530.e17, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32610083

RESUMO

Imaging of biological matter across resolution scales entails the challenge of preserving the direct and unambiguous correlation of subject features from the macroscopic to the microscopic level. Here, we present a correlative imaging platform developed specifically for imaging cells in 3D under cryogenic conditions by using X-rays and visible light. Rapid cryo-preservation of biological specimens is the current gold standard in sample preparation for ultrastructural analysis in X-ray imaging. However, cryogenic fluorescence localization methods are, in their majority, diffraction-limited and fail to deliver matching resolution. We addressed this technological gap by developing an integrated, user-friendly platform for 3D correlative imaging of cells in vitreous ice by using super-resolution structured illumination microscopy in conjunction with soft X-ray tomography. The power of this approach is demonstrated by studying the process of reovirus release from intracellular vesicles during the early stages of infection and identifying intracellular virus-induced structures.


Assuntos
Microscopia Crioeletrônica/métodos , Reoviridae/fisiologia , Linhagem Celular Tumoral , Microscopia Crioeletrônica/instrumentação , Endossomos/metabolismo , Endossomos/virologia , Corantes Fluorescentes/química , Humanos , Imageamento Tridimensional , Microscopia de Fluorescência , Reoviridae/química , Liberação de Vírus/fisiologia
13.
Sci Rep ; 10(1): 8370, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433502

RESUMO

Zika virus (ZIKV) is an arbovirus that recently emerged in the Americas as an important pathogen mainly because of its expanded pathogenesis, and elevated tropism for neuronal cells, transposition across the placental barrier, and replication in reproductive tract cells. Thus, transmission modes are eventually independent of an invertebrate vector, which is an atypical behavior for the flavivirus genus and indicates the need to study the replication of this virus in different cell types. Although ZIKV became a target for public health programs, the interaction of this flavivirus with the infected cell is still poorly understood. Herein, we analyzed the main stages of virus morphogenesis in mammalian cells, from establishment of the viroplasm-like zone to viral release from infected cells, using super-resolution fluorescence microscopy and electron microscopy. In addition, we compared this with other host cell types and other members of the Flaviviridae family that present a similar dynamic.


Assuntos
Células Epiteliais/virologia , Interações entre Hospedeiro e Microrganismos , Morfogênese , Zika virus/crescimento & desenvolvimento , Aedes , Animais , Linhagem Celular , Chlorocebus aethiops , Tomografia com Microscopia Eletrônica , Células Epiteliais/ultraestrutura , Humanos , Macaca mulatta , Microscopia de Fluorescência , Liberação de Vírus/fisiologia , Replicação Viral/fisiologia , Zika virus/patogenicidade , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
14.
J Gen Virol ; 101(6): 573-586, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375950

RESUMO

Bone marrow stromal cell antigen-2 (BST-2), also known as tetherin, is an interferon-inducible membrane-associated protein. It effectively targets enveloped viruses at the release step of progeny viruses from host cells, thereby restricting the further spread of viral infection. Junin virus (JUNV) is a member of Arenaviridae, which causes Argentine haemorrhagic fever that is associated with a high rate of mortality. In this study, we examined the effect of human BST-2 on the replication and propagation of JUNV. The production of JUNV Z-mediated virus-like particles (VLPs) was significantly inhibited by over-expression of BST-2. Electron microscopy analysis revealed that BST-2 functions by forming a physical link that directly retains VLPs on the cell surface. Infection using JUNV showed that infectious JUNV production was moderately inhibited by endogenous or exogenous BST-2. We also observed that JUNV infection triggers an intense interferon response, causing an upregulation of BST-2, in infected cells. However, the expression of cell surface BST-2 was reduced upon infection. Furthermore, the expression of JUNV nucleoprotein (NP) partially recovered VLP production from BST-2 restriction, suggesting that the NP functions as an antagonist against antiviral effect of BST-2. We further showed that JUNV NP also rescued the production of Ebola virus VP40-mediated VLP from BST-2 restriction as a broad spectrum BST-2 antagonist. To our knowledge, this is the first report showing that an arenavirus protein counteracts the antiviral function of BST-2.


Assuntos
Antígenos CD/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Vírus Junin/fisiologia , Nucleoproteínas/metabolismo , Proteínas do Core Viral/metabolismo , Liberação de Vírus/fisiologia , Células A549 , Antivirais/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Interferons/farmacologia , Vírus Junin/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
15.
J Virol ; 94(3)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31694953

RESUMO

Epstein-Barr virus (EBV) genomic DNA is replicated and packaged into procapsids in the nucleus to form nucleocapsids, which are then transported into the cytoplasm for tegumentation and final maturation. The process is facilitated by the coordination of the viral nuclear egress complex (NEC), which consists of BFLF2 and BFRF1. By expression alone, BFLF2 is distributed mainly in the nucleus. However, it colocalizes with BFRF1 at the nuclear rim and in cytoplasmic nuclear envelope-derived vesicles in coexpressing cells, suggesting temporal control of the interaction between BFLF2 and BFRF1 is critical for their proper function. The N-terminal sequence of BFLF2 is less conserved than that of alpha- and betaherpesvirus homologs. Here, we found that BFLF2 amino acids (aa) 2 to 102 are required for both nuclear targeting and its interaction with BFRF1. Coimmunoprecipitation and confocal analysis indicated that aa 82 to 106 of BFLF2 are important for its interaction with BFRF1. Three crucial amino acids (R47, K50, and R52) and several noncontinuous arginine and histidine residues within aa 59 to 80 function together as a noncanonical nuclear localization signal (NLS), which can be transferred onto yellow fluorescent protein (YFP)-LacZ for nuclear targeting in an importin ß-dependent manner. Virion secretion is defective in 293 cells harboring a BFLF2 knockout EBV bacmid upon lytic induction and is restored by trans-complementation of wild-type BFLF2, but not NLS or BFRF1-interacting defective mutants. In addition, multiple domains of BFRF1 were found to bind BFLF2, suggesting multiple contact regions within BFRF1 and BFLF2 are required for proper nuclear egress of EBV nucleocapsids.IMPORTANCE Although Epstein-Barr virus (EBV) BFRF1 and BFLF2 are homologs of conserved viral nuclear egress complex (NEC) in all human herpesviruses, unique amino acid sequences and functions were identified in both proteins. In this study, the nuclear targeting and BFRF1-interacting domains were found within the N terminus of BFLF2. We showed that amino acids (aa) 82 to 106 are the major region required for BFLF2 to interact with BFRF1. However, the coimmunoprecipitation (Co-IP) data and glutathione transferase (GST) pulldown experiments revealed that multiple regions of both proteins contribute to reciprocal interactions. Different from the canonical nuclear localization signal (NLS) in other herpes viral homologs, BFLF2 contains a novel importin-dependent nuclear localization signal, including R47, K50, and R52 and several neighboring discontinuous arginine and histidine residues. Using a bacmid complementation system, we show that both the nuclear targeting and the novel nuclear localization signal within aa 82 to 106 of BFLF2 are required for virion secretion.


Assuntos
Núcleo Celular/virologia , Herpesvirus Humano 4/genética , Proteínas Virais/metabolismo , Liberação de Vírus/fisiologia , Sequência de Aminoácidos , Linhagem Celular , Citoplasma/metabolismo , Glutationa Transferase/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Membrana Nuclear , Sinais de Localização Nuclear/metabolismo , Conformação Proteica , Análise de Sequência de Proteína , Proteínas Virais/química , Proteínas Virais/genética , Vírion/metabolismo , Liberação de Vírus/genética , beta Carioferinas
16.
J Virol ; 93(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867316

RESUMO

HIV-1 infection of macrophages leads to the sequestration of newly formed viruses in intracellular plasma membrane-connected structures termed virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The cellular restriction factor bone marrow stromal cell antigen 2 (BST2), which prevents HIV-1 dissemination by tethering budding viral particles at the plasma membrane, can be found in VCCs. The HIV-1 accessory protein Vpu counteracts the restriction factor BST2 by downregulating its expression and removing it from viral budding sites. Numerous studies described these Vpu countermeasures in CD4+ T cells or model cell lines, but the interplay between Vpu and BST2 in VCC formation and HIV-1 production in macrophages is less explored. Here, we show that Vpu expression in HIV-1-infected macrophages enhances viral release. This effect is related to Vpu's ability to circumvent BST2 antiviral activity. We show that in absence of Vpu, BST2 is enriched in VCCs and colocalizes with capsid p24, whereas Vpu expression significantly reduces the presence of BST2 in these compartments. Furthermore, our data reveal that BST2 is dispensable for the formation of VCCs and that Vpu expression impacts the volume of these compartments. This Vpu activity partly depends on BST2 expression and requires the integrity of the Vpu transmembrane domain, the dileucine-like motif E59XXXLV64 and phosphoserines 52 and 56 of Vpu. Altogether, these results highlight that Vpu controls the volume of VCCs and promotes HIV-1 release from infected macrophages.IMPORTANCE HIV-1 infection of macrophages leads to the sequestration of newly formed viruses in virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The restriction factor BST2, which prevents HIV-1 dissemination by tethering budding viral particles, can be found in VCCs. The HIV-1 Vpu protein counteracts BST2. This study explores the interplay between Vpu and BST2 in the viral protein functions on HIV-1 release and viral particle sequestration in VCCs in macrophages. The results show that Vpu controls the volume of VCCs and favors viral particle release. These Vpu functions partly depend on Vpu's ability to antagonize BST2. This study highlights that the transmembrane domain of Vpu and two motifs of the Vpu cytoplasmic domain are required for these functions. These motifs were notably involved in the control of the volume of VCCs by Vpu but were dispensable for the prevention of the specific accumulation of BST2 in these structures.


Assuntos
Membrana Celular/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Macrófagos/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Antígenos CD/metabolismo , Antígeno 2 do Estroma da Médula Óssea/metabolismo , Citoplasma/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação Viral da Expressão Gênica/genética , Células HEK293 , Proteína do Núcleo p24 do HIV/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Soropositividade para HIV , HIV-1/imunologia , HIV-1/metabolismo , HIV-1/patogenicidade , Células HeLa , Proteínas do Vírus da Imunodeficiência Humana/fisiologia , Humanos , Macrófagos/virologia , Proteínas Virais Reguladoras e Acessórias/fisiologia , Vírion/metabolismo , Montagem de Vírus/fisiologia , Liberação de Vírus/fisiologia
17.
Virology ; 529: 177-185, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30716579

RESUMO

Variants of Ross River virus (RRV) that bind to heparan sulfate (HS) were previously selected by serial passaging in cell culture. To explore the effects of mutations that convey HS utilization, we pseudotyped Moloney murine leukemia virus (MoMLV), with the RRV envelope. We substituted amino-acid residues 216 and 218 on RRV-E2-envelope glycoprotein with basic amino-acid residues, because these mutations confer affinity for HS upon RRV. However, T216R-RRV- and N218R-RRV-pseudotyped viruses possessed lower transduction titers, and we demonstrated that HS-affinity impeded release of pseudotyped virus from producer cells. Addition of heparinase to HS-expressing target cells reduces the transduction efficiency of the T216R-RRV- and N218R-RRV-pseudotyped viruses, whereas no such effect is seen in cells lacking HS. Under appropriate conditions, these T216R-RRV- and N218R-RRV-pseudotyped viruses have enhanced capacities for transducing HS-expressing cells. General principles concerning viral adaptation to the use of attachment factors and design of pseudotyped viral vectors are discussed.


Assuntos
Heparitina Sulfato/fisiologia , Vírus da Leucemia Murina de Moloney/fisiologia , Ross River virus/fisiologia , Proteínas do Envelope Viral/fisiologia , Liberação de Vírus/fisiologia , Animais , Linhagem Celular , Cricetinae , Camundongos , Mutação , Ligação Proteica , Internalização do Vírus
18.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463960

RESUMO

Hepatitis E virus (HEV) is a common cause of acute viral hepatitis worldwide. Most HEV infections are asymptomatic, but immunocompromised patients infected with HEV genotype 3 (HEV3), HEV4, or HEV7 may develop chronic infections. The HEV particles in stools are naked (nHEV), while those in the serum and culture supernatants (eHEV) are associated with lipids. Hepatocytes are polarized epithelial cells that have basolateral (oriented toward the blood) and apical (oriented toward the bile) exosomal pathways. We isolated a subclone, F2, from the human hepatocarcinoma cell line HepG2/C3A that grew as a polarized monolayer culture and had better HEV production than HepG2/C3A cells. F2 cells cultured on semipermeable collagen inserts and infected basolaterally with nHEV3 released 94.6% of virus particles apically, those infected with eHEV3 released 96.8% apically, and eHEV1-infected cells released 99.3% apically. Transcytosis was not involved. Density gradient centrifugation and NP-40 treatment showed that HEV particles released both apically and basolaterally were lipid associated. The apically released HEV3 and HEV1 particles were six and nine times more infectious than those released basolaterally, respectively. Confocal microscopy indicated that the open reading frame 2 (ORF2) capsid protein colocalized apically with ORF3 virus protein, the apical marker DPP4, and the recycling endosome GTPase Rab27a. The amounts of soluble glycosylated ORF2 secreted apically and basolaterally were similar. These polarized-hepatocyte data suggest that infectious HEV particles are mainly released into bile, while the small fraction released into blood could spread HEV throughout the host.IMPORTANCE Hepatitis E virus (HEV) in stools is naked, while that in culture supernatants and patients' blood is lipid associated. Its life cycle in hepatocytes, polarized cells with a basolateral side communicating with blood and an apical side connected with bile, is incompletely understood. We have developed a polarized hepatocyte model and used the cells to analyze the supernatants bathing the apical and basolateral sides and HEV subcellular distribution. HEV particles from both sides were lipid associated, and most infectious HEV particles left the cell via its apical side. Similar amounts of the open reading frame 2 (ORF2) soluble capsid protein were secreted from both sides of the hepatocytes. This model mimicking physiological conditions should help clarify the HEV cell cycle in polarized hepatocytes.


Assuntos
Vírus da Hepatite E/metabolismo , Hepatócitos/virologia , Liberação de Vírus/fisiologia , Proteínas do Capsídeo/metabolismo , Carcinoma Hepatocelular/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Polaridade Celular , Células Epiteliais/virologia , Células Hep G2 , Hepatite E/virologia , Vírus da Hepatite E/patogenicidade , Vírus da Hepatite E/fisiologia , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Soro/virologia , Proteínas Virais
19.
PLoS Pathog ; 14(12): e1007471, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30532200

RESUMO

Hepatitis E virus (HEV) is a positive-strand RNA virus encoding 3 open reading frames (ORF). HEV ORF3 protein is a small, hitherto poorly characterized protein involved in viral particle secretion and possibly other functions. Here, we show that HEV ORF3 protein forms membrane-associated oligomers. Immunoblot analyses of ORF3 protein expressed in cell-free vs. cellular systems suggested a posttranslational modification. Further analyses revealed that HEV ORF3 protein is palmitoylated at cysteine residues in its N-terminal region, as corroborated by 3H-palmitate labeling, the investigation of cysteine-to-alanine substitution mutants and treatment with the palmitoylation inhibitor 2-bromopalmitate (2-BP). Abrogation of palmitoylation by site-directed mutagenesis or 2-BP treatment altered the subcellular localization of ORF3 protein, reduced the stability of the protein and strongly impaired the secretion of infectious particles. Moreover, selective membrane permeabilization coupled with immunofluorescence microscopy revealed that HEV ORF3 protein is entirely exposed to the cytosolic side of the membrane, allowing to propose a model for its membrane topology and interactions required in the viral life cycle. In conclusion, palmitoylation determines the subcellular localization, membrane topology and function of HEV ORF3 protein in the HEV life cycle.


Assuntos
Hepatite E/virologia , Proteínas Virais/metabolismo , Liberação de Vírus/fisiologia , Linhagem Celular , Vírus da Hepatite E/patogenicidade , Humanos , Lipoilação
20.
J Infect Dis ; 218(suppl_5): S388-S396, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30476249

RESUMO

The Ebola virus-encoded major matrix protein VP40 traffics to the plasma membrane, which leads to the formation of filamentous viral particles and subsequent viral egress. However, the cellular machineries underlying this process are not fully understood. In the present study, we have assessed the role of host endocytic recycling in Ebola virus particle formation. We found that a small GTPase Rab11, which regulates recycling of molecules among the trans-Golgi network, recycling endosomes, and the plasma membrane, was incorporated in Ebola virus-like particles. Although Rab11 predominantly localized in the perinuclear region, it distributed diffusely in the cytoplasm and partly localized in the periphery of the cells transiently expressing VP40. In contrast, Rab11 exhibited a perinuclear distribution when 2 VP40 derivatives that lack ability to traffic to the plasma membrane were expressed. Finally, expression of a dominant-negative form of Rab11 or knockdown of Rab11 inhibited both VP40-induced clusters at the plasma membrane and release of viral-like particles. Taken together, our findings demonstrate that Ebola virus exploits host endocytic recycling machinery to facilitate the trafficking of VP40 to the cell surface and the subsequent release of viral-like particles for its establishment of efficient viral egress.


Assuntos
Ebolavirus/metabolismo , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Vesículas Transportadoras/metabolismo , Vírion/metabolismo , Liberação de Vírus/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Membrana Celular/virologia , Chlorocebus aethiops , Endossomos/metabolismo , Endossomos/fisiologia , Endossomos/virologia , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Nucleoproteínas/metabolismo , Transporte Proteico/fisiologia , Células Vero , Proteínas do Core Viral/metabolismo , Rede trans-Golgi/metabolismo , Rede trans-Golgi/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA